
Preface

In general, a computer is understood to be an engine that deals with data. These are
stored by binary digits or bits. The data can represent all kinds of objects such as
whole numbers, letters of an alphabet, the books of a library, the accounts of a bank,
the inhabitants of a town, the text of a law, or the features of a disease. If the com-
puter is functioning correctly, then its processing is free of error. A computer that is
programmed properly is therefore generally considered to be an infallible tool.

It is quite ironical that this view is often not justified when the digital computer is
used for its original purpose – numerical or scientific computation. This book treats
the arithmetic processing of real numbers in computers. It describes how the computa-
tional error can be reduced and avoided by special design of the computer’s arithmetic.

A real number like � , for instance, consists of an infinite b-adic expansion, an infi-
nite string of digits. On a computer, however, only finite parts of these expansions can
be represented. Thus arithmetic for real numbers can only be approximated. For nu-
merical or scientific computing, floating-point numbers and floating-point arithmetic
have been used since the early days of electronic computers. A floating-point number
takes the form m � 2e. Here m is the mantissa or significand and e is the exponent.

Computers designed and built by Konrad Zuse, the Z3 (1941) and the Z4 (1945),
were among the first computers that used the binary number system and floating-point
for number representation. In the Z4, a floating-point number was represented by a
32 bit word and arithmetic was used in a manner very similar to the data format single
precision on today’s computers. Over the years computer technology was permanently
improved. This permitted an increase of the word size.

In 1985 a standard for floating-point arithmetic was internationally adopted. It is
known as the IEEE 754 floating-point arithmetic standard. It specifies two data formats
for single precision of 32 bits and double precision of 64 bits. The format double
precision uses 53 bits to represent the mantissa and 11 bits for the exponent. A revision
of the standard IEEE 754, published in 2008, added another word size of 128 bits.

The IEEE floating-point arithmetic standard is undoubtedly thorough, consistent,
and well defined. It has been widely accepted and has been used in almost every proces-
sor developed since 1985. This has greatly improved the portability of floating-point
programs. Until today the most used floating-point format is double precision. It corre-
sponds to about 16 decimal digits. Floating-point arithmetic has been used successfully
in the past. Every computer user is trained and familiar with all details of floating-
point arithmetic including all its exceptions like underflow, overflow, �1, C1, NaN
(not a number), �0, C0, and so on. Seventy years of extensive use of floating-point

x Preface

arithmetic makes many users believe that this is the only reasonable way of using the
computer for scientific computing.

In the 1950s computers were able to perform about 100 floating-point operations
per second (flops). For comparison: With a mechanical or electrical calculator a man
or woman can execute about 1 000 arithmetic operations somewhat reliably in a day.
A computer now could do this in 10 seconds. So the step to the electronic computer
really meant a revolution in computing speed. In order to judge the reliability of com-
puted results, error estimates were derived for frequently used numerical methods in
the 1950s and 1960s. These are built upon estimates of the error of each single arith-
metic operation. However, already in 1965 computers were on the market (CDC 6600)
that performed 105 flops. At these speeds a conventional error analysis becomes ques-
tionable. It easily can be shown that for a system of two linear equations with two
unknowns computers even today deliver a result of which possibly not a single digit is
correct. Such results strongly suggest trying to use the computer more for computing
close bounds of the solution instead of murky approximations.

Dramatic advances in computer technology, in memory size, and in speed have
been made since 1985. Arithmetic speed has gone from megaflops (106 flops), to gi-
gaflops (109 flops), to teraflops (1012 flops), to petaflops (1015 flops), and it is already
approaching the exaflops (1018 flops) range. This is not just a gain in speed. A qual-
itative difference goes with it. At the time of the megaflops computer a conventional
error analysis was recommended in every numerical analysis textbook. Today the PC
is a gigaflops computer. For the teraflops or petaflops computer conventional error
analysis is no longer practical. An avalanche of numbers is produced when a petaflops
computer runs. If the numbers a petaflops computer produces in one hour were to be
printed (500 on one page, 1 000 on one sheet, 1 000 sheets 10 cm high) they would
need a pile of paper that reaches from the earth to the sun1 and back. In 2012 the
fastest computers are listed to perform about 10 petaflops. With these the pile would
grow from the earth to the sun in less than 3 minutes. This is hard to imagine. Light
takes about 8 minutes for this distance.2

Computing indeed has already reached astronomical dimensions! With increasing
speed, problems that are dealt with become larger and larger. Extending the word size
cannot keep up with the tremendous increase in computer speed. Computing that is
continuously and greatly speeded up calls conventional computing into question. Even
with quadruple or extended precision arithmetic the computer somehow remains an
experimental tool.

