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Abstract. This is a slightly expanded form of the author’s talk of the
same title at SCAN 2014, Würzburg. Angled towards people who use
interval numerical methods little or not at all, it briefly describes how
interval arithmetic works, the mindset required to use it effectively, why
an interval arithmetic standard was needed, the setting up of IEEE Work-
ing Group P1788 for the purpose, the structure of the standard it has
produced, some difficulties we encountered, and the current state of the
P1788 project. During production of these Proceedings the 1788 stan-
dard has been published, but the talk’s original title has been kept.

This article, slightly expanded from the author’s talk of the same title at
SCAN 2014, briefly describes how interval arithmetic works, the mindset required
to use it effectively, why an interval arithmetic standard was needed, the setting
up of IEEE Working Group P1788 for the purpose, the structure of the standard
it has produced, some difficulties we encountered, and the current state of the
P1788 project. During production of these Proceedings the 1788 standard has
been published, but the talk’s original title has been kept.

The references include a recent survey [14], a recent textbook [17], and a
current web site [8], that testify to the liveliness of this area.

1 What intervals are and do

1.1 Basic ideas

Interval Arithmetic (IA) implements “validated”, also called “verified”, numer-
ical calculation. That is, it can enclose solution components x of a problem in
an interval, i.e. between lower and upper bounds

x ∈ x = [x, x] = { t ∈ R | x ≤ t ≤ x }.

It does this even in finite-precision arithmetic, with roundoff errors present.
E.g. it makes Brouwer’s fixed point theorem:

If K ⊂ Rn is compact convex, and function f is everywhere defined
and continuous on K, and f(K) ⊆ K, then f has a fixpoint in K
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verifiable when K is a box (product of intervals) in the sense that during the
evaluation of f , sufficient conditions for “everywhere defined and continuous”
can be found—with ease in favourable cases, but maybe requiring both brute
force and finesse in trickier cases..

The history of interval arithmetic might be traced back to Archimedes, in
the sense that he rigorously proved the bounds

3 10
71 < π < 3 1

7 ,

see Thomas Heath [3]. As a systematic discipline it seems to have begun in
the 20th century: Teruo Sunaga (Japan, 1958) [16]; Leonid Kantorovich (USSR,
1962) [4]. The most influential work of that time was the book by Ramon Moore
(USA, 1966) [11], describing for instance the first implementation of a validated
ODE solver.

Currently significant validated software exists for global optimisation, large
sparse linear systems, particle beam design for the Large Hadron Collider, and
many other applications. Rather than list extensive references we refer to those
in Siegfried Rump’s survey article [14] and in Vladik Kreinovich’s web site [8],
and also to the recent introductory book by Warwick Tucker [17].

1.2 Definition of interval operations

Interval operations take all combinations of points in the inputs, i.e.

x • y = {x • y | x ∈ x and y ∈ y }, where • is one of {+ − × ÷}

For ÷, disallow 0 ∈ y for now. In finite precision round outward. With these
definitions one has the following fact, probably first stated by Moore:

Theorem 1 (Fundamental Theorem of Interval Arithmetic). If a func-
tion f(x1, . . . , xn), defined by an expression, is evaluated with interval operations
on interval inputs to get y = f(x1, . . . ,xn) then

y contains the range of f over box x1 × · · · × xn in Rn.

Example 1. Let f(x1, x2) = x1+x2/x1, suppose 2-digit decimal arithmetic is
used, and let the input intervals be x1 = [3, 4], x2 = [3, 5]. We compute

x1 +
x2

x1
= [3, 4] +

[3, 5]

[3, 4]
= [3, 4] +

[
3

4
,

5

3

]
round−→ [3, 4] + [.75, 1.7]

= [3.75, 5.7]
round−→ [3.7, 5.7] = f(x1,x2) = y.

y does contain the range of f over x1 × x2 = [3, 4] × [3, 5], which with a bit of
calculus is found to be [4, 5.25]. ut

2 Why do intervals need new algorithms?

2.1 Example: interval version of Newton’s iteration

Consider Newton’s method for solving a 1-D nonlinear equation f(x) = 0.
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A wrong approach. The usual formula is:

xk+1 = xk −
f(xk)

f ′(xk)

A direct interval transcription of this would be

xk+1 = xk −
f(xk)

f ′(xk)

where f and f ′ are interval versions of (the computer code for) f and f ′.
Unfortunately addition and subtraction of intervals—in infinite precision—

just adds their widths. In symbols, w(a ± b) = w(a) + w(b). In finite precision
the result is even a little wider owing to roundoff.

