
DR
AF
T
03
.1

Draft 03.1
IEEE Std P1788

IEEE Standard For Interval Arithmetic §4.4

4. Level 1 description

In this clause, subclauses 4.1 to 4.5 describe the theory of mathematical intervals and interval
functions that underlies this standard. The relation between expressions and the point or interval
functions that they define is specified, since it is is central to the Fundamental Theorem of Interval
Arithmetic. Subclauses 4.6, 4.7 list the required and recommended arithmetic operations (also
called elementary functions) with their mathematical specifications. Subclause 4.8 describes, at a
mathematical level, the system of decorations that is used for exception handling in P1788.

4.1. Numbers. Following the terminology of 754 (754§2.1.25 and elsewhere), any member of the
extended reals R∪ {−∞,+∞} is called a number: it is a finite number if it is in the reals R, else
an infinite number.

4.2. Intervals. The set of mathematical intervals in R, denoted IR, comprises1 all closed intervals
of real numbers

x = [x, x] := {x ∈ R | x ≤ x ≤ x },

where the bounds x, x are extended-real numbers, −∞ ≤ x ≤ x ≤ +∞.
[Notes.

– In particular, the empty interval [−∞,−∞] = [+∞,+∞] = ∅ belongs to IR.
– The above definition implies −∞ and +∞ can be bounds of an interval, but are never members of it.
– The round bracket or outward bracket notations for closed intervals in R with an infinite end point

(e.g., [2,+∞) or [2,+∞[instead of [2,+∞]) are not used in this document but are not considered
wrong.

]

4.3. Hull. The (interval) hull of an arbitrary subset s of R, written hull(s), is the tightest member
of IR that contains s. (The tightest set with a given property is the intersection of all sets having
that property, provided the intersection itself has this property.)

4.4. Expressions and functions.

4.4.1. Function terminology. In this standard, operations are written as named functions; in a
specific implementation they might be represented by operators (i.e., using some form of infix
notation), or by families of format-specific functions, or by operators or functions whose names
might differ from those in this standard.

The terms operation, function and mapping are broadly synonymous; however the usage in this
standard is as follows. The next subclauses make precise definitions of these terms.

– A (point) arithmetic operation is a mathematical real function for which an implementation
provides versions in a collection of user-available operations called the implementation’s library.
This includes functions normally written in operator form (e.g., +, ×) and those normally written
in function form (e.g., exp, arctan). It is not specified how a particular implementation provides
library facilities.

– An interval arithmetic operation is an interval version of a point arithmetic operation, provided
by a implementation in its library. There are also decorated interval arithmetic operations,
introduced in 4.8.

– A constructor is a function that creates an interval from non-interval data.
– An interval non-arithmetic operation is a mapping of intervals to intervals that is provided by

an implementation but is not an interval version of a point function (e.g., the operation of
intersection of two intervals).

– The term function includes the arithmetic operations, and more generally functions constructed
from these by expressions in a user program. It is also used for non-interval-valued operations
on an interval, such as the function that returns the midpoint of an interval.

1The overline is for compatibility with older notation, which uses IR for the set of closed and bounded real

intervals.

12 January 14, 2011

DR
AF
T
03
.1

Draft 03.1
IEEE Std P1788

IEEE Standard For Interval Arithmetic §4.4

4.4.2. Expressions. An expression in zero or more (independent) variables is a symbolic object
defined to be either one of those variables or, recursively, of the form φ(g1, . . . , gk) where φ repre-
sents an operation taking k arguments (k ≥ 0), and the gi are expressions. Other syntax may be
used, such as traditional algebraic notation and/or program pseudo-code. An arithmetic expres-
sion is one in which all the operations are arithmetic operations. An expression may be denoted
by a sans-serif letter, e.g. f, to distinguish it from a corresponding function f that it defines.

