
Interval Comparisons and Lattice Operations

based on the Interval Overlapping Relation

Marco Nehmeier, Jürgen Wolff von Gudenberg

October 26, 2010

1 Introduction

In this paper we start with the definition of the interval overlapping relation
showing the 13 different cases that may occur when to compare two non-empty
intervals. This definition and especially the naming follow Allen who, in [1]
defined this relation in a temporal logic setting. Other names may be chosen.
This paper serves 2 purposes:

1. to define a solid foundation for interval comparisons and lattice operations

2. to provide an advanced interface for language embedding and application
programs.

Based on the overlapping relation the paper then identifies 7 atomic independent
interval operations, which form a base for the binary relation algebra (BRA) for
intervals, [5].
The atomic operations can be used to compute the most commonly used interval
comparisons, as those have been proposed in motion 13 [4]. Hence, this paper
contributes to the rationale of motion 13.
The next section introduces the necessary lattice operations which are closely
related with comparisons. These also can be derived from the overlapping rela-
tion.
In [6] we have shown that the general overlapping relation can be efficiently
implemented in hardware. 4 bits are sufficient to encode the different states.
Together with an object oriented interface allowing the direct access to the
states (cases) this will presumably lead to a better performance of application
programs.

1.1 Abstraction Levels

Concerning the levels of abstraction from level 1 that deals with real numbers
and sets, via level 2 providing an abstract data type Interval with floating-point
bounds, we come to the level 3 with executable representation, we try to stay
as general or abstract as possible. Our main definition (Table 1) clearly is level
1. In our opinion that also holds for Table 2. Since P1788 defines the standard
for floating-point intervals, we do need the level 2 tables 3 and 7.

1

2 Interval Overlapping Relation

Let Q be the finite set of states representing the 13 different possible situations
of relative position of 2 non-empty intervals on the real line.

Definition 1 (Interval Overlapping) The overlapping relation for two non-
empty intervals is defined by the mapping

◦◦ : IR× IR→ Q (1)

A ◦◦B 7→ qi ∈ Q , i = 1 . . . 13 (2)

where the predicates characterizing the qi are given in Table 1

State Definition

before ∀a∀b a < b
meets ∀a∀b a ≤ b ∧ ∃a′∀b a′ < b ∧ ∃a′′∃b′ a′′ = b′

overlaps ∃a′∀b a′ < b ∧ ∃b′∀a a < b′ ∧ ∃a′′∃b′′ b′′ < a′′

starts ∃a′∀b a′ ≤ b ∧ ∃b′∀a b′ ≤ a ∧ ∃b′′∀a a < b′′

containedBy ∃b′∀a b′ < a ∧ ∃b′′∀a a < b′′

finishes ∃b′∀a b′ < a ∧ ∃a′∀b b ≤ a′ ∧ ∃b′′∀a a ≤ b′′

equal ∀a∃b′ a = b′ ∧ ∀b∃a′ b = a′

finishedBy ∃a′∀b a′ < b ∧ ∃b′∀a a ≤ b′ ∧ ∃a′′∀b b ≤ a′′

contains ∃a′∀b a′ < b ∧ ∃a′′∀b b < a′′

startedBy ∃b′∀a b′ ≤ a ∧ ∃a′∀b a′ ≤ b ∧ ∃a′′∀b b < a′′

overlappedBy ∃b′∀a b′ < a ∧ ∃a′∀b b < a′ ∧ ∃b′′∃a′′ a′′ < b′′

metBy ∀b∀a b ≤ a ∧ ∃b′∃a′ b′ = a′ ∧ ∃b′′∀a b′′ < a
after ∀b∀a b < a

Table 1: The 13 different states of interval overlapping situations

In order to keep the conditions readable we have omitted parentheses, the prior-
ity of the operators is assumed appropriately. We qualify each “for all” quantifier
with the plain letter and each “exists” quantifier with a primed letter, we further
do not spell out the interval, i.e. we write ∀b instead of ∀b∈B etc.

Remark 1 The active or passive verb-forms are kind of inverse or reverse:
A activates B ≡ B activatedBy A

Column 2 of Table 1 contains the set theoretic (level 1) predicates. The single
states are obtained by shifting A from left to right and noticing each change of
the predicate, see Figure 1. The three columns correspond (from left to right)
to width(A)(> | = | <)width(B), respectively.

