P1788/D9.2, June 1, 2014
Chapter 2 Draft Standard For Interval Arithmetic §12.13

12.13.3. Boolean functions of intervals.

The functions listed in §10.6.3 shall be handled in the same way as those in §12.13.1.

If T-version of the function isMember(m,x) is provided, the number format F of the argument
m should be compatible with T. An implementation may provide several T-versions, with different
formats of m. If T is a 754-conforming type, versions should be provided with the argument m of
any supported 754 format of the same radix as T.

12.13.4. Extended interval comparisons.
How the operations in §10.6.4 are handled at Level 2 is implementation-defined.

12.13.5. Ewact reduction operations. An implementation that provides 754-conforming type
for the parent format F should provide an accumulator format datatype A(F) associated with the
F, and associated operations. An A(F) datum z is capable to represent exactly dot products of
vectors of any reasonable length of arbitrary finite F-numbers.

The following operations should be provided.

— convert converts from an accumulator format to a floating-point format, or vice versa, or from
one accumulator format to another.

— exactAdd and exactSub adds or subtracts two accumulator or floating-point format operands,
of which at least one is an accumulator, giving an accumulator format result.

— exactFma computes z + x * y where z has an accumulator format and x,y are of floating-point
format, giving an accumulator format result.

- exactDotProduct. Let a and b be vectors of length n holding floating-point numbers of format
F. Then exactDotProduct(a,b) computes a - b = > ko1 akby exactly, giving an accumulator
format result.

The result of all operations may be converted if necessary to a specified result format by application

of the convert operation.

[Example. The Complete Arithmetic, specified by Kulisch and Snyder [5.[4]. is an example of im-

plementation of accumulator format and exact reduction operations. The recommended accumulator

format for the binary64 format in the Complete Arithmetic has 4 bits for sign and status, 2134 bits
before the point, and 2150 after the point, for a total of 4288 bits or 536 bytes; this allows for at least

2%% multiply-adds before overflow can occur. |