The capability of a computer should not just be judged by the number of operations
it can perform in a certain amount of time without asking whether the computed result
is correct. It should also be asked how fast a computer can compute correctly to 3, 5, 10
or 15 decimal places for certain problems. If the question were asked that way, it would

1 The distance between the earth and the sun is about 150 � 106 km.
2 The speed of light is ca. 300 000 km/sec.

Preface xi

very soon lead to better computers. Mathematical methods that give an answer to this
question are available for very many problems. Computers, however, are at present
not designed in a way that allows these methods to be used effectively. Computer
arithmetic must move strongly towards more reliability in computation. Instead of the
computer being merely a fast calculating tool it must be developed into a scientific
instrument of mathematics.

Mathematical analysis has designed algorithms that deliver highly accurate and
completely verified results. These algorithms compute with intervals of real numbers.
Intervals bring the continuum on the computer. An interval between two floating-point
bounds represents the continuous set of real numbers between these bounds.

This book deals with computer arithmetic in a more general sense than usual, and
shows how the arithmetic and mathematical capability of the digital computer can be
enhanced in a quite natural way. The work is motivated by the desire and the need to
improve the accuracy of numerical computing and to control the quality of computed
results.

As a first step towards achieving this goal, the accuracy requirements for the elemen-
tary floating-point operations as defined by the IEEE arithmetic standard, for instance,
are extended to the customary product spaces of computation: the complex numbers,
the real and complex intervals, the real and complex vectors and matrices, and the real
and complex interval vectors and interval matrices. All computer approximations of
arithmetic operations in these spaces should deliver a result that differs from the correct
result by at most one rounding. For all these product spaces this accuracy requirement
leads to operations which are distinctly different from those traditionally available on
computers. This expanded set of arithmetic operations is taken as a definition of what
is called advanced computer arithmetic in the book.

Central to this treatise is the concept of semimorphism. It provides a mapping princi-
ple between the mathematical product spaces and their digitally representable subsets.
The properties of a semimorphism are designed to preserve as many of the ordinary
mathematical laws as possible. All computer operations of advanced computer arith-
metic are defined by semimorphism.

The book has three antecedents:

(I) Kulisch, U. W., Grundlagen des numerischen Rechnens – Mathematische Be-
gründung der Rechnerarithmetik, Bibliographisches Institut, Mannheim, Wien,
Zürich, 1976, 467 pp., ISBN 3-411-015617-9.

(II) Kulisch, U. W. and Miranker W. L., Computer Arithmetic in Theory and Prac-
tice, Academic Press, New York, 1981, 249 pp., ISBN 0-12-428650-X.

(III) Kulisch, U. W., Advanced Arithmetic for the Digital Computer – Design of Arith-
metic Units, Springer-Verlag, Wien, New York, 2002, 139 pp., ISBN 3-211-
83870-8.

xii Preface

The need to define all computer approximations of arithmetic operations by semi-
morphism goes back to the first of these books. By the time the second book had been
written, early microprocessors were on the market. They were made with a few thou-
sand transistors, and ran at 1 or 2 MHz. Arithmetic was provided by an 8-bit adder.
Floating-point arithmetic could only be implemented in software. In 1985 the IEEE
binary floating-point arithmetic standard was internationally adopted. Floating-point
arithmetic became hardware supported on microprocessors, first by coprocessors and
later directly within the CPU. Of course, all operations of advanced computer arith-
metic can be simulated using elementary floating-point arithmetic. This, however, is
rather complicated and results in unnecessarily slow performance. A consequence of
this is that for large problems the high quality operations of advanced computer arith-
metic are hardly ever applied. Higher precision arithmetic suffers from the same prob-
lem if it is simulated by software.