Remark 2 Since containment is important, we group the situation with the
point interval A = [a, a], a = b under “ starts” and not under “meets”. For the
same reason we prefer the situation A = [a, a], a = b to belong to “ finishes”
instead of “metBy”.

2

before
↓

meets
↓

finishedBy ← overlaps → starts
↓ ↓ ↓

contains equal containedBy
↓ ↓ ↓

startedBy → overlappedBy ← finishes
↓

metBy
↓

after

Figure 1: Shifting A from left to right

Remark 3 Empty sets are commonly used only together with containment.

∅ ◦◦B 7→ containedBy

A ◦◦ ∅ 7→ contains

∅ ◦◦ ∅ 7→ equal

These values can also be obtained by the formulas in Table 1.

When we extend our mapping to empty intervals, we technically add three new
states (fstEmpty, sndEmpty, and bothEmpty) to the range Q. Note that these
new states are some kind of intermediate in the sense that they are internal states
only used for the implementation of the exceptional occurence of an empty set.
We thus obtain a complete partition of the domain IR × IR into 16 parts or
cases.
Table 2 presents this partition and illustrates the definition by deducing condi-
tions for the endpoints and drawing sketches for each state. Those old states
that are meaningful for empty intervals, have been split and renamed by ap-
pending a “P”.

Remark 4 The states where the characteristic predicates deliver “true”, if ei-
ther operand is empty, are split into 2 or more states.

before = beforeP ∨ fstEmpty ∨ sndEmpty ∨ bothEmpty

containedBy = containedByP ∨ fstEmpty

equal = equalP ∨ bothEmpty

contains = containsP ∨ sndEmpty

after = afterP ∨ fstEmpty ∨ sndEmpty ∨ bothEmpty

The illustrations in column 3 and following of Table 2 display the interval A
on the bottom and the interval B on the top. This table provides the level 2
interface that exactly specifies the conditions on the endpoints. Note that we
are using the endpoints for specification of the relation, and not necessarily for
representation of the intervals.

3

State Condition

beforeP a < b
b b

a a a a

b
B b b

b
A

b
B

b
A

meets a < a
b b

a a

a = b

b < b
overlaps a < b

b b

a a

b < a

a < b
starts a = b

b b

a a

b b

b
Aa < b

containedByP b < a
b b

a a

b b

b
Aa < b

finishes b < a
b b

a a

b b

b
Aa = b

equalP a = b
b b

a a

b
B

b
Aa = b

finishedBy a < b
b b

a a

b
B

a ab = a
containsP a < b

b b

a a

b
B

a ab < a
startedBy b = a

b b

a a

b
B

a ab < a
overlappedBy b < a

b b

a a

a < b

b < a

metBy b < b
b b

a a

b = a
a < a

afterP b < a
b b

a a

b b

b
A

b
B

a a

b
B

b
A

fstEmpty A = ∅
B 6= ∅

sndEmpty A 6= ∅
B = ∅

bothEmpty A = ∅
B = ∅

Table 2: Partition of the input space

4

The 16 states of Table 2 can be represented by a 4-bit string. The evaluation of
the conditions can be accelerated by a hardware unit consisting out of parallel
comparators, as have been shown in [6]. That leads to an efficient evaluation of
interval comparisons by table lookup, see Table 4.
Because our definition of unbounded intervals allows to use −∞, or +∞ as
endpoints, and because the endpoints may be used in comparisons fulfilling
the level 2 rule ∞ =∞ and
the level 1 rule ∀x∈R(−∞ < x and x < +∞),
we apply these formulas for unbounded intervals as well.

Remark 5 For unbounded intervals we obtain

[a,∞] ◦◦ [b,∞] =







finishedBy : a < b
equal : a = b
finishes : a > b

[−∞, a] ◦◦ [−∞, b] =







starts : a < b

equal : a = b

startedBy : a > b

[−∞,∞] ◦◦ [−∞,∞] =
{

equal

Note that these rules actually ought to depend on the decorations of the operands
which are not treated in this paper, see [3]. In this bare format the semantics
may defer from what is expected in topological view.

