IEEE P1788.1/D9.7, July 2015 IEEE Draft Standard for Interval Arithmetic (Simplified)

1 4.4.4 Interval-valued functions

² Let f be an n-variable scalar point function. An **interval extension** of f is a (total) mapping f from ³ n-dimensional boxes to intervals, that is $f: \overline{\mathbb{IR}}^n \to \overline{\mathbb{IR}}$, such that $f(x) \in f(x)$ whenever $x \in x$ and f(x) is

4 defined, equivalently

$$\boldsymbol{f}(\boldsymbol{x}) \supseteq \operatorname{Rge}(f \,|\, \boldsymbol{x})$$

5 for any box $x \in \overline{\mathbb{IR}}^n$, regarded as a subset of \mathbb{R}^n .

⁶ The **natural interval extension** of f is the mapping f defined by

$$\boldsymbol{f}(\boldsymbol{x}) = \operatorname{hull}(\operatorname{Rge}(f \mid \boldsymbol{x})).$$

7 Equivalently, using multiple-argument notation for f, an interval extension satisfies

 $f(x_1,\ldots,x_n) \supseteq \operatorname{Rge}(f \mid x_1,\ldots,x_n),$

⁸ and the natural interval extension is defined by

$$f(x_1,\ldots,x_n) = \operatorname{hull}(\operatorname{Rge}(f | x_1,\ldots,x_n))$$

9 for any intervals x_1, \ldots, x_n .

10 NOTE—The term "natural interval extension" has been used in the literature to denote an evaluation of a function

11 in interval arithmetic, where scalars are replaced by intervals and point operations are replaced by interval ones.

¹² The result of such an evaluation generally depends on the particular expression for f, while the present definition of "matural interval activation" maximum provides a universe result.

13 "natural interval extension" specifies unambiguously a unique result.

When f is a binary operator \bullet written in infix notation, this gives the usual definition of its natural interval extension as

$$x \bullet y = \text{hull}(\{x \bullet y \mid x \in x, y \in y, \text{ and } x \bullet y \text{ is defined }\}).$$

16 [Example. With these definitions, the relevant natural interval extensions satisfy $\sqrt{[-1,4]} = [0,2]$ and $\sqrt{[-2,-1]} = \emptyset$; 17 also $\boldsymbol{x} \times [0,0] = [0,0]$ for any nonempty \boldsymbol{x} , and $\boldsymbol{x}/[0,0] = \emptyset$, for any \boldsymbol{x} .]

¹⁸ When f is a vector point function, a vector interval function with the same number of inputs and outputs as ¹⁹ f is called an interval extension of f, if each of its components is an interval extension of the corresponding ²⁰ component of f.

- 21 An interval-valued function in the library is called an
- 22 interval arithmetic operation, if it is an interval extension of a point arithmetic operation, and an
- ²³ interval non-arithmetic operation otherwise.
- Examples of the latter are interval intersection and convex hull, $(x, y) \mapsto x \cap y$ and $(x, y) \mapsto hull(x \cup y)$.

25 4.4.5 Constants

A real scalar function with no arguments—a mapping $\mathbb{R}^n \to \mathbb{R}^m$ with n = 0 and m = 1—is a real constant.

An interval extension of a real constant is any zero-argument interval function that returns an interval containing c. The *natural extension* returns the interval [c, c].

29 4.5 Required operations

30 4.5.1 Interval constants

31 The constant functions empty() and entire() have value Empty and Entire respectively.