So the width of xk+1 equals the width of xk plus that of f(xk)/f ′(xk). The
latter width is usually strictly > 0, so each interval cannot be narrower than the
last, and usually is wider. Convergence of an interval algorithm to a root must
involve the interval becoming smaller. The above simple transcription of Newton
to intervals cannot possibly do that, and is bound to diverge!

A right approach. For a sensible solution to this problem, go back to basic theory.
Let f be a C1 function on a real interval I. Then by the Mean Value Theorem
MVT, for any root z and any x, both in the interval, there is some ξ in the
interval such that

f(x) = f(x)− f(z) = (x− z)f ′(ξ) (1)

so provided f ′(ξ) 6= 0, see later,

z = x− f(x)

f ′(ξ)
. (2)

A pointer to the right algorithm is in the quantifiers: ∀ root z, ∀ x, ∃ ξ. These
give a geometric interpretation to equation (2), shown in Figure 1:

For any x ∈ I, a searchlight shone from the point (x, f(x)) on the curve,
its rays bounded by the lowest and highest slopes of f on I, is certain to
illuminate any root z (identified with (z, 0) in the plane) in I.

To convert this to something computable note that in (2):

– f(x) must be computed as an interval, since f is program code, hence liable
to roundoff.

– f ′(ξ) must also be an interval, for two reasons: (a) f ′ is program code; (b) ξ

is only known to exist—its exact position is unknown ( ∃ ).
– However x can be a point. It is an arbitrary programmer-selected point in I

( ∀ )—typically the midpoint is used in practice.

Hence, ( ∀ ) for any root z ∈ I we also have

z ∈
(
x− [f(x)]

[f ′(ξ)]

)
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I

y=f
(x)

(x,f(x))

z

x

Fig. 1. Geometric view of Interval Newton: one-sided searchlight.

using classical interval notation that [. . .] means “some interval containing”. In
more current notation, renaming the interval as x

z ∈
(
x− f([x])

f ′(x)

)
=

(
point− interval function of point

interval function of interval

)
(3)

where [x] is 1-point interval {x} and f ,f ′ are interval versions of f, f ′. This is
the start of a satisfactory algorithm.

More general picture. Actually the searchlight shines in both directions, crucial
when the range of slopes includes both positive and negative slopes, see Figure 2:

I

(x,f(x))

x

z
2

z
1

y=f
(x)

Fig. 2. Geometric view of Interval Newton: two-sided searchlight.

The same argument works as before, provided one interprets division as re-
verse multiplication, write this as //:

c // b = { all solutions of bx = c }, 1788’s mulRev(b,c).
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So 0/0 is “whole real line” instead of “undefined”. That is, (3) is replaced by

z ∈
(
x−

(
f([x] //f ′(x)

))
. (4)

This is just a restatement of formula (1), and its controlling quantifiers, two ∀
and one ∃ . That is always valid even when (2) might divide by zero.

Now we enclose all roots even when many exist! However, the searchlight can
“split” I into two pieces, as Figure 2 shows. 1788 provides a “two-output reverse
multiplication” operation mulRevToPair, adapted to this situation.

Interval Newton iteration. We assumed the root z is in the interval x so it is
safe to intersect the interval given by (4) with x. This gives the 1983 method
of Hansen and Greenberg [2], later refined by R.B. Kearfott [6], G. Mayer [10],
P. van Hentenryck et al. [18], and others.