3 Standard Interval Comparisons

Remark 6 (Notation) From now on we carefully distinguish between

• (atomic) operations to check the state of overlapping,

• comparisons to be called for two intervals, or

• functions or relations that have no specified meaning.

We have at least three alternatives to define interval comparisons based on the
overlapping relation.

1. Define a data type IntervalOverlapping providing access to the 13
states.

2. Define a comparison for each of the 13 atomic operations.

3. Define a basic set of commonly used comparisons.

The first alternative has the advantage that the precise information about the
relative positions of the two interval operands may be exploited to speed up
evaluations of related comparisons.
The disadvantage is the new kind of interface defining an object instead of a set
of boolean functions or operators.
We will discuss that approach in section 5. A hardware implementation is
introduced in [6].

5

3.1 Atomic Operations

The second alternative provides 13 operations, denoted by the name of the state.
By Remark 1 it is sufficient to provide 7 operations corresponding to the first 7
rows in the tables.
If these atomic operations are considered as independent, there treatment of
empty sets has to be specified according to Table 1

Remark 7 Atomic operations for empty arguments
According to Table 1

• “before” and “ after” return true, if at least one operand is empty.

• “meets” , “ overlaps” , “ starts” and “ finishes” return false, if at least
one operand is empty.

• “ equal” returns true for two empty operands.

• “ containedBy” returns true, if the first operand is empty.

• “ contains” returns true, if the second operand is empty.

Remark 8 Properties of atomic operations

• “ equal” is an equivalence relation.

• All others are asymmetric (a @ b =⇒ b 6@ a).

• “before”, “ starts”, “ containedBy”, and “ finishes” are transitive.

These 7 atomic operations can be used as a base for generating a binary rela-
tion algebra (BRA) of 27 = 128 interval comparisons, as proposed in [5]. We
think that this opportunity is a challenge for the sophisticated programmer, but
the every day user shall be given a simpler interface consisting of functions or
operators.
However, the 7 atomic operations are obviously not the best candidates for
comparisons of the standard, because they are not partial orders. (A partial
order is reflexive, antisymmetric and transitive.) If we consider the isolated
operations, we lose the context of the overlapping relation, that tells us to reuse
the result for several related comparisons.
On one hand the overlapping relation is too detailed, but on the other hand it
keeps the context in order to make related comparisons simpler.

3.2 Standard Comparisons

Hence, starting with the overlapping relation, we will now derive the interval
comparisons. We perform the overlapping relation and then put together several
related states.
Interval arithmetic is containment arithmetic. Hence, a comparison based on
the operation

• A containedBy B
checking whether A is contained in the interior of B is mandatory.

6

• Another important comparison is the test whether two intervals are dis-
joint. It is delivered by
A before B
together with its reverse “after”.

• The third basic comparison is the “overlaps” test.
It is used for interval ranking in minimization problems.

These 3 operations together with their reverses are characterized in Table 1 as
those states which can be described only with the “strictly less” operator <.
All the others compare at least one bound for equality. Hence special cases for
singleton or point intervals have to be considered. In Table 1 we have carefully
paid attention that the cases describe a complete partition of the argument
space.
We add the related reflexive relations where ≤ replaces <.
Table 3 displays our suggestion for a basic set of interval comparisons now using
operator symbols instead of names1. The 3rd column lists the set of overlapping
states whose union describes the part of the domain that delivers “true” for the
comparison.
The suggested comparisons are the most commonly used interval comparisons,
any way. Another justification is given by Kulisch in [4].

Comparison Implementation2 Definition

A = B a = b ∧ a = b equal

A ⊂ B b < a ∧ a < b containedBy

A < B a < b ∧ a < b (before ∧ ¬containedBy) ∨meets ∨ overlaps
A ≺ B a < b before ∧ ¬containedBy

A ⊆ B b ≤ a ∧ a ≤ b A ⊂ B ∨ equal ∨ starts ∨ finishes

A ≤ B a ≤ b ∧ a ≤ b A < B ∨ starts ∨ equal ∨ finishedBy
A � B a ≤ b A ≺ B ∨meets ∨ (equal ∧ isSingleton(A))

Table 3: standard comparisons

In Table 3 the states are considered as characteristic predicates introduced in
Table 1 describing the subset of the set of interval pairs that evaluates to “true”.
Hence the ∨ for states (predicates) corresponds to a ∪ for subsets.

