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Abstract

This note provides a brief description of modal intervals as described
in [1].

Traditional interval computations: reminder. Let us assume that a
quantity z depends on quantities x = (x1, . . . , xn), and that we know the ex-
act form of this dependence, i.e., we know a continuous function z = f(x) =
f(x1, . . . , xn). In practice, we often do not know the exact values of the quan-
tities xi, we only know the intervals Xi = [xi, xi] that contain these values.

These intervals may come from measurements: when the measurement result
is x̃i and we know the upper bound ∆i on (absolute value of) the measurement

error ∆xi
def
= x̃i − xi, this means that the actual (unknown) value xi can take

any value from the interval [x̃i−∆i, x̃i+∆i]. These intervals can also come from
manufacturing tolerances, when we recommend the value x̃i of the corresponding
quantity but allow deviations ±∆i from this recommended value. In this case
also, the resulting the resulting quantity xi can take any value from the interval
[x̃i −∆i, x̃i +∆i].

In both cases, the only information that we have about z is that z belongs
to the interval

Z = {f(x1, . . . , xn) : x1 ∈ X1, . . . , xn ∈ Xn} =

[
min
x∈X

f(x),max
x∈X

f(x)

]
,

where we denoted X
def
= X1 × . . . Xn. This interval Z is called the result of ap-

plying the function f to the intervals X1, . . . , Xn and denoted by f(X1, . . . , Xn).
In many practical situations, it is desirable to make the interval Z as narrow

as possible. For example, z may be the direction of the airplane flight, and
we want to maintain this direction as accurately as possible. In the above
setting, if we want to decrease the width Z, we have to decrease the width of
the original intervals – e.g., measure the values xi more accurately, or impose
stricter tolerances on the manufacturing process.

Logical reformulation of the traditional interval computation. First,
we need to make sure that for all possible combinations of xi ∈ Xi, the value
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z = f(x1, . . . , xn) is contained in the interval Z. In other words, we want to
make sure that

∀x1 ∈ X1 . . . ∀xn ∈ Xn ∃z ∈ Z (z = f(x1, . . . , xn)).

Second, we need to make sure that Z is the narrowest interval with this property.
These two requirements guarantee that Z is equal to the above range: Z = f(X).

Beyond the main problem of (traditional) interval computations –
possibility of controlled variables: formulation of the problem. In the
traditional approach, we have no control over the values of the input variables
xi, we only know that these values belong to the corresponding intervals Xi.
In practice, often, the desired value z = f(x, u) depends not only the variables
x = (x1, . . . , xn) over which we have no control, it also depends on the additional
variables u = (u1, . . . , um) that we can control. Specifically, for each of these
additional variables uj , there is a range Uj , and we can set up any value within
this range. We can use these additional variables to narrow down the range
Z = [z, z] of the values z that can be achieved.

In precise terms, we want to select an interval Z = [z, z] for which, for
each combination x ∈ X, there exists a control u that would lead to the value
f(x, u) ∈ Z. Among all such intervals Z, we want to select the one which is the
narrowest. In other words, we want to make sure that

∀x ∈ X ∃u ∈ U (f(x, u) ∈ Z),

i.e., that
∀x ∈ X ∃u ∈ U ∃z ∈ Z (z = f(x, u)),

and that Z is the narrowest interval with this property.
How can we find such an interval Z?

Possibility of controlled variables: towards a solution to the problem.
For each x ∈ X, the set of all possible values f(x, u) forms an interval

F (x)
def
=

[
min
u∈U

f(x, u),max
u∈U

f(x, u)

]
.

The existence of a control u for which one of these values is from the interval
Z is equivalent to requiring that that the intervals F (x) and Z have a common
point. One can easily check that the two intervals [a, a] and [b, b] have a common
point if and only if a ≤ b and b ≤ a. For intervals F (x) and Z, this means that
we must have

min
u∈U

f(x, u) ≤ z and z ≤ max
u∈U

f(x, u).

These two inequalities much hold for every x ∈ X. For z, this means that
the value z must be larger than or equal to min

u∈U
f(x, u) for all x ∈ X. This

2



is equivalent to requiring that z is larger than or equal to the largest of these
values, i.e., that

z ≥ max
x∈X

min
u∈U

f(x, u).

Similarly, the requirement that z must be smaller than or equal to max
u∈U

f(x, u)

for all x ∈ X is equivalent to requiring that z is smaller than or equal to the
smallest of these values, i.e., that

z ≤ min
x∈X

max
u∈U

f(x, u).