The set vars f of variables that occur in f is defined recursively as follows where the variable-
names are regarded as distinct, atomic, symbols. If f is a variable z then vars f is the singleton
{z}. Recursively, if f = φ(g1, . . . , gk) then vars f = vars(g1) ∪ . . . ∪ vars(gk). If the variables are
an indexed set, e.g. z1, . . . , zn, one may use a set of indices i instead of the corresponding set of zi.
[Example. vars

(
(ex + e−x)/(2y)

)
= {x, y}, while vars

(
(ez1 + e−z1)/(2z3)

)
can be written as {z1, z3}

or as {1, 3}, whichever is convenient.]
[Example.

– The object f where

f = (ex + e−x)/(2y)

is an arithmetic expression in two variables x, y that may be written in the above form as

div(plus(exp(x), exp(uminus(x))), times(2(), y)),

where uminus, plus, times, div and exp name the arithmetic operations “unary minus”, +, ×, ÷
and exponential function. The literal constant 2 is regarded as a zero-argument arithmetic operation
2(), see 4.4.6.

The expression may be broken (e.g., by a compiler) into elementary operations that may be
sequenced in several ways, one of which is

v1 = exp(x)
v2 = uminus(x)
v3 = exp(v2)
v4 = plus(v1, v3)
v5 = 2()
v6 = times(v5, y)
f = div(v4, v6).

All these forms are regarded as defining the same f.
– An expression that uses the interval intersection or union operation is not an arithmetic expression.

]
An optional formal argument list may be specified by notation such as

f(z1, . . . , zn) = an expression, .

This defines f to be the indicated expression with the formal argument list z1, . . . , zn, which must
include at least the variables in vars f, but possibly others.
[Example. A formal argument list is useful when making f define a function. The specifications

f(x, y) = (ex + e−x)/(2y),

f(y, x) = (ex + e−x)/(2y),

f(w, x, y, z) = (ex + e−x)/(2y)

are all valid and all different (they would define different functions), while

f(y) = (ex + e−x)/(2y)

is incorrect since the argument list does not include vars f (unless x is separately defined to be a
parameter, not a variable).]

4.4.3. Expressions and program code. To define an arithmetic expression, a section of program
code must only use arithmetic operations. If also it consists of straight-line code, then it certainly
defines an arithmetic expression. Certain kinds of loops and branches are permitted, but a function
defined by implicit code, e.g. by a root-finding iteration, is generally excluded. See Annex C for a
fuller discussion.

13 January 14, 2011

DR
AF
T
03
.1

Draft 03.1
IEEE Std P1788

IEEE Standard For Interval Arithmetic §4.4

4.4.4. Point functions. A point function is a (possibly partial) multivariate real function: that
is, a mapping f from a subset D of Rn to Rm for some integers n ≥ 0,m > 0. When not otherwise
specified, a scalar function is assumed, i.e. m = 1. If m > 1, the function is called a vector
function. The set D where f is defined is its domain, also written dom f . To specify n, call f an
n-variable point function, or denote values of f as

f(x1, . . . , xn). (1)

The range of f over an arbitrary subset s of Rn is the set

range(f, s) = { f(x) | x ∈ s and x ∈ dom f }. (2)

Thus mathematically, when evaluating a function over a set, points outside the domain are ignored
(e.g., range(sqrt, [−1, 1]) = [0, 1]).

Equivalently, for the case where f takes separate arguments s1, . . . , sn, each being a subset of R,
the range is written as range(f, s1, . . . , sn). This is an alternative notation when s is the cartesian
product of the si.

4.4.5. Interval mappings and functions. A box is an interval vector x = (x1, . . . ,xn) ∈ IRn
. It is

usually identified with the cartesian product x1 × . . . × xn ⊆ Rn; however, the correspondence is
only one-to-one when all the xj are nonempty.

Given an n-variable point function f , an interval extension of f , also called an interval
version of f , is a mapping f from boxes x ∈ IRn

to intervals, such that

f(x) ⊇ range(f,x)

for any such box x, regarded as a subset of Rn. The sharp interval extension of f is defined by

f(x) = hull(range(f,x)).