We assume the function f is C1 on the initial interval.

set x0 = initial interval I
for k = 0, 1, 2, . . .

xk = some chosen point in xk

Y k+1 = xk − f([xk]) //f ′(xk) reverse multiplication

xk+1 = Y k+1 ∩ xk can split in two, see below

x
k

x
k+1

Y
k+1

y=f
(x)

(x
k
,f(x

k
))

Y
k+1

Fig. 3. One step of Interval Newton method (one-sided searchlight case).

2.2 Lessons from the example

Comments on the algorithm. Here Y k+1, hence xk+1, is potentially a union of
two intervals that can be handled independently.

This structures the computation as a binary tree that progressively divides
root-clusters into smaller sets, trying (but not always succeeding) to isolate each
individual root. This can be done by various tree-traversal methods, exploiting
parallelism if available.
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By construction it is clear that all roots in xk must be in Y k+1, hence in
(the possibly split in two) xk+1. However the algorithm has other remarkable
and less obvious properties:

– if xk+1 is empty, then no root exists in xk.
– If 0 /∈ f ′(xk), then at most one root exists in xk (which must be in xk+1).
– If Y k+1 is nonempty, bounded, and contained in xk, then exactly one root

exists in xk.

Comments on the “interval mindset”. The analysis leading to the algorithm
wasn’t rocket science—just a careful look at how the quantifiers ∀, ∃ appeared
in a use of the Mean Value Theorem.

In general however, to learn how to convert mathematics to effective interval
algorithms takes time and practice.

3 Genesis of the interval standard project

3.1 The need

Over the years, dozens of interval software packages have been written, and
several, for instance PROFIL/BIAS, Filib++ and INTLAB, are widely used at
present [7,9,13]. However, they have not quite compatible mathematical founda-
tions, for instance different answers to these questions:

– Should theory, and software, support unbounded intervals and the empty
set? Moore’s interval arithmetic did not.

– Is an interval x a set of numbers? In Kaucher interval arithmetic, an interval
is a set with a two-valued “mode”. [3, 4] is a proper interval, essentially the
normal set. [4, 3] is an improper interval; as a set it has the same value as
[3, 4] but its arithmetic rules are different.

– If x is a set of numbers, are ±∞ allowed to be members of x?
– How to handle operations that are not everywhere defined on their input

intervals, such as the square root of [−2, 2], or division by an interval con-
taining 0?

In addition, they have different software interfaces. Thus, currently one can-
not write algorithms that are portable at a mathematical level, let alone write
portable software.

3.2 Setting up a working group

In January 2008 at a conference in Dagstuhl, Germany, a project was started
with the aim of producing an IA standard. In July that year it was approved
by the IEEE as Working Group P1788 “A standard for interval arithmetic”. In
September, a conference in El Paso, USA, hosted its first face to face meeting
at which the following officers were appointed.
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Nathalie Revol, Chair
R. Baker Kearfott, Vice Chair and Acting Chair
William Edmonson, Secretary
Guillaume Melquiond, Archivist
J. Wolff von Gudenberg, Web Master
George Corliss, Voting Tabulator
John Pryce, Senior Technical Editor

Also during the project Christian Keil acted as Deputy Technical Editor, and
Michel Hack, Vincent Lefèvre, Ian McIntosh, Dmitry Nadezhin, Ned Nedialkov
and J. Wolff von Gudenberg were Assistant Technical Editors. About 140 people
registered on the mailing list, of whom around 45 were regular voting members.

The group approved a final text in May 2014. Further revision, up to publica-
tion, then became the responsibility of the project’s sponsor ballot group (whose
membership overlaps with P1788’s) and of IEEE editorial staff.

4 1788 Interval Principles

4.1 Definition of an interval

There is a framework—so called flavors—to support alternative mathematical
foundations. The standard currently has just one flavor called Set-Based, in
which

– An interval x is a plain set, whose members are real numbers. This excludes
±∞ as members, so intervals are subsets of the real line R.

– Open or half-open intervals are not allowed, but unbounded intervals are.
– The empty set is an interval.