Among all the intervals that satisfy these two inequalities, we need to find
the narrowest. It turns out that the selection of the narrowest interval depends
on the relation between the two bounds. If

min
x∈X

max
u∈U

f(x, u) ≤ max
x∈X

min
u∈U

f(x, u),

then the narrowest interval is when z is equal to its lower bound and z is equal
to its upper bound, i.e., when

Z = [z, z] =

[
min
x∈X

max
u∈U

f(x, u),max
x∈X

min
u∈U

f(x, u)

]
.

On the other hand, if the opposite inequality is satisfied, i.e., if

min
x∈X

max
u∈U

f(x, u) > max
x∈X

min
u∈U

f(x, u),

then we can have intervals Z with the desired property which have width 0:
namely, for any value z between these two bounds, i.e., for any value z from the
interval

Z =

[
max
x∈X

min
u∈U

f(x, u),min
x∈X

max
u∈U

f(x, u)

]
,

the one-point interval Z ′ = [z, z] satisfies the desired property.
Thus, we arrive at the following solution.

Case of controlled variables: solution. Once we have a function f(x, u)
and the ranges X and U , we compute the two values

z− = min
x∈X

max
u∈U

f(x, u) and z+ = max
x∈X

min
u∈U

f(x, u).

If z− ≤ z+, then the interval Z = [z−, z+] is the narrowest interval for which

∀x ∈ X ∃z ∈ Z ∃u ∈ U (z = f(x, u)).

If z− > z+, then we have many such narrowest intervals – namely, every interval
[z, z] for z ∈ [z+, z−] is a one. This can be described as follows:

∀x ∈ X ∀z ∈ Z ∃u ∈ U (z = f(x, u)).
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Comment. The above solution is presented in [1], where the pair consisting of
the values z− and z+ is called an f∗-extension of the original function f(x, u).

Reformulation in terms of modal intervals. In [1], logical terms are used
to distinguish between intervals Xi over which we have no control and intervals
Uj in which we can select whichever value ui ∈ Ui we choose. To guarantee
that the value z of the desired quantity is within the given range, we need to
make sure that this property holds for all possible values xi ∈ Xi, while for the
controlled intervals, it is sufficient to require that there exist values uj ∈ Uj that
make this property true. To emphasize this distinction, the authors of [1] treat
each interval as a pair of the interval itself and of the corresponding quantifier:

• a traditional interval Xi is considered as a pair ⟨Xi,∀⟩, while

• a controlled interval is considered as a pair ⟨Uj ,∃⟩.

Such pairs are called modal intervals.
In these terms, the condition

∀x1 ∈ X1 . . . ∀xn ∈ Xn ∃u1 ∈ U1 . . . ∃um ∈ Um ∃z ∈ Z (z = f(x, u))

can be reformulated as

Qx1 ∈ X1 . . . Qxn ∈ Xn Qu1 ∈ U1 . . . Qum ∈ Um ∃z ∈ Z (z = f(x, u)),

where Q is the quantifier attached to the corresponding interval. For the case
when all the intervals are traditional (non-controlled), we get the usual expres-
sion for the range. Because of this example, we can treat the resulting interval
Z as the range defined over modal intervals:

Z = f(⟨X1,∀⟩, . . . , ⟨Xn,∀⟩, ⟨U1,∃⟩, . . . , ⟨Um,∃⟩).

The difference between the cases z− ≤ z+ and z− > z+ translates, as we
have seen, into the difference between ∃z ∈ Z and ∀z ∈ Z in the corresponding
formulas. So, the authors of [1] say that when z− ≤ z+, the range is the usual
interval ⟨Z,∀⟩, while for z− > z+, the range is the interval ⟨Z, ∃⟩.

Relation to Kaucher intervals. The above example shows that the differ-
ence between the two types of intervals can also be represented as the difference
between the usual intervals, for which z− ≤ z+, and the “new” intervals for
which z− > z+. It is therefore reasonable to represent these “new intervals” as
[z−, z+].

For example, the interval Z = ⟨[2, 4],∀⟩ is represented as a usual interval
[2, 4], while an interval ⟨[2, 4],∃⟩ is represented as [4, 2]. Such intervals have
been previously introduced by Kaucher.

This connection with Kaucher intervals is not accidental: indeed, for arith-
metic operations f(x, u), the f∗-extensions coincide with the operations of
Kaucher arithmetic.
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