Equivalently, using multiple-argument notation for f , an interval extension satisfies

f(x1, . . . ,xn) ⊇ range(f,x1, . . . ,xn),

and the sharp interval extension is defined by

f(x1, . . . ,xn) = hull(range(f,x1, . . . ,xn))

for any intervals x1, . . . ,xn.
In some contexts it is useful for x to be a general subset of Rn, or the xi to be general subsets

of R; the definition is unchanged.
Note that such a function is automatically defined for all (interval or set) arguments. The

decoration system of 4.8 gives a systematic way to diagnose when the underlying point function
has been evaluated outside its domain.

When f is a binary operator • written in infix notation, this gives the usual definition of its
sharp interval extension as

x • y = hull({x • y | x ∈ x, y ∈ y, and x • y is defined }).

[Example. With these definitions, the relevant sharp interval extensions satisfy
√

[−1, 4] = [0, 2] and√
[−2,−1] = ∅; also x× {0} = {0} for any nonempty x, and x/{0} = ∅, for any x.]
When f is a vector point function, a vector interval function with the same number of inputs and

outputs as f is called an interval extension of f if each of its components is an interval extension
of the corresponding component of f .

A mapping with interval inputs and outputs is called an interval function if it is an interval
version of some point function, and an interval mapping otherwise. An interval arithmetic
operation is an interval version of a point arithmetic operation. An interval mapping, provided by
an implementation but not an interval arithmetic operation, is called an interval non-arithmetic
operation (e.g., interval intersection and union, (x,y) 7→ x ∩ y and (x,y) 7→ hull(x ∪ y)).

Decorated interval functions and arithmetic and non-arithmetic operations, see 4.8, are defined
similarly.

14 January 14, 2011

DR
AF
T
03
.1

Draft 03.1
IEEE Std P1788

IEEE Standard For Interval Arithmetic §4.5

4.4.6. Constants. A real scalar function with no arguments—a mapping Rn → Rm with n = 0
and m = 1—is a real constant. Languages may distinguish between a literal constant (e.g. the
decimal value defined by the string 1.23e4) and a named constant (e.g. π) but the difference is
not relevant in this standard.

Taking this view of constants has two advantages. First, it automatically defines the notion of
an interval version of a constant. (E.g., any interval containing π is an interval extension of π; the
sharp extension is [π, π].)

Second, this formalism gives a Level 1 definition of NaN, “Not a Number”. R0 is the zero-
dimensional vector space {0} (i.e., it has one element, conventionally named 0). The real numbers
r are in one-to-one correspondence with the mappings 0 7→ r, so that R can be identified with
those real constants that are total functions R0 → R. However there is one non-total such function,
namely the one with empty domain and, therefore, no value. This empty function is called NaN.

It follows from the definitions that the sharp interval extension of NaN is the empty interval ∅.
It is shown in C.2 that its sharp decorated interval extension has properties appropriate to a “Not
an Interval” object, and is therefore called NaI.

4.5. Functions defined by expressions.

4.5.1. Generic functions. A single arithmetic operation name such as +, or an arithmetic expres-
sion such as f(x, y) = x + sin y, is used to refer to different, related, functions: such operations
and expressions, or the resulting functions, are called generic (or polymorphic). Whether generic
function syntax can be used in program code is language-defined.

In this standard, a given arithmetic operation (see 4.6, 4.7) or function defined by an arithmetic
expression exists in any of the following versions:

(a) A point function. This is unique, theoretical and generally non-computable.
(b) An interval function. These are computable and generally non-unique: e.g., there is at least

one for each supported finite precision interval type.
(c) A decorated interval function, similarly to the previous.

The operation or expression may also denote a floating point function in any supported format,
but this is not relevant here.

