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1. Introduction

1.1. Terminology. An interval library function means an interval version f(x,y, . . .), provided by
a P1788 implementation, of a mathematical real point function f(x, y, . . .). The set of these is the
interval library. The conceptual set of mathematical f whose interval versions are provided will be
called the math library.

Interval mappings that are not interval versions of point functions, such as “hull” and “intersection”,
are not interval library functions.

The math library need not all be—though usually will be—implemented in the point library, which
is the set of floating-point functions provided by the implementation or its underlying floating-point
system.

Mixed-format issues seem orthogonal to the present discussion, so I assume for now that all functions
are implemented in the same interval datatype (format), e.g. inf-sup based on binary64.

1.2. Background. In May 2010 I circulated a position paper [5] intended to complement Nate Hayes’
recent paper [4]. There, I proposed the following decoration bits:

1. Two “domain” bits (domain), for determining whether a function defined in terms of elementary
functions is everywhere defined, or is nowhere defined, on its input box. (Nate Hayes is opposed to
this scheme since he believes his tetrits do the same job better.)

2. A “discontinuous” bit (discont), for determining whether such a function is everywhere defined
and continuous on its input box. (Nate supports this scheme.)

3. An “illformed” bit (illform), for determining whether an interval is nonsense because it is de-
scended from the output of an invalid constructor call. (I believe Nate regards this as unnecessary.
While not actively opposed to it, he argues that he carries in the two bits of a tetrit the information
that I carry in three, the domain bits and the illform bit.)

This paper proposes a motion on the discont bit, upon which Nate and I agree.

2. Motion

The standard shall support the discont bit, as follows.

1. Decorated intervals shall include a sticky discont bit, which when correctly used evaluates the
negative of the predicate P (f,x) defined in Section 4 equation (1).

2. Interval library functions shall propagate discont as specified in Section 4, thus meeting require-
ment R2 in Subsection 3.1.

3. The P1788 group will design a generalised software architecture for language-level support of some
or all of R1, R3, R4 in 3.1. The standard will recommend that any P1788-conforming language
should support this architecture, either as an intrinsic language feature or as part of its interval
library.

3. Rationale

3.1. Difficulties. Incorporating domain or discont in P1788 (and Hayes tetrits too IMO) poses
problems we have not faced before, though I think similar ones will arise in future. The first difficulty
is that these decorations are about deducing dynamic, global properties of code, namely of a particular
evaluation of a particular section of code, f, by applying structural induction at run time. For the
deduction to be valid these requirements must be met:
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R1. The code f must represent an interval version f of a point function f built from math library
functions ei. Namely f is produced by implementing each ei as its interval library version ei.

R2. The interval library functions must manipulate the decoration bits in the appropriate “sticky”
way.

R3. The decoration bit(s) of each input argument (each component xj of the input box x1× . . .×xn)
must be suitably initialised on entry to f.

R4. The desired property value must be obtained by combining the relevant bits on each output
arguments (component of output box) on exit from f.

R1 applies also to the Fundamental Theorem of Interval Arithmetic (FTIA), whose applicability in a
program is also deduced by run time structural induction. However, the FTIA poses fewer problems
of validity because R2–R4 do not apply to it.

The second difficulty is that P1788’s primary remit is below the language level. It can specify
the behaviour of individual operations, in particular can require R2, which is the responsibility of an
implementor of the standard. But at this level it has no control over R1, R3 and R4. Here are some
examples.

• A user may code an interval version of f(x) = x2 + 4x by writing the expression in two ways
and taking the intersection:

interval f(interval x) {

interval y1 = x*(x+4), y2 = (x+2)^2 - 4;

return intersect(y1,y2);

}

This gives a valid enclosure, but is not a function to which the theory of the discont bit
applies: it violates R1.
• Depending on language and programming style, the inputs and outputs of an interval function
f may appear in many guises. For instance f may be coded inline without explicitly being
designated a function. Or its interval inputs may be separate arguments; or elements of a
vector; or fields of an object; or any combination of these.
• Its outputs have similar possibilities, with the additional choice between output via one or (in

a language such as Matlab) several return values, or output via the argument list, or a mixture
of both.

In view of this I do not see how P1788 can provide features that directly support the enforcement of
R1, R3, R4. To the extent such enforcement is possible, it can only be done at the language level.
Here are some ways P1788 might approach this issue:

1. Abdicate any responsibility for correct use of these decoration features, either to the application
programmer, or to a language standard if it chooses to take this on.

2. Design a generalised software architecture for supporting some or all of R1, R3, R4, and recommend
that any P1788-conforming language should support it, either as an intrinsic language feature or
as part of its interval library.