During the course of the book it is shown that all operations of advanced computer
arithmetic can be provided on the computer if, beyond conventional floating-point
arithmetic, two additional features are made available by fast hardware:

I. fast hardware support for interval arithmetic and

II. a fast and exact multiply and accumulate operation or, equivalently, an exact scalar
product.

Fast hardware circuitries for I. and II. are developed in Chapters 7 and 8, respectively.
This additional computational capability is gained at very modest hardware cost. I. and
II., in particular, are basic ingredients of what is called validated numerics or verified
computing. With simple hardware circuitry, interval operations can be made as fast
as floating-point operations. The simplest and fastest way for computing a scalar or
dot product is to compute it exactly. By pipelining, it can be computed in the time
the processor needs to read the data, i.e., it comes with utmost speed. Besides being
more accurate, the new computer operations I. and II. greatly speed up the operations
of advanced computer arithmetic. This would boost both the speed of a computation
and the accuracy of its result. Advanced computer arithmetic opens the door to very
many additional applications. Compared with conventional computer arithmetic all
these applications are extremely fast.

This book has three parts. Part 1, of four chapters, deals with the theory of computer
arithmetic, while Part 2, also of four chapters, treats the implementation of arithmetic
on computers. Part 3, of one chapter, illustrates by a few sample applications how
advanced computer arithmetic can be used to compute highly accurate and mathemat-
ically verified results.

Part 1: The different kinds of computer arithmetic for the customary product spaces of
computation follow an abstract mathematical pattern and are just special realizations

Preface xiii

of it. In the book the basic mathematical properties are extracted into an axiomatic
approach to computer arithmetic. Abstract mathematical concepts are suited to focus
the understanding on the essentials.

Frequently mathematics is seen as the science of structures. Analysis carries three
kinds of structures: an algebraic structure, an order structure, and a topological or
metric structure. These are coupled by certain compatibility properties, for instance:
a � b) a C c � b C c.

It is well known that floating-point numbers and floating-point arithmetic do not
obey the rules of the real numbers R. However, rounding is a monotone function.
So the changes to the order structure are minimal. This is the reason why the order
structure plays a key role for an axiomatic approach to computer arithmetic.

All the product spaces under consideration carry an order structure with respect to
which they are complete lattices. The computer representable subsets can be charac-
terized as complete sublattices. A rounding is defined as a monotone mapping of the
basic set into the computer representable subset. Arithmetic in the latter is defined by
a monotone, antisymmetric rounding applied to the result of the operation carried out
in the basic set. In case of interval spaces, the rounding is additionally upwardly di-
rected, i.e., it maps the correct result of the operation in the powerset onto the least
upper bound in the subset with respect to set inclusion as the order relation. The map-
ping principle just described is called a semimorphism. It is close to a homomorphism
between ordered algebraic structures.

Definition of computer arithmetic by semimorphism in the product spaces under
consideration does not necessarily directly lead to operations that are executable on
the computer. It is, however, shown in the book that in all cases the operations can be
reduced to computer executable operations via isomorphisms. These isomorphisms are
to be established in the mathematical spaces in which the actual computer operations
operate. This requires a careful study of the structure of these spaces. Their properties
are defined as invariants with respect to semimorphisms. These concepts are developed
in the first three chapters of the book.

The fourth chapter deals with interval arithmetic. In most of the preceding literature,
interval arithmetic is defined and considered for closed and bounded real intervals.
See, for instance the well-known books by R. E. Moore [457, 458], by G. Alefeld
and J. Herzberger [28, 29], or by E. Hansen [219, 222]. This leads to well defined and
well-known formulas for the arithmetic operations. Overflow and underflow, however,
can occur and need special treatment. Another approach is taken by SUN’s interval
Fortran [725]. Here, intervals are considered over the extended real numbers R :D
R[f�1, C1g and �1 and C1 are permitted as elements of unbounded intervals.
Then interval operations are to be defined for operations like 1 � 1, 0 � 1, or 1=1
which leads to unusual and unsatisfactory operations.

This book avoids the difficulties of both approaches. Interval arithmetic just deals
with sets of real numbers. A real interval is defined as a closed and connected set of real

xiv Preface

numbers.3 Since �1 and C1 are not real numbers, they cannot be elements of a real
interval. They can only be bounds of an interval. Formulas for the arithmetic operations
for bounded real intervals are well established in conventional interval arithmetic. It
is shown in the book that these formulas can be extended to unbounded real intervals
by a continuity principle. As a result, it is further shown in the book that for a bound
�1 or C1 in an interval operand the bounds for the resulting interval can easily be
obtained from the formulas for bounded intervals by applying well-established rules
of real analysis for computing with �1 and C1. This new approach to real interval
arithmetic leads to an algebraically closed calculus which is totally free of exceptions.
It remains free of exceptions if the operations are mapped on a floating-point screen
by the monotone, upwardly directed rounding.