Importantly for applying the Fundamental Theorems below, the arguments of a function defined
by an expression f come from the variables that actually occur in f. See Annex C for details.
[Example. User code may define a generic function f(x, y) specifying a surface z = f(x, y) in 3D. If
the actual expression for f involves x only, then as far as the theorems are concerned the result is a
one-variable function of x only.]

4.5.2. Point, interval and decorated interval functions. It is assumed that the method of associating
actual to formal arguments for the n variables occurring in an arithmetic expression f is positional,
by listing them z1, . . . , zn in some standard order. Languages may use other ways (e.g. keyword
association).

The point function of (or defined by) f is a function f from Rn to R. Its value at an actual
argument x = (x1, . . . , xn) ∈ Rn is defined as follows:

– If f is the variable zi, the value is the number xi.
– Recursively, if f = φ(g1, . . . , gk), the value is the point version of φ evaluated at (u1, . . . , un)

where ui is the value of the point function of gi at (x1, . . . , xn).

An interval function of f(z1, . . . , zn) is a function from IRn
to IR, again called f . Its value at

an actual argument, a box x = (x1, . . . ,xn) ∈ IRn
, is defined as follows:

– If f is the variable zi, the value is the interval xi.
– Recursively, if f = φ(g1, . . . , gk), the value is some interval version of φ evaluated at (u1, . . . ,un)

where ui is the value of the interval function of gi at x.

A decorated interval function of f(z1, . . . , zn) is as the previous, with “decorated interval”
replacing “interval”, see 4.8.

4.5.3. Disambiguation. The phrase “some interval version” in the definition of an interval function
of an expression f is used, because there are many such versions. The sharp or exact arithmetic
interval function of f is the unique (generally non-computable) one in which the sharp interval
extension of each arithmetic operation φ is used at each evaluation step. Otherwise, a rule must be

15 January 14, 2011

DR
AF
T
03
.1

Draft 03.1
IEEE Std P1788

IEEE Standard For Interval Arithmetic §4.5

specified for choosing a particular version of each φ. In a program context, this rule is language-
defined. The same generic φ may be evaluated by different interval versions at different points of
an expression.

The same considerations apply to decorated interval functions of f.
[Example. Consider evaluation of (x+ y) + z at interval actual arguments x,y, z, and suppose x and
y are of a single precision interval type while z is of a double precision type. Depending on language
rules, an implementation might first convert x and y to double precision so that both occurrences of
“+” use the same, double precision, interval function. Or it might do the first addition in single, then
convert the result to double and do the second addition in double, so that the generic “+” translates
to two different interval functions.]

4.5.4. Domain. The domain of a generic function is defined as follows. For a point arithmetic
operation φ, its domain domφ is part of its definition (4.6, 4.7). For the point function f of an
arithmetic expression, the natural domain dom f is defined to be the set of points where the
expression makes sense, that is, at which it can be evaluated without going outside the domain of
any of its constituent operations.
[Example. The natural domain of f(x, y) = 1/(

√
x− 1−y) is the set of (x, y) in the plane that do not

cause either square root of a negative number or division by zero, i.e. where x ≥ 1 and y 6=
√
x− 1.]

For an interval or decorated interval function of an arithmetic expression, the question of domain
does not arise: such functions are automatically defined for all input arguments.

16 January 14, 2011

DR
AF
T
03
.1

Draft 03.1
IEEE Std P1788

IEEE Standard For Interval Arithmetic §4.8

4.8. The decoration system.

4.8.1. The purpose of decorated intervals. Decorations are properties of a function for which an
interval enclosure of its range over a box is being computed. There are two main objectives of
interval calculations:

– obtaining correct range enclosures for a real-valued function f of real variables;
– verifying the assumptions of existence, uniqueness, or nonexistence theorems.