This amounts to the mathematically simple definition:

Interval means topologically closed and connected subset of R.

A potential alternative flavor is Kaucher (or very similar modal) interval
arithmetic [5]: an interval is not a plain set, but an ordered pair (x, x) of reals:

(x, x) “means”

{
set [x, x] ⊂ R if x ≤ x (“proper” interval)
something other if x > x (“improper” interval).

Another potentially important flavor is Siegfried Rump’s interval arithmetic
[15], which can support open or half-open intervals, and can handle finite preci-
sion under- and over-flow in a consistent and elegant way.

4.2 The Levels structure.

As in the IEEE floating-point standard 754, the 1788 standard manages com-
plexity by distinguishing four specification levels:
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Level 1. Mathematical theory of the set IR of intervals and their operations.
Level 2. Finite precision intervals—datums—and operations, independently of

their representation.
Level 3. Representation of datums by objects, e.g. by a data structure compris-

ing two floating-point numbers.
Level 4. Encoding of Level 3 objects as bit strings.

Inter-level maps. Maps between levels are crucial—especially those between
Level 1 and Level 2, or L1 ←→L2 for short. The P1788 group made the fol-
lowing design decisions, which apply to all flavors:

– Each datum is a mathematical interval, so the map from L2 to L1 is just
inclusion:

L2 datums
identity map−→ L1 intervals (*)

(Not quite true: the datum also “knows what type it belongs to”, i.e. is
tagged with a unique name of its type. A programming language needs this
information, since different types will be represented differently at L3.)

– Datums are organised into finite sets T called interval types. Thus each T
may be regarded as a finite subset of IR. The implementation has discretion
on what types to provide.

– A L1 interval x maps to an interval of type T—a T-interval or T-datum—by
the T-hull operation

hullT (x) = smallest T-interval that contains x,

where “contain” has a flavor-defined meaning (which for Set-Based intervals
is the usual one). This defines the map back from L1 to L2:

L1 intervals
T-hull−→ L2 datums of type T (**)

– To do an operation x • y at L2 on T-datums, in any flavor:
map x,y to L1 by (*);
do the operation at L1;
map back to L2 by (**).

This specification of the relation between mathematics and finite precision looks
trivial but is not: it defines the whole character of the standard. Not all IA
theories are clear on this issue. Time will tell whether our choice was a wise one.

This choice affects implementations. For instance an arbitrary-precision in-
terval package must be structured as a potentially infinite set of types, each
containing finitely many intervals. It cannot comprise a single type containing
potentially infinitely many intervals.

Maps for Levels 3 and 4. There are two fairly obvious rules:

– L2 ←→L3: Each L2 datum is represented by at least one L3 object; each L3
object represents at most one L2 datum.

– L3 ←→L4: Each L3 object is encoded by at least one L4 bitstring; each L4
bitstring encodes at most one L3 object.
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5 Exception handling

5.1 A hypothetical scenario

Less than 10 years hence in the Old Bailey, London, . . .

The case Crown versus Google concerns the Google Driverless Car, GDC.
One of them badly injured a pedestrian who stepped into the road in front of it.

The GDC’s emergency stop system is designed to act faster than a good
human driver (undisputed) but is it badly implemented (disputed)?

The software uses an interval algorithm, built on a 1788-conforming library,
which applies Brouwer’s fixed point theorem. Could this have an error? E.g., it
may have thought it had enclosed a root of an equation when it had not.

Depending on what software bugs are found (if any), liability might lie with
the pedestrian’s negligence. Or with GDC’s software implementers. Or with the
1788 library implementers. Maybe even with the mathematicians who claimed
to have proved the design of 1788 is correct?

A lot of money rides on whether 1788-based code might be wrong, when
deciding that a function is defined and continuous on a box.