Part 2: In Part 2 of the book, basic ideas for the implementation of advanced computer
arithmetic are discussed under the assumption that the data are floating-point numbers.
Algorithms and circuits are developed which realize the semimorphic operations in
the various spaces mentioned above. The result is an arithmetic with many desirable
properties, such as high speed, optimal accuracy, theoretical describability, closedness
of the theory, and ease of use.

Chapters 5 and 6 consider the implementation of elementary floating-point arith-
metic on the computer for a large class of roundings. The final section of Chapter 6
contains a brief discussion of all arithmetic operations defined in the product sets men-
tioned above as well as between these sets. The objective here is to summarize the def-
inition of these operations and to point out that they all can be performed as soon as an
exact scalar product is available in addition to the operations that have been discussed
in Chapters 5 and 6.

Floating-point operations with directed roundings are basic ingredients of interval
arithmetic. But with their isolated use in software, interval arithmetic is too slow to
be widely accepted in the scientific computing community. Chapter 7 shows, in par-
ticular, that with very simple circuitry interval arithmetic can be made practically as
fast as elementary floating-point arithmetic. To enable high speed, the case selections
for interval multiplication (9 cases) and division (14 cases including division by an in-
terval that includes zero) are done in hardware where they can be chosen without any
time penalty. The lower bound of the result is computed with rounding downwards and
the upper bound with rounding upwards by parallel units simultaneously. Also the ba-
sic comparisons for intervals together with the corresponding lattice operations and
the result selection in more complicated cases of multiplication and division are done
in hardware. There they are executed by parallel units simultaneously. The circuits
described in this chapter show that with modest additional hardware costs, interval
arithmetic can be made almost as fast as simple floating-point arithmetic. Such high

3 In real analysis a set of real numbers is called closed if its complement is open.

Preface xv

speed cannot be obtained just by running many elementary floating-point arithmetic
processors in parallel.

A basic requirement of advanced computer arithmetic is that all computer approx-
imations of arithmetic in the usual product spaces should deliver a result that dif-
fers from the correct result by at most one rounding. This requires scalar products
of floating-point vectors to be computed with but a single rounding.

The most natural way to accumulate numbers is fixed-point accumulation. It is sim-
ple, error free and fast. In Chapter 8 circuitry for exact computation of the scalar prod-
uct of two floating-point vectors is developed for different kinds of computers. It is
shown that an exact scalar product can be computed in the time the processor needs
to read the data, i.e., it comes with utmost speed. No software simulation can compete
with a simple and direct hardware solution. The hardware needed for the exact dot
product is comparable to that for a fast multiplier by an adder tree, accepted years ago
and now standard technology of every modern processor. The exact dot product brings
the same speed up for accumulations at comparable costs.

To make the new capability conveniently available to the user a new data format
called complete is introduced together with a few simple arithmetic operations associ-
ated with each floating-point format. Complete arithmetic computes all scalar products
of floating-point vectors exactly. The result of complete arithmetic is always exact; it
is complete, not truncated. Not a single bit is lost. A variable of type complete is a
fixed-point word wide enough to allow exact accumulation (continued summation) of
floating-point numbers and of simple products of such numbers.

If register space for the complete format is available, complete arithmetic is very
fast. The arithmetic needed to perform complete arithmetic is not much different from
what is available in a conventional CPU. In the case of the IEEE double precision for-
mat a complete register consists of about 500 bytes. Straightforward pipelining leads
to very fast and simple circuits. The process is at least as fast as any conventional way
of accumulating the products including the so-called partial sum technique on exist-
ing vector processors which alters the sequence of the summands and causes errors
beyond the usual floating-point errors.

Complete arithmetic opens a large field of new applications. An exact scalar product
rounded into a floating-point number or a floating-point interval serves as building
block for semimorphic operations in the product spaces mentioned above.

Fast multiple precision floating-point and multiple precision interval arithmetic are
other important applications. All these applications are very fast. Complete arithmetic
is an instrumental addition to floating-point arithmetic. In many instances it allows
recovery of information that has been lost during a preceding pure floating-point com-
putation.