While traditional interval analysis targets the first aim, decorations target the second aim.
From an interval evaluation of a function f at an interval x, one not only wants to get a range

enclosure f(x) but also a guarantee that the pair (f,x) has certain important properties, such
as f(x) being well-formed, f(x) being defined for all x ∈ x, f restricted to x being continuous
or bounded, etc. This goal is achieved, in parts of a program that require it, by adding to each
interval extra information called a decoration, whose semantics is summarized as follows:

Each intermediate step of the original computation depends on some or all of the
inputs, so it can be viewed as an intermediate function of these inputs. The re-
sult interval obtained on each intermediate step is an enclosure for the range of
the corresponding intermediate function. The decoration attached to this inter-
mediate interval reflects the available knowledge about whether this intermediate
function is guaranteed to be everywhere defined, continuous, bounded, etc., on
the given inputs. For example, we may place the decoration “defined” only if a
rigorous argument ensures that the intermediate function is indeed defined in the
box determined by the input intervals.

The P1788 decoration model, in contrast with 754’s, has no global flags. A general aim, as
in 754’s use of NaN and flags, is not to interrupt the flow of computation: rather, to collate
information during evaluation, that may be inspected after it.

In particular, this enables a fully local handling of exceptional conditions in interval calculations,
an important feature in a concurrent computing environment.

Note that a decoration primarily describes a property, not of the interval it is attached to, but
of the function defined by a section of code that produced that interval.

The system is outlined here at a mathematical level, with the finite-precision aspects in 5.3
and a fuller discussion of the theory in the informative Annex C. Subclause 4.8.2 gives the basic
definitions and 4.8.3 describes the mathematics that underpins the decoration model. Subclause 4.9
is on the algebraic aspect of the P1788 decoration model: decorated intervals and (bare) intervals
and decorations are unified in a single abstract datatype that supports operations on any mix of
these. This has implications for implementation and language support, discussed in Annex C.

In the context of decorations, “model” means the concepts in 4.8.2 to 4.8.5 and the unified
algebraic structure in 4.9; “system” means all this plus the resulting user-available features, and
their conceptual and implemented infrastructure.

4.8.2. Definitions. The set D of decorations has five elements:

Value Short description
saf safe
def defined
con containing
emp empty
ill ill-formed

Formally, each d ∈ D represents the set of pairs (f,x) consisting of a real-valued function f with

domain dom f ⊆ Rn for some n and a box x ∈ IRn
for which the property pd(f,x) is valid. Here

psaf(f,x) : x is a nonempty subset of dom f , and the restriction of f
to x is continuous and bounded;

pdef(f,x) : x is a nonempty subset of dom f ;
pcon(f,x) : always true;
pemp(f,x) : x is disjoint from dom f

(either or both of x and dom f may be empty);
pill(f,x) : dom f is empty.

(4)

21 January 14, 2011

DR
AF
T
03
.1

Draft 03.1
IEEE Std P1788

IEEE Standard For Interval Arithmetic §4.8

The decorations are partially ordered by strength, where stronger means smaller, regarding the
decorations in the above way as sets:

con ⊇ def ⊇ saf, con ⊇ emp ⊇ ill. (5)

Thus con is the weakest decoration, where nothing is claimed; saf and ill claim the most and
are strongest.

Decorations are also given a total ordering according to quality:

ill < emp < con < def < saf, (6)

with ill the “worst” and saf the “best”. When taking the minimum or maximum of decorations,
this ordering is implied.

A decorated interval is a pair, written interchangeably as (x, d) or xd, where x ∈ IR is a real
interval and d ∈ D is a decoration, such that the following Invariant Property IP holds:

IP: d is in { saf, def, con } if x is nonempty, and in { emp, ill } if x is empty. (7)

The set of decorated intervals is denoted DIR. An interval or decoration may be referred to as a
bare interval or decoration, to emphasize that it is not a decorated interval.

xd may also be a decorated interval vector, where x and d are vectors of intervals xi and
decorations di respectively, defining decorated interval components (xi, di) of xd. The set of

decorated interval vectors of length n is denoted DIRn
.

In program format, e.g. pseudocode, for a decorated interval named x, the interval part is written
x.box and the decoration part x.dec.