5.2 Theoretical context

Basic problem. How (at Level 1) to treat operations that are not everywhere
defined and/or continuous on their input box? For example

(real) square root
√
x

x

y
floor(x)√

[−2, 2]
[2, 3]

[−1, 1]
floor([2.5, 4.5])

undefined on −2 ≤ x < 0 undefined if y = 0 discontinuous at x = 3, 4

We decided the default is “evaluate where defined, ignore where undefined”,
called non-stop or loose evaluation. For instance√

[−2, 2] = {
√
x | x ∈ [−2, 2] and x ≥ 0 } = [0,

√
2]

with no error reported. This is similar to IEEE 754 floating-point, which responds
to an invalid operation such as 0/0 or ∞−∞ by returning the result NaN and
continuing to compute.

This is a valid approach for, e.g., many global optimisation methods. It is not
valid when applying Brouwer’s theorem, which needs a guarantee that a function
is everywhere defined and continuous on a box.

It also will not do for some graphics rendering algorithms, which need to
know a function is everywhere defined on a box, but are not bothered about
continuity.
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Tracking function properties. One needs a mechanism to track whether a func-
tion has these desirable properties of definedness and/or continuity. This leads to
a powerful extension of the Fundamental Theorem of interval arithmetic based
on well-known theorems of set theory and analysis, which can be summarised:

If for function f given by an expression, each individual library operation
in f is everywhere defined on its input set, then the same holds for f .
The same is true when defined is replaced by defined and continuous.

Example 2. Let f(x) = 1/
√
x, composed of library operations sqrt(t) =

√
t

followed by recip(t) = 1/t. Evaluate z = f(x) in exact (Level 1) interval
arithmetic. Abbreviate defined and continuous to DAC.

Let the input to f be x = [1, 4]. We do y = sqrt(x) = [1, 2], followed by
z = recip([1, 2]) = [ 12 , 1]. Each operation is (everywhere) DAC on its input:
sqrt on [1, 4] and recip on [1, 2]. We conclude f is DAC on this x.

If x is [0, 4] then sqrt is DAC on this x but recip is not DAC on the resulting
y = [0, 2], so we cannot say f is DAC on x.

Similarly, if x is [−2, 4] then sqrt fails to be DAC on this x and again we
cannot say f is DAC on x. ut

In the two last cases of this example it is easy to prove f is definitely not DAC
on x, but for complicated functions in the presence of roundoff, to prove such
a negative—definitely not everywhere DAC—is nearly impossible. Therefore the
1788 system only provides for a definite positive, which is cheap to compute. It
can also say definitely nowhere defined on the input, which is cheap too.

5.3 Decorations

To provide a mechanism to track such properties of functions, we rejected the
IEEE 754 standard’s method of global flags, as being obsolete for today’s mas-
sively parallel platforms. Instead, 1788 provides for decorated intervals. Such an
interval is a pair (y, dy), also written ydy when convenient:

– an ordinary interval y,
– a tag dy called a decoration, giving data about definedness, continuity, etc1.

Formally, a decoration d is a label for an assertion (boolean-valued function)
pd(f,x) about a function f : Rn → R and a box x ⊆ Rn, for arbitrary n. Five
decorations are defined in order of “goodness”, ill < trv < def < dac < com:

ill Label for ill-formed intervals, formally “f is nowhere defined”.
trv (trivial) Always true = “no information”.
def f is everywhere defined on x.
dac As def, plus f is everywhere continuous on x.
com As dac, plus f is bounded on x at Level 2, meaning that no overflow

occurred while computing it2.

1 dy is just a mnemonic, “decoration for y”. It has nothing to do with differentials.
2 com means “common”, see Section 6, but also that code can verify it is common.



11

Let (y, dy) result from evaluating an arithmetic expression f(x1, . . . , xn)

– on correctly initialised decorated interval inputs (x1, dx1), . . . , (xn, dxn) (the
programmer’s responsibility),

– using correctly written decorated interval library operations (the implemen-
tation’s responsibility).

Then Moore’s Fundamental Theorem says

y contains the range of f over x1 × · · · × xn,

and in addition,

the decoration dy makes a true assertion about f over x.

For instance if dy is computed to be def then f has been proved to be
everywhere defined on x.