Because of the many applications of the hardware support for interval arithmetic
developed in Chapter 7, and of the exact scalar product developed in Chapter 8, these
two modules of advanced computer arithmetic emerge as its central components. Fast
hardware support for all operations of advanced computer arithmetic is a fundamental

xvi Preface

and overdue extension of elementary floating-point arithmetic. Arithmetic operations
which can be performed correctly with very high speed and at low cost should never
just be done approximately or simulated by slow software. The minor additional hard-
ware cost allows their realization on every CPU.

Part 3: Mathematical analysis has provided algorithms that deliver highly accurate
and completely verified results. Part 3 of the book goes over some examples. Such
algorithms are not widely used in the scientific computing community because they
are slow when the underlying arithmetic has to be carried out by software simulations
on conventional processors.

The first section describes some basic properties of interval mathematics and shows
how these can be used to compute the range of a function’s values. Used with auto-
matic differentiation these techniques lead to powerful and rigorous methods for global
optimization. The following section then deals with differentiation arithmetic or auto-
matic differentiation. Values or enclosures of derivatives are computed directly from
numbers or intervals, avoiding the use of a formal expression for the derivative of the
function. Evaluation of a function for an interval X delivers a superset of the func-
tion’s values over X . This overestimation tends to zero with the width of the interval
X . Thus for small intervals, interval evaluation of a function practically delivers the
range of the function’s values. Many numerical methods proceed in small steps. So this
property together with differentiation arithmetic to compute enclosures of derivatives
is the key technique for validated numerical computation of integrals and for solution
of differential equations, and for many other applications.

Newton’s method is considered in two sections of Chapter 9. It attains its ultimate
elegance and power in the extended interval Newton method, which is globally con-
vergent and computes all zeros of a function in a given domain. The key to achieving
these fascinating properties is division by an interval that includes zero. It is used to
separate diferent zeros from each other.

The basic ideas needed for verified solution of systems of linear equations are devel-
oped in Section 9.5. Highly accurate bounds for a solution can be computed in a way
that proves the existence and uniqueness of the solution within these bounds. Mathe-
matical fixed-point theorems, interval arithmetic combined with defect correction or
iterative refinement techniques using complete arithmetic are basic tools for achieving
these results.

In Section 9.6 a method is developed that allows highly accurate and guaranteed
evaluation of polynomials and of other arithmetic expressions.

Section 9.7 shows how fast multiple precision arithmetic and multiple precision in-
terval arithmetic can be provided using complete arithmetic and other tools developed
in the book. A very impressive application for an extremely ill-conditioned problem
is considered in [84], an iteration with the logistic equation (dynamical system) which
shows chaotic behavior. Double precision floating-point or interval arithmetic totally

Preface xvii

fail (no correct digit) after 30 iterations while long interval arithmetic still computes
correct digits of a guaranteed answer after 2 790 iterations.

Finally, in Section 9.8 Kaucher arithmetic is briefly mentioned and a core of arith-
metic operations is specified. Kaucher arithmetic extends the formulas for the arith-
metic operations for closed and bounded real intervals to the entire R2. Specialists
claim that with it important algorithms of computer geometry can be formulated in
compact, closed form thus avoiding complicated analyses of arithmetic expressions
by hands-on methods.

Of course, the computer may often have to work harder to produce verified results,
but the mathematical certainty makes it worthwhile. After all, the step from assembler
to higher programming languages or the use of convenient operating systems also
consumes a lot of computing power and nobody complains about it since it greatly
enlarges the safety and reliability of the computation.

Computing is being continually and greatly speeded up. Fast computers are often
used for safety critical applications. Severe, expensive, and tragic accidents can occur
if the eigenfrequencies of a large electricity generator, for instance, are erroneously
computed, or if a nuclear explosion is incorrectly simulated. Floating-point operations
are inherently inexact. It is this inexactness at very high speed that calls conventional
computing, just using naïve floating-point arithmetic, into question.

As shown in the book, properly developed interval arithmetic is an exception-free
calculus. With very little extra hardware interval arithmetic can be made as fast as sim-
ple floating-point arithmetic. The tremendous progress in computer technology should
be accompanied by the extension of the mathematical capacity of the computer. The
basic components of advanced computing, floating-point arithmetic, interval arith-
metic, and an exact scalar product should be provided by the computer’s hardware.
This would boost both the speed of a computation and the accuracy of its result.