Remark 9 Note that we need an additional test for a point interval.

Remark 10 The comparisons <,≺,≤,� deliver “false”, if at least one operand
is the empty interval.

Proposition 1 In Table 3 columns 2 and 3 are equivalent for non-empty in-
tervals.

Proof: We have to prove that Table 3 is correct. That means that for columns
2 and 3 the subsets S and T of IR× IR that are declared by the conditions are
identical.

1Clearly these names are not normative but taken as a short notation in this paper.
2For non-empty intervals.

7

We outline the proof of row 3 (A < B).

S = S< : = {(A,B)|a < b ∧ a < b}

= {(A,B)|a < b ∧ a < b ∧ true}

= {(A,B)|a < b ∧ a < b ∧ (a < b ∨ a = b ∨ b < a)}

= {(A,B)|a < b ∧ a < b ∧ (a < b)}

∪ {(A,B)|a < b ∧ a < b ∧ (a = b)}

∪ {(A,B)|a < b ∧ a < b ∧ (b < a)}

= Tbefore ∪ Tmeets ∪ Toverlaps

For non-empty intervals we obviously have: before ⇒ ¬ containedBy. �

Proposition 2 If one of the operands A or B is empty for the comparisons
defined in Table 3 the result is “false” except for the two cases

• ∅ = ∅

• ∅ ⊂ B with B 6= ∅

which deliver “true”.

Proof: See Table 1. �

Remark 11 Let @ be an asymmetric relation. Then its related reflexive partial
order relation v is obtained by replacing the < operator with the ≤ operator.
The well known equation rule x v y ∧ x 6= y ⇐⇒ x @ y does not hold, because
we replace twice.

Remark 12 ⊆ and ≤ are partial orders, whereas � is reflexive and antisym-
metric only for point intervals.

A ⊆ B ∧B ⊆ A =⇒ A = B (3)

A ≤ B ∧B ≤ A =⇒ A = B (4)

A � B ∧B � A =⇒ A = B = [a, a] (5)

A � A =⇒ A = [a, a] (6)

In Table 3 we composed the comparisons as a disjunction of the state predicates.
Or, in other words sets fulfilling the state predicates were united to the set
fulfilling the comparisons.
In practice, the overlapping state of two intervals provides enough information
in order to determine the result of a comparison as well as a lattice operation.
Table 4 displays the situation that the overlapping state out of the 16 states
in the complete partition of Table 2 is known and we have to check whether
the comparisons are true. Here “t” stands for true, no entry for false, “r” for
reverse, and “s” means true in case of a singleton interval.
Due to remark 1 Table 4 is symmetric with respect to the center rows, t’s and
r’s exchanged.

8

A ◦◦B A ⊂ B A ≺ B A < B A ⊆ B A � B A ≤ B A = B

fstEmpty t t
beforeP t t t t
meets t t t
overlaps t t
starts t s(A) t
containedByP t t
finishes t r
equalP t s t t
bothEmpty t t t t t
finishedBy r t
containsP r r
startedBy r s(B) r
overlappedBy r r
metBy r r r
afterP r r r r
sndEmpty r r

Table 4: standard comparisons computed with overlapping relation

Proposition 3 Table 4 displays a correct way to implement the interval com-
parisons.

Proof: We have to show that Table 4 is correct.
Let us look into row 4:
The characteristic predicate for the state “starts” is

a = b ∧ a < b (7)

The first condition does not hold for the first 3 irreflexive comparisons. But
it holds for the reflexive cases. So we have to check the second condition. It
obviously holds for containment and the ≤ comparison, The � operator is more
subtle:
We have (7) and we have to show

a ≤ b (8)

We first treat the general case where neither A nor B is a point interval.

a = b ∧ a < b ∧ a < a⇒

b = a < a⇒ ¬(8)

That proof also holds if B is a point interval. But the situation changes, if A is
a singleton.

a = a = b (9)

and (8) is valid.
In the same manner we can prove the correctness of the other rows. �

9

3.3 Another set of comparisons

Another set of comparisons is used in the Fortran 95 language or in Sun’s in-
terval extensions. Those are divided into 3 groups, the “set”, “possibly” and
“certainly” comparisons. They can easily be obtained from the standard com-
parisons and thus from the overlapping relation. We show the relationship in 2
tables.

