
DR
AF
T
7.3

Chapter 2
P1788/D7.3, July 11, 2013

Draft Standard For Interval Arithmetic §11.11

11.11.1. Bare and decorated interval literals.
This subclause defines an interval literal: a (text) string that denotes a bare or decorated

interval. This entails defining a number literal: a string, occurring within an interval literal,
that denotes an extended-real number. A number literal that denotes a finite integer is an integer
literal.

The interval denoted by an interval literal is its value (as an interval literal). Any other string
has no value in that sense. For convenience a string is called valid or invalid (as an interval literal)
according as it does or does not have such a value. The usage of value, valid and invalid for number
and integer literals is similar.
[Note. The notions of number and integer literal are only used in this subclause. Interval literals are
used as input to text2interval, see §11.11.8. The definition of interval literal is not intended to
constrain the syntax and semantics that a language might use to denote intervals in other contexts.]

This definition of an interval literal s is placed in Level 2 because its use is not mandatory at
Level 1, see §9.6.1. However the value of s is a Level 1 interval x. Within s, conversion of a number
literal to its value shall be done as if in infinite precision, ignoring any default or explicit language-
defined precision specification. Conversion of x to a Level 2 datum y is a separate operation. In
all cases y shall contain x; typically y is the T-hull of x for some interval type T.
[Examples.

– The interval denoted by the literal [1.2345] is the Level 1 single-point interval x = [1.2345, 1.2345].
However the result of T-text2interval("[1.2345]"), where T is the 754 infsup binary64 type,
is the interval, approximately [1.2344999999999999, 1.2345000000000002], whose endpoints are the
nearest binary64 numbers either side of 1.2345.

– Suppose the host language is C/C++. There, conversion of a number literal to a floating point
format is considered part of its value, and a “floating-suffix” can be added to change this. E.g.,
1.2345f denotes 1.2345 rounded to the nearest float (single-precision)—instead of to the nearest
double, which is the default. This is ignored within an interval literal: 1.2345 and 1.2345f both
denote the mathematical number 1.2345.

]

The following forms of number literal shall be supported.

(1) A number literal3 in the syntax provided by the host language of the implementation, in
decimal or any other supported radix.

(2) Either of the strings inf or infinity, ignoring case, optionally preceded by +, with value +∞;
or preceded by -, with value −∞.

(3) A string in the hexadecimal-significand form of IEEE 754-2008, §5.12.3, with the value specified
there.

The following form of number literal should be supported. An implementation may restrict
the support, by limiting the length of literal strings or in other ways.

(4) A string p / q, that is p and q separated by the / character, where p, q are integer literals
in the syntax provided by the host language of the implementation, in decimal or any other
supported radix, with p optionally signed and q > 0. Its value is the exact rational number
p/q.

[Note. These categories need not be mutually exclusive, e.g., in C/C++, form (3) is included in (1).]

Bare intervals. The forms of bare interval literal that shall be supported are listed below. To
simplify stating the needed constraints, e.g. l ≤ u, the number literals l, u,m, r are identified with
their values. Space shown between elements of a literal, below, denotes zero or more characters
that count as whitespace in the host language. [Note. Some characters, e.g., newline, might be
whitespace in some contexts but not others.]

Constants: The string [empty], ignoring case, whose value is the empty set ∅; and the
string [entire], ignoring case, whose value is the whole line R.

Inf-sup form: A string [l , u] where l and u are number literals with l ≤ u, l < +∞ and
u > −∞, see §9.2. Its value is the mathematical interval [l, u]. A string [x] is equivalent
to [x , x].

3
“floating constant” in C, “real literal constant” in Fortran, “real numeric literal” in Ada, etc.

47 July 11, 2013

DR
AF
T
7.3

Chapter 2
P1788/D7.3, July 11, 2013

Draft Standard For Interval Arithmetic §11.11

Uncertain form: a stringm ? r u e where: m is a decimal number literal of form (1) above,
without exponent; r is empty or is a non-negative decimal integer literal ulp-count; u is
empty or is a direction character, either u (up) or d (down); and e is empty or is a decimal
integer literal exponent field for the number m. No whitespace is permitted within the
string.

One ulp equals one unit in the last place of the number m as written. The literal
m? by itself denotes m with a symmetrical uncertainty of 1

2ulp, that is the interval
[m − 1

2ulp,m + 1
2ulp]. The literal m?r denotes m with a symmetrical uncertainty of

r ulps, that is [m − r × ulp,m + r × ulp]. Adding d (down) or u (up) converts this
to uncertainty in one direction only, e.g. m?d denotes [m − 1

2ulp,m] and m?ru denotes
[m,m + r × ulp]. Finally the exponent field if present multiplies the whole interval by
the appropriate power of 10, e.g. m?rue denotes 10e × [m,m+ r × ulp].

[Examples. Assuming the common types of decimal number literals are provided:

Form Literal Value
Inf-sup [1.e-3, 1.1e-3] [0.001, 0.0011]

[-Inf, 2/3] [−∞, 2/3]
Uncertain 3.56? [3.555, 3.565]

3.56?1 [3.55, 3.57]
3.560?2 [3.558, 3.562]
3.560?2u [3.560, 3.562]
3.56?1e+1 [35.5, 35.7]

]
A formal description of bare interval literals is by the following grammar (using the notation

of 754§5.12.3) which defines a bareIntvlLiteral, subject to the constraints on l, u,m, r stated above.
anycase(s) matches all upper/lower case variants of the string s, e.g. anycase("ab") matches any
of "ab", "Ab", "aB", "AB".
�! Meta-characters are temporarily colored red, to help spot any meta-syntax-errors in this grammar.

sign [+-]
digit [0123456789]
natural {digit} +
langNumLit {number literal of host language}
langNumLitMant {mantissa of number literal of host language}
langNumLitExp {exponent of number literal of host language}
sp {whitespace character of host language} *
infLit {sign} ? (anycase("inf") | anycase("infinity"))
hexNumLit {see 754§5.12.3}
ratNumLit {sign} ? {digit} + "/" {digit} +
numberLiteral ({langNumLit} | {infLit} | {hexNumLit} | {ratNumLit} |)
pointIntvl "[" {sp} {numberLiteral} {sp} "]"
infSupIntvl "[" {sp} {numberLiteral} {sp} "," {sp} {numberLiteral} {sp} "]"
uncertIntvl {langNumLitMant} "?" {natural} ? [du]? {langNumLitExp} ?
constIntvl (anycase("[empty]") | anycase("[entire]"))
bareIntvlLiteral ({pointIntvl} | {infSupIntvl} | {uncertIntvl} | {constIntvl})

Decorated intervals. The syntax of decorated interval literals is given by extending the above
grammar as follows, to define a decoratedIntvlLiteral.

connectChar {language-defined character}
decorationLit ("ill" | "trv" | "def" | "dac" | "com")
decoratedIntvlLiteral {bareIntvlLiteral} {connectChar} {decorationLit}

That is, s is a bare interval literal sx, followed by a language-defined single character c followed
by a 3-character decoration string sd. It is recommended that c be the underscore ‘_’, which is
assumed here. The string sd is one of ill, emp, trv, def, dac or com representing the corresponding
decoration dx. If sx has the value x, and if xdx is a permitted combination according to §10.4,
then s has the value xdx. Otherwise s has no value as a decorated interval literal.

48 July 11, 2013