A bibliography of more than 700 entries terminates this book. It is recommended to
everyone who is interested in how a computer works and how it could work better and
faster. The detailed elaboration of a vision of future computing should be of particular
interest to designers and manufacturers of computers.

This book can, of course, be used as a textbook for lectures on the subject of com-
puter arithmetic. If one is interested only in the more practical aspects of implementing
arithmetic on computers, Part 2, with acceptance a priori of some results of Part 1, is
also suitable as a basis for lectures. Part 3 can be used as an introduction to verified
computing.

The second previous book was jointly written with Willard L. Miranker. On this
occasion Miranker was very busy with other studies and could not take part, so this
new book has been compiled solely by the other author and he takes full responsibility
for its text. However, there are contributions and formulations here which go back
to Miranker without being explicitly marked as such. I deeply thank Willard for his
collaboration on the earlier book as well as on other topics, and for a long friendship.
Contact with him was always very inspiring for me and for my Institute.

xviii Preface

I would like to thank all former collaborators at my Institute. Many of them have
contributed to the contents of this book, have realized advanced computer arithmetic in
software on different platforms and in hardware in different technologies, have embed-
ded advanced computer arithmetic into programming languages and implemented cor-
responding compilers, developed problem solving routines for standard problems of
numerical analysis, or applied the new arithmetic to critical problems in the sciences.
Among these colleagues are: Christian Ullrich, Edgar Kaucher, Rudi Klatte, Gerd
Bohlender, Dalcidio M. Claudio, Kurt Grüner, Jürgen Wolff von Gudenberg, Reinhard
Kirchner, Michael Neaga, Siegfried M. Rump, Harald Böhm, Thomas Teufel, Klaus
Braune, Walter Krämer, Frithjof Blomquist, Michael Metzger, Günter Schumacher,
Rainer Kelch, Wolfram Klein, Wolfgang V. Walter, Hans-Christoph Fischer, Rudolf
Lohner, Andreas Knöfel, Lutz Schmidt, Christian Lawo, Alexander Davidenkoff,
Dietmar Ratz, Rolf Hammer, Dimitri Shiriaev, Manfred Schlett, Matthias Hocks, Peter
Schramm, Ulrike Storck, Christian Baumhof, Andreas Wiethoff, Peter Januschke,
Chin Yun Chen, Axel Facius, Stefan Dietrich, and Norbert Bierlox. For their con-
tributions I refer to the bibliography.

I owe particular thanks to Axel Facius, to Gerd Bohlender, and to Klaus Braune.
Axel Facius keyed in and laid out the entire manuscript of the first edition of the book
in LATEX and he did most of the drawings. Drawings were also done by Gerd Bohlender.
Klaus Braune helped to prepare the final version of the text. I thank Bo Einarsson for
proofreading the book. I also thank my colleagues at the institute Götz Alefeld and
Willy Dörfler for their support of the book project.

I gratefully acknowledge the help of Neville Holmes who went carefully through
great parts of the manuscript, sending back corrections and suggestions that led to
many improvements. His help was indeed vital for the completion of the book.