Proposition 4 Table 5 shows how the set of Fortran 95 relations can be realized
with the standard comparisons [2] and, hence, by use of the overlapping relation.
Table 6 displays their realization.

Fortran 95 relation Level 2 definition Standard comparisons

isDisjoint(A,B) a < b ∨ b < a A ≺ B ∨B ≺ A

isInterior(A,B) b < a ∧ a < b A ⊂ B

isProperSubset(A,B) (b ≤ a ∧ a < b) A ⊆ B ∧ ¬(A = B)

∨(b < a ∧ a ≤ b)

isSubset(A,B) b ≤ a ∧ a ≤ b A ⊆ B

setIsLess(A,B) a < b ∧ a < b A < B

setIsLessOrEqual(A,B) a ≤ b ∧ a ≤ b A ≤ B

setIsEqual(A,B) a = b ∧ a = b A = B
certainlyIsLess(A,B) a < b A ≺ B
certainlyIsLessOrEqual(A,B) a ≤ b A � B

certainlyIsEqual(A,B) b ≤ a ∧ a ≤ b A � B ∧B � A

possiblyIsLess(A,B) a < b ¬(B � A)

possiblyIsLessOrEqual(A,B) a ≤ b ¬(B ≺ A)

possiblyIsEqual(A,B) a ≤ b ∨ b ≤ a ¬(A ≺ B ∨B ≺ A)

Table 5: Fortran 95 relations via standard comparisons

4 Lattice Operations

A lattice is a partially ordered set where each pair of elements has a meet3 and
a join. If this property holds for any (bounded) subset of elements, the lattice
is called (conditionally) complete. Hence, a proper choice of meet and join as
commutative, associative and absorbing binary operations provides a partial or-
der relation. The other way round is also valid: If we have an appropriate partial
order (a comparison), we can construct the corresponding complete lattice.
A direct introduction of the 7 basic comparisons that we deduced from the over-
lapping relation is given in [4]. The paper summarizes that interval comparisons
are implemented by conditions on the endpoints.
Our two reflexive partial order relations induce the following lattices

1. The containment relation ⊆ defines the complete lattice (IR,⊆) with least
element ∅ and greatest element [−∞ , +∞] Here the meet of two intervals,
their intersection ∩ and the join, their interval hull ∪− are important and
frequently used operations.

3Not to disturb with the overlapping state “meets”.

10

Containment Set Certainly Possibly
dis int prop sub < ≤ = < ≤ = < ≤ =

fstEmpty t t t t
beforeP t t t t t t t
meets t t t t t t
overlaps t t t t t
starts t t t s(A) t t t
containedByP t t t t t t
finishes t t t t t
equalP t s t s s ns t t
bothEmpty t t t
finishedBy t s(B) t t t
containsP t t t
equalP t s t s s ns t t
bothEmpty t t t t t
finishedBy t s(B) t t t
containsP t t t
startedBy t t t
overlappedBy t t t
metBy t t
afterP t
sndEmpty t

Table 6: Fortran comparisons computed with overlapping relation

2. The “lessThanOrEqual” operation ≤ does only form a conditionally com-
plete lattice on IR \ ∅, because the meet [−∞,−∞] of sequences like
(xn) = ([−∞,−n]) is in (R∗×R

∗,≤), but not in IR. Similar with the join
of growing sequences.

3. On level 2, however, since all sequences are finite, IF\∅ is a complete lattice
with smallest element [−∞,minreal], and greatest element [maxreal,∞].

The meet or join of 2 intervals are glb(A,B) = [min(a, b),min(a, b)] or
lub(A,B) = [max(a, b),max(a, b)], respectively.

4. The third relation, the “meets” or “precedes” comparison is not a partial
order, therefore we do not construct a corresponding complete lattice.

Note that the switch to level 2 is necessary, because in our definition IR does
not contain unbounded singleton intervals.
The lattice operations can be determined with the information obtained from
the interval overlapping relation in the same way as the comparisons, see Table
7. In the states concerning the empty sets, we apply the rule that glb as well as
lub are empty, if either of the operands is empty.