3. The same, but make it required.

Personally I think the first way would weaken the standard, seriously and for ever: we should not
take it. The third is too rigid, hence too risky: we do not understand well how these features should
best be supported even in common current languages and on current hardware. Whatever mechanism
we design, someone will invent one that works better in some contexts.1 Hence I support the second
approach.

4. Summary of theory of sticky bits, from [5]

A. Assume a point function y = f(x), where x = (x1, . . . , xn) and y = (y1, . . . , ym), defined by code f.
For simplicity assume f has no loops or branches, though I think it is not hard to relax this. f can be
described by its computation graph G, a directed acyclic graph (DAG) whose nodes are labeled i =
1−n, . . . , p+m, each i being identified with a variable vi. The n input nodes v1−n, . . . , v0 are aliases
for the xj . Each non-input node represents a statement vi = ei(certain predecessors of vi in G) for
i = 1, . . . , (p + m), where ei is a math library function. The last m variables vp+1, . . . , vp+m are

1Consider the history of concurrent process mechanisms: critical regions, semaphores, rendezvous, . . . .
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aliases for the outputs y1, . . . , ym. The other variables v1, . . . , vp are intermediates. This notation
is used in Automatic Differentiation, see [2].

The vi are also identified with the functions that they are of the inputs, e.g. an input vj−n is the
function (x1, . . . , xn) 7→ xj while an output vp+i is the ith component fi(x1, . . . , xn) of the final
function f .

When f is evaluated over intervals or general sets, it has actual arguments Vj−n = Xj , j =
1, . . . , n that are sets, and each node of G is annotated with the set Vi that resulted from evaluating
(the interval or set version of) ei.

B. To be more precise, the xj are the nominated inputs and the yi are the nominated outputs. Con-
stants are regarded as inputs: they are variables vi whose function ei has no arguments.

Considering real programming languages, P1788 needs to consider whether global variables (or
Fortran common) are permitted as implicit inputs and/or outputs.

C. Those nodes that are on some path in G from an input to a nominated output are live nodes. The
others are dead nodes, and their statements are dead code, which could be deleted without affecting
the function.

D. The evaluation of discont is based on the following principle.

Structural induction. If for a property P :
– P is true at the input nodes of G;
– the truth of P at all predecessors of a live node implies its truth at that node;
then P is true at the nominated outputs.

E. Continuity. Interval algorithms that use fixed point theorems require to verify continuity, in the
form “The restriction of f to box x is everywhere defined and continuous”, that is the predicate

P (f,x) = (∀a ∈ x)C(f, a,x) (1)

where
C(f, a,x) = “The restriction of f to x is defined and continuous at a”.

There are several detailed formalizations of C(f, a,x); I propose the following.
f(a) is defined, and for all ε > 0 there exists δ > 0 such that whenever x is in x and f(x)
is defined and |x− a| ≤ δ, then |f(x)− f(a)| ≤ ε.

[Note. The “restriction” phrase is essential: consider the function f(x) = floor(x)+ 1
2 . Its restriction

to x = [1, 1.9] is everywhere defined and continuous, being the constant 1.5. Evaluating y = f(x)
we find y ⊆ x so we can deduce by Brouwer’s Theorem that f has a fixed point in x, which indeed
it does. However the “unrestricted” f is not continuous at 1 ∈ x, since as x → 1 from below,
f(x) = 1

2 6→ f(1) = 3
2 . Thus if we drop the “restriction” phrase we cannot deduce that the fixed point

theorem applies in this example.]
F. The value of P (ei,x

(i)) at the nodes of any dead code does not affect the result.
G. For reasons given in [5], discont propagates the negative of P . Specifically, its value on return

from evaluating each ek is “P (ei,x
(i)) is false at the current node or some predecessor of it” (i.e.,

for i equal to k or the index of some predecessor of node k). This is initialised to 0 at every

(nominated or other) input node. It is propagated by evaluating ¬P (ei,x
(i)) and returning the

“or” of this with the discont values of the inputs to ei.
H. Elementary real analysis shows that if P (ei,x

(i)) holds at each live non-input node of the compu-
tation graph, then P (f,x) holds.

Hence if, on exit from the function, discont is false at an output node, this proves the restriction
to x of the corresponding component of f is everywhere defined and continuous.

This is only a sufficient condition: because of interval widening due to dependency, etc., it is
possible to have continuity even though discont is true.

I. Most standard functions are either defined and continuous everywhere, or continuous precisely
where they are defined; in either case they always set the raw value ¬P (ei,x

(i)) the same as
the raw SuD “Somewhere unDefined” value of [5]. The few exceptions are less often used and
logically simple: sign, ceil, floor, nint, trunc which are everywhere defined but have jump
discontinuities.

As argued in [5], the value of SuD is a natural byproduct of the logic of an interval standard
function. Hence, I expect the overhead of evaluating discont for all interval library functions to
be negligible.
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