As with a computed range enclosure, a computed decoration is often not
sharp. E.g. it may be trv (no information) or def (defined) when actually dac

(defined and continuous) is true. Much of the craft of IA is knowing how to
“sharpen” such information, e.g. by cutting an input box into smaller boxes
handled separately.

Example 3. Consider the fixpoint problem, to solve g(x) = x where

g(x) = 2
√
x− 1

2 .

Roots are x = 3
2 ±
√

2 = 0.0858 . . . or 2.9142 . . .

We aim to use interval fixpoint iteration

x0 = initial guess; xn+1 = g(xn) for n = 0, 1, . . .

First, use ordinary undecorated interval arithmetic.

Case A: x0 = [2, 3]. Then

x1 =
[
2
√

2− 1
2 , 2
√

3− 1
2

]
= [2.3 . . . , 2.9 . . .] ⊂ x0.

This is genuine and (by Brouwer’s Theorem) it proves a fixpoint exists in x1.

Case B: x0 = [−1, 1
16 ]. Then

x1 = 2
√

[−1, 1
16 ]− 1

2 = 2 [0, 14 ] − 1
2 = [0, 12 ]− 1

2 = [− 1
2 , 0], again ⊂ x0 !

But there is no root in x0, let alone x1! This is spurious, due to 1788’s (undeco-
rated) square root function discarding the negative part of x0 without comment.

Now use decorated interval arithmetic. The rule for propagating decorations
is, roughly, that an operation outputs the worst decoration, in the “goodness”
order defined on p.10, out of the decorations on its operands and the decoration
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generated while performing the operation. Showing decorations as subscripts,
Case B gives

x1 = [2]dac ×
√

[−1, 1
16 ]dac − [ 12 ]dac

= [2]dac × [0, 14 ]trv − [ 12 ]dac,

= [0, 12 ]trv − [ 12 ]dac = [− 1
2 , 0]trv.

Recall trv = “no information”, so the calculation is, correctly, unable to verify
the conditions of Brouwer’s Theorem. But Case A produces

x1 = [2.3 . . . , 2.9 . . .]dac,

proving g is DAC on x0, as well as mapping x0 into itself—the conditions for
applying Brouwer’s Theorem have been verified. ut

The decoration system is the feature that most distinguishes 1788 from earlier
IA systems. An annex in the Standard contains a rigorous proof of correctness:
a Fundamental Theorem of Decorated Interval Arithmetic.

6 Difficulties the group encountered

Certain issues caused long and heated debate. We are grateful for the diplomatic
skills the Chair and Vice-chair sometimes needed to deploy, and the good sense
of IEEE procedural guidelines for “online democracy”. Here are a few examples.

The choice of foundational mathematical model. Most users of IA are in the
academic community, and most of these use some form of “interval is just a set of
numbers” theory and software. But Kaucher/modal theory—with intervals like
[4, 3]—has its proponents. One of them is Nate Hayes, whose company does high-
quality graphics rendering for the movie industry. For its specialised interpolation
algorithms, Kaucher methods are reported to give tighter enclosures and greater
speed.

The resulting tension between “intervals for knowledge” and “intervals for
profit” was fruitful. Faced with two related kinds of object, it is natural to look
for a theory that supports both, in a tightly coupled sense that lets both exist
in a computer program and inter-operate.

We tried this over a period of many months with set-based and Kaucher
intervals, but failed. For instance, unbounded intervals within Kaucher theory
needed arbitrary restrictions or led to logical contradictions—briefly, Kaucher
cannot handle [3,∞) consistently, and set-based cannot handle [4, 3].

This was the main motivation for the flavor concept. It allows different the-
ories that are “recognisably 1788” in a loosely coupled sense. The main re-
quirement is that each flavor’s intervals must include Moore’s original (closed,
bounded, nonempty) real intervals, called common intervals, and a library of
operations that at Level 1, when acting on common intervals, produce the same
results in all flavors.
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A Kaucher standard document was promised but has not materialised yet.
However at least one other theory that holds promise for effective interval com-
putation fits into the flavor mould—that of Rump [15], especially if coupled with
the Gustafson universal numbers system [1] (and see elsewhere in this volume).
So I feel the effort put into this part of the standard has not been wasted.