Proposition 5 Table 7 is correct. Note that the intersection is empty, if one
of the operands is empty, whereas the intervall hull is the other operand.

11

A ◦◦B A ∩B A∪− B glb(A,B) lub(A,B)
[max(a, b), [min(a, b), [min(a, b), [max(a, b),

min(a, b)] max(a, b)] min(a, b)] max(a, b)]

fstEmpty ∅ B ∅ ∅

beforeP ∅ [a, b] A B

meets [a, a] [a, b] A B

overlaps [b, a] [a, b] A B
starts A B A B

containedByP A B [b, a] [a, b]
finishes A B B A
equalP A A A A
bothEmpty ∅ ∅ ∅ ∅
finishedBy B A A B

containsP B A [a, b] [b, a]
startedBy B A B A

overlappedBy [a, b] [b, a] B A

metBy [b, b] [b, a] B A
afterP ∅ [b, a] B A
sndEmpty ∅ A ∅ ∅

Table 7: lattice operations computed with overlapping relation

5 The Object-Oriented API

In section 3 we introduced 3 alternatives for the definition of interval compar-
isons. The first alternative always computes the interval overlapping relation for
the two operands and then looks-up the result of the comparison in Table 4 or
Table 7 for lattice operations. It has the advantage that the precise information
about the relative positions of the two interval operands may be exploited to
speed up evaluations of related comparisons.
A disadvantage may be the new kind of interface defining an object instead
of a set of boolean functions or operators. Furthermore one may argue that
specific comparisons like A ⊆ B or A = B can already be checked by 2 (par-
allel) floating-point comparisons whereas the overlapping relation needs up to
8 floating-point comparisons. That has to be checked for the used algorithms,
the specific hardware design, or the applicaton itself.
The class IOV manages the result of the overlapping test between 2 intervals like
an abstract data type. Its range is a pair of intervals (the operands) together
with the state information. Its operations are given in Table 8.
The state and the operands are initialized by the constructor and then never
changed anymore. For each interval comparison and lattice operation there is
a method without parameters, the operands are taken from the calling object.
The most frequently occuring test for disjoint intervals is supplied as a utility
function. The operands and the current state can be accessed.
In such a setting the predefined comparisons can be evaluated, nothing more.
When we, however, open the access to the overlapping states, we can compose
new efficient comparisons. Hence, additionally to the abstract data type IOV
the atomic operations shall be available as comparisons, see Table 9. For con-
venience all 13 states should be provided. According to Remark 4 we provide

12

Result Operation Parameters Explanation

IOV construct (interval A, interval B) computes state A ◦◦B
bool disjoint () test for empty intersection
bool equals () A = B
bool subset () A ⊂ B interior
bool precedes () A ≺ B, before
bool less () A < B
bool subseteq () A ⊆ B
bool preceq () A � B
bool leq () A ≤ B
interval intersect () intersection
interval hull () interval hull
interval glb () greatest lower bound
interval lub () lest upper bound
float first () first operand A
float second () second operand B
Q state () set of states Q, see Def 1

Table 8: The abstract data type IOV

13 states for the end user, but internally the 3 empty-states should be made
available.
The function disjoint can be implemented in 2 ways:

bool disjoint() { // 13 states

return (state() == before) || (state() == after)

}

bool disjoint() { // 16 states

switch (state()){

case beforeP : return true

case afterP : return true

case fstEmpty: return true

case sndEmpty: return true

case bothEmpty: return true

default: return false

}

}

When all 16 states are accessable, we use a case statement to implement the
table look-up. More efficient implementations can be provided when the repre-
sentation is fixed.
As an example for the use of the interval overlapping relation we discuss the
extended interval Newton method.
The classical algorithm 1 uses 6 interval comparisons and 2 intersections.
If we transform it into a relational algorithm 2, the information with 2 calls of
the interval overlapping relation is sufficient to control the flow of the method.
Note that the resulting state of overlapping is stored and re-used by methods
or properties.