Contents

Foreword to the second edition vii

Preface ix

Introduction 1

I Theory of computer arithmetic

1 First concepts 13

1.1 Ordered sets . 13

1.2 Complete lattices and complete subnets . 18

1.3 Screens and roundings . 24

1.4 Arithmetic operations and roundings . 35

2 Ringoids and vectoids 43

2.1 Ringoids . 43

2.2 Vectoids . 54

3 Definition of computer arithmetic 62

3.1 Introduction . 62

3.2 Preliminaries . 65

3.3 The traditional definition of computer arithmetic 69

3.4 Definition of computer arithmetic by semimorphisms 70

3.5 A remark about roundings . 78

3.6 Uniqueness of the minus operator . 79

3.7 Rounding near zero . 81

4 Interval arithmetic 87

4.1 Interval sets and arithmetic . 88

4.2 Interval arithmetic over a linearly ordered set . 97

4.3 Interval matrices . 101

4.4 Interval vectors . 107

4.5 Interval arithmetic on a screen . 110

xx Contents

4.6 Interval matrices and interval vectors on a screen 118

4.7 Complex interval arithmetic . 126

4.8 Complex interval matrices and interval vectors 132

4.9 Extended interval arithmetic . 137

4.10 Exception-free arithmetic for extended intervals 141

4.11 Extended interval arithmetic on the computer . 146

4.12 Exception-free arithmetic for closed real intervals on the computer . . . 149

4.13 Comparison relations and lattice operations . 152

4.14 Algorithmic implementation of interval multiplication and division 153

II Implementation of arithmetic on computers

5 Floating-point arithmetic 157

5.1 Definition and properties of the real numbers . 157

5.2 Floating-point numbers and roundings . 163

5.3 Floating-point operations . 172

5.4 Subnormal floating-point numbers . 180

5.5 On the IEEE floating-point arithmetic standard 181

6 Implementation of floating-point arithmetic on a computer 191

6.1 A brief review of the realization of integer arithmetic 192

6.2 Introductory remarks about the level 1 operations 201

6.3 Addition and subtraction . 206

6.4 Normalization . 210

6.5 Multiplication . 212

6.6 Division . 212

6.7 Rounding . 214

6.8 A universal rounding unit . 216

6.9 Overflow and underflow treatment . 217

6.10 Algorithms using the short accumulator . 220

6.11 The level 2 operations . 226

7 Hardware support for interval arithmetic 236

7.1 Introduction . 236

Contents xxi

7.2 Arithmetic interval operations . 237
7.2.1 Algebraic operations . 238
7.2.2 Comments on the algebraic operations 240

7.3 Circuitry for the arithmetic interval operations 241

7.4 Comparisons and lattice operations . 242
7.4.1 Comments on comparisons and lattice operations 243
7.4.2 Hardware support for comparisons and lattice operations 243

7.5 Alternative circuitry for interval operations and comparisons 244
7.5.1 Hardware support for interval arithmetic on x86-processors 245
7.5.2 Accurate evaluation of interval scalar products 247

8 Scalar products and complete arithmetic 249

8.1 Introduction and motivation . 250

8.2 Historical remarks . 252

8.3 The ubiquity of the scalar product in numerical analysis 257

8.4 Implementation principles . 260
8.4.1 Long adder and long shift . 262
8.4.2 Short adder with local memory on the arithmetic unit 262
8.4.3 Remarks . 263
8.4.4 Fast carry resolution . 265

8.5 Informal sketch for computing an exact dot product 267

8.6 Scalar product computation units (SPUs) . 267
8.6.1 SPU for computers with a 32 bit data bus 269
8.6.2 A coprocessor chip for the exact scalar product 272
8.6.3 SPU for computers with a 64 bit data bus 275

8.7 Comments . 278
8.7.1 Rounding . 278
8.7.2 How much local memory should be provided on an SPU? 279

8.8 The data format complete and complete arithmetic 281
8.8.1 Low level instructions for complete arithmetic 282
8.8.2 Complete arithmetic in high level programming languages . . . 283

8.9 Top speed scalar product units . 287
8.9.1 SPU with long adder for 64 bit data word 287
8.9.2 SPU with long adder for 32 bit data word 292
8.9.3 An FPGA coprocessor for the exact scalar product 295

xxii Contents

8.9.4 SPU with short adder and complete register 295
8.9.5 Carry-free accumulation of products in redundant arithmetic 301

8.10 Hardware complete register window . 302

III Principles of verified computing

9 Sample applications 307

9.1 Basic properties of interval mathematics . 309
9.1.1 Interval arithmetic, a powerful calculus to deal with

inequalities . 309
9.1.2 Interval arithmetic as executable set operations 310
9.1.3 Enclosing the range of function values 316
9.1.4 Nonzero property of a function, global optimization 319

9.2 Differentiation arithmetic, enclosures of derivatives 321

9.3 The interval Newton method . 329

9.4 The extended interval Newton method . 332

9.5 Verified solution of systems of linear equations 333

9.6 Accurate evaluation of arithmetic expressions 340
9.6.1 Complete expressions . 341
9.6.2 Accurate evaluation of polynomials . 342
9.6.3 Arithmetic expressions . 346

9.7 Multiple precision arithmetics . 347
9.7.1 Multiple precision floating-point arithmetic 348
9.7.2 Multiple precision interval arithmetic 351
9.7.3 Applications . 356
9.7.4 Adding an exponent part as a scaling factor to complete

arithmetic . 358

9.8 Remarks on Kaucher arithmetic . 360
9.8.1 The basic operations of Kaucher arithmetic 364

A Frequently used symbols 367

B On homomorphism 369

Bibliography 371

List of figures 421

List of tables 425

Index 427