The decoration scheme. The group saw from the start that checking definedness
and continuity of a function can in principle be automated, and early on rejected
global flags in favour of decorating individual intervals. The chosen scheme took
nearly two years, off and on, to decide. Initially we used separate boolean flags
for “defined”, “continuous”, etc. Arnold Neumaier of Vienna first proposed that
decorations should be a linear sequence. Of several such schemes, we nearly
adopted one with 6 decorations, till Guillaume Melquiond pointed out that one of
them gave no information not already available to a programmer, so we removed
it to give the current 5-decoration system.

(We are also indebted to Arnold for his earlier document, the Vienna Proposal
for Interval Standardization [12], from which many ideas in 1788 are drawn.)

Input/output. I/O is important. A key reason why the Algol 60 language died
and Fortran, its arguably inferior contemporary, thrived is that the latter had a
language-defined I/O scheme and the former did not.

The working group debated at length on what I/O should be required and
how prescriptive the standard should be. Eventually it agreed to specify an
external text representation of intervals, so called interval literals. Examples are
[empty], [1.23,4.56] and the uncertainty form 1.23?4 which means 1.23 ±
(4 units in the last place), i.e. [1.19, 1.27].

An implementation shall provide functions to read such literals in free for-
mat, and write them in either free (e.g., for interactive work) or fixed (for tab-
ulation) format. However we did not standardise the conversion specifiers (such
as C’s %8.3f or Fortran’s F8.3 for output of floating-point numbers), leaving
this implementation-defined, to be standardised at a future revision.

In addition to the above transformations, which generally incur roundoff,
each finite-precision type T shall define an exact text representation, giving loss-
free conversion between T-intervals and text strings. For types based on IEEE
754 numbers, 1788 specifies an interchange encoding, giving loss-free conversion
between T-intervals and bit strings. This last is 1788’s only Level 4 requirement.

What to say about accuracy? The accuracy issue for intervals is different from
that for floating-point. The result ỹ of an interval library operation must enclose3

the mathematical result y. If not, it is wrong, period. If it does—even if it is the
useless result [−∞,+∞]—it is valid.

After much discussion we agreed that tightness—how close ỹ is to the en-
closed y—is a quality-of-implementation issue, barring a few cases where requir-
ing optimal tightness is reasonable.

3 This has been called the “Thou Shalt Not Lie” principle.



14

So the standard acts as a “regulatory authority” here—it does not specify
an accuracy, but it requires a conforming implementation to state the accuracy
of each of its library operations, in a verifiable way, using a format specified by
the standard. There is typically a trade-off between accuracy and speed, and the
aim is to make it possible for users to make a fair comparison of the merits of
different implementations.

7 Current state

The main text has around 70 pages, of which roughly 60% are Level 1, 35%
Level 2, 5% Level 3, with a half-page of Level 4.

Following approval by a vote of the group in May 2014, the text was exten-
sively reworked with help from IEEE editorial staff to fit their style guidelines.

It was signed off in November 2014 to enter the Sponsor Ballot phase, and
examined by a selected group representative of academia, software developers, in-
dustry, etc., and of geographical regions. They approved it after various changes,
both editorial and technical. Finally, IEEE Std 1788TM-2015 was approved by
the IEEE Standards Board in June 2015, and published at the end of that month.

In addition, a Basic Standard for Interval Arithmetic (BSIA) has been writ-
ten by Ned Nedialkov. At around 20 pages it is a cut down version, simpler to
implement and suitable for undergraduate teaching. A program that runs un-
der an implementation of the BSIA should run and give identical results up to
roundoff under an implementation of the full standard. The IEEE have approved
a project, P1788.1, for the BSIA to become a separate but related standard.