13

Result Operation Parameters Explanation

bool before (interval A, interval B) atomic op for state “before”
bool meets (interval A, interval B) atomic op for state “meets”
bool overlaps (interval A, interval B) atomic op for state “overlaps”
bool starts (interval A, interval B) atomic op for state “starts”
bool containedBy (interval A, interval B) atomic op for state “containedBy”
bool finishes (interval A, interval B) atomic op for state “finishes”
bool equalP (interval A, interval B) atomic op for state “equalP”
bool bothEmpty (interval A, interval B) atomic op for state “bothEmpty”
bool finishedBy (interval A, interval B) atomic op for state “finishedBy”
bool contains (interval A, interval B) atomic op for state “contains”
bool startedBy (interval A, interval B) atomic op for state “startedBy”
bool overlappedBy (interval A, interval B) atomic op for state “overlappedBy”
bool metBy (interval A, interval B) atomic op for state “metBy”
bool after (interval A, interval B) atomic op for state “after”

Table 9: Atomic comparisons

6 Conclusion

In this position paper we have outlined how the different sets of interval com-
parisons, like the one proposed in motion 13 [4] or the Fortran95 set can be
defined and evaluated with the help of the interval overlapping relation. Newly
combined interval comparisons can easily be defined, if the states of the interval
overlapping relation are known.

References

[1] J. F. Allen. Maintaining knowledge about temporal intervals. Communica-
tions of the ACM, 26/11/1983:832–843, 1983.

[2] N. Hayes. IEEE Interval Standard Working Group - P1788 e-mail of April
11, 2010. http://grouper.ieee.org/groups/1788/.

[3] N. Hayes. IEEE Interval Standard Working Group - P1788 Motion 8 Ex-
ception Handling, Sept 2009. http://grouper.ieee.org/groups/1788/.

[4] U. Kulisch. IEEE Interval Standard Working Group - P1788 Motion 13
Version 4. http://grouper.ieee.org/groups/1788/.

[5] D. Lohez. Comparison Relations for Intervals : A Framework. http://

grouper.ieee.org/groups/1788/.

[6] M. Nehmeier, S. Siegel, and J. Wolff von Gudenberg. Parallel Detection
of Interval Overlapping. In Proceedings of Para2010, to appear, Apr. 2010.
submitted to para2010 http://www.yourhost.is/para2010/home.html.

14

Algorithm 1: INewton (classi-
cal)

Input:
f : function
Y : interval
ε : epsilon
yUnique : flag
Zero : list of enclosing intervals
Info : flag vector
N : number
Output: [Zero, Info,N]
begin

if 0 6∈ f(Y) then
return (Zero,Info,N)

c← µ(Y);
/* extended division */

[Z1, Z2]← f(c)/f ′(Y);
[Z1, Z2]← c− [Z1, Z2];
V1 ← Y ∩ Z1;
V2 ← Y ∩ Z2;
if V1 = Y then

V1 ← [y , c];

V2 ← [c , y];

if V1 6= ∅ and V2 = ∅ then
yUnique← yUnique or
V1 ⊂ Y ;

foreach i = 1, 2 do
if Vi = ∅ then

continue;

if drel(Vi) < ε then
N = N + 1;
Zero[N] = Vi;
Info[N] = yUnique;

else
INewton(f, Vi, ε,
yUnique, Zero, Info,N);

end
return (Zero,Info,N);

end

Algorithm 2: INewtonRel (rela-
tional)

Input:
f : function
Y : interval
ε : epsilon
yUnique : flag
Zero : list of enclosing intervals
Info : flag vector
N : number
Output: [Zero, Info,N]
begin

if 0 6∈ f(Y) then
return (Zero,Info,N)

c← µ(Y);
/* extended division */

[Z1, Z2]← f(c)/f ′(Y);
[Z1, Z2]← c− [Z1, Z2];
R1 ← Y ◦◦Z1;
R2 ← Y ◦◦Z2;
if R1.subseteq() then

V1 ← [y , c];

V2 ← [c , y];
bisected← true;

else if not R1.disjoint()
and R2.disjoint() then

yUnique← yUnique or
R1.state() ==
containedBy;

foreach i = 1, 2 do
if not bisected then

if Ri.disjoint() then
continue;

Ri ← Y ◦◦Zi;
Vi ← Ri.intersect();

if drel(Vi) < ε then
N = N + 1;
Zero[N] = Vi;
Info[N] = yUnique;

else
INewtonRel(f, Vi, ε,
yUnique, Zero, Info,N);

end
return (Zero,Info,N);

end

15