A Proof of Interval Newton properties

This appendix proves the properties stated in § 2.2. It may be of interest because
item (iv) of the Theorem does not seem to have appeared in the literature before.
An interval extension of a real function f of real variables means an interval
function f of corresponding interval variables such that y = f(x1, . . . , xn) is in
y = f(x1, . . . ,xn) whenever xi is in xi for each i = 1, . . . , n.

Theorem 2. Let f : R→ R be C1 on an interval x, which may be unbounded.
Let f and f ′ be interval extensions of f and its derivative f ′, and let x be any
point of x. Define the set

Y = x− f([x]) //f ′(x)

where // denotes division in the sense of reverse multiplication. (Thus Y may be
empty, an interval, or the union of two disjoint unbounded intervals.) Then

(i) Y contains all zeros of f in x.
(ii) If Y ∩ x = ∅, there are no zeros of f in x.

(iii) If 0 /∈ f ′(x), there is at most one zero of f in x.
(iv) If Y is nonempty, bounded and ⊆ x, there is exactly one zero of f in x.
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Proof. (i) Let z ∈ x with f(z) = 0. By the Mean Value Theorem

f(x) = f(x)− f(z) = (x− z)f ′(ξ). (5)

for some ξ ∈ x. By definition of interval extension, f ′(ξ) ∈ f ′(x) and f(x) ∈
f([x]). Hence by the definition of reverse multiplication

x− z ∈ f([x]) //f ′(x),

that is
z ∈ x− f([x]) //f ′(x)

as required.
(ii) This is immediate from (i).
(iii) In (5) let both z and x be roots in x. Then we have 0 = f(x)− f(z) =

(x− z)f ′(ξ). By hypothesis 0 /∈ f ′(x) which implies f ′(ξ) 6= 0. Hence x− z = 0,
x = z, so there is at most one root.

(iv) Write b = f ′(x), c = f([x]), both being nonempty by the definition of
interval extension. By hypothesis Y = x − c // b is nonempty and bounded, so
Z = c // b is nonempty and bounded.

I claim 0 /∈ b. For suppose 0 ∈ b. Then 0 /∈ c, for if 0 ∈ c then Z is the
unbounded set R, contrary to hypothesis. Now two subcases arise.
– Either b is singleton [0], making Z empty, contrary to hypothesis.
– Or, b contains 0 and another point, in which case it contains points arbitrarily
close to 0. Since 0 /∈ c 6= ∅, c contains a nonzero point. Together these imply
c // b is unbounded, again contrary to hypothesis.

Thus all the cases of 0 ∈ b give a contradiction, proving 0 /∈ b. Hence by part
(iii) there is at most one root in x and we must show there is at least one. If
f(x) = 0 there is nothing more to prove, so assume f(x) 6= 0.

Let b∗ be the bound of b nearest 0, so it is finite, 6= 0 and in b. Let z∗ be the
intercept on the x-axis of the line through (x, f(x)) with slope b∗, so

z∗ = x− f(x)/b∗, (6)

equivalently

f(x) = (x− z∗)b∗. (7)

Since f(x) ∈ c and b∗ ∈ b, (6) shows z∗ ∈ Y ⊆ x. Also x ∈ x so by the Mean
Value Theorem there is ξ ∈ x with

f(x)− f(z∗) = (x− z∗)f ′(ξ). (8)

Subtracting this from (7) gives

f(z∗) = (x− z∗)(b∗ − f ′(ξ)) (9)

Now f ′(ξ) is in b by the latter’s definition, so by the definition of b∗ it has the
same sign as b∗ and at least as large absolute value, i.e. f ′(ξ)/b∗ ≥ 1. Dividing
(9) by (7) (recalling f(x) 6= 0) now gives

f(z∗)/f(x) = 1− f ′(ξ)/b∗ ≤ 0,
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so f(z∗) has opposite (in the weak sense) sign to f(x). By the Intermediate
Value Theorem f has a zero z between x and z∗. Since both the latter are in x
we have z ∈ x, and the result is proved. ut
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