A containment order ⊇ is defined componentwise:

(x, d) ⊇ (x′, d′) iff x ⊇ x′ and d ⊇ d′, (8)

using set inclusion for the first component and the order (5) for the second component.
As used in the Fundamental Theorem below, x′ need not be a real interval but can be a general

subset of R. In this case (x′, d′) is termed a decorated set.

4.8.3. The Fundamental Theorems. The original theorem due to Ramon Moore (see 1.3) may be
stated in the terminology of 4.5 as follows:

Theorem 4.1 (Fundamental Theorem of Interval Arithmetic, FTIA). Let f be an arithmetic
expression. If the interval function of each arithmetic operation in f is an interval extension of its
corresponding point function, then any interval function of f is an interval extension of the point
function of f.

The decoration system provides an extended theorem in terms of the concept of a decorated
interval extension of a function, which is now defined.

Let f be a function and x a (bare) box as in 4.8.2. The decoration of f over x, written
dec(f,x), is defined to be the strongest decoration d for which pd(f,x) is true. That is,

dec(f,x) =

saf if psaf(f,x) holds;
def if psaf(f,x) fails and pdef(f,x) holds;
ill if pill(f,x) holds;
emp if pill(f,x) fails and pemp(f,x) holds;
con otherwise.

(9)

This is well-defined because (f,x) cannot qualify for both a “good” decoration (saf or def) and
a “bad” one (emp or ill).

Note that though con is “trivial”, to have dec(f,x) = con is not trivial: it asserts pemp and pdef
are both false. In particular x is not a single point, as it meets both dom f and its complement.

The decoration dec(f,xc) of f over a decorated box xc is defined by the formula:

dec(f,xc) = min{c0, c1, . . . , cn}, where c0 = dec(f,x), (10)

and the minimum is with respect to the quality order (6). That is, the decoration of a function
over a decorated box equals the worst of its decoration over the bare box and the decorations of all
the box components. 4! An awkward point. The formula (10) looks arbitrary and depends on the
particular set D of decorations chosen. I have tried to produce an “intrinsic” definition that leads to
(10) for our particular D and would adapt to other Ds. See discussion in C.1.3.

22 January 14, 2011

DR
AF
T
03
.1

Draft 03.1
IEEE Std P1788

IEEE Standard For Interval Arithmetic §4.8

For a point function f from Rn to R and a decorated box xc ∈ DIRn
as above, the decorated

range of f over xc, written drange(f,xc), is the pair

drange(f,xc) = (range(f,x), dec(f,xc)). (11)

It is a decorated set, as defined earlier, consisting of the range of f over the bare box, and the
decoration of f over the decorated box. A decorated interval extension, or decorated interval
version, of f is a mapping f from decorated boxes xd ∈ DIRn

to decorated intervals, such that

f(xd) ⊇ drange(f,xd)

for any such decorated box xd, where its interval part is regarded as a subset of Rn, and containment
is for the interval and decoration components separately, as defined in (8).

The generalized Moore’s theorem is as follows. It is proved in Annex C.

Theorem 4.2 (Fundamental Theorem of Decorated Interval Arithmetic, FTDIA). Let f be an
arithmetic expression. If the decorated interval function of each arithmetic operation in f is a
decorated interval extension of its corresponding point function, then any decorated interval function
of f is a decorated interval extension of the point function of f.

Just as the FTIA gives a computable enclosure of the usually non-computable range of a function
over a box, so the FTDIA gives (along with enclosing the range) a computable enclosure, in the
sense of (5), of the usually non-computable properties of a function being everywhere defined,
continuous, etc., over a box.

To obtain maximum information about f over a particular bare box, each of its components
should be initialized with the “best”—in the quality order—decoration consistent with its value.
This is done by the domain() function which converts a bare to a decorated interval as follows:

domain(x) = xd where d =

 saf if x is a nonempty bounded interval,
def if x is nonempty unbounded interval,
emp if x is empty.

(12)

For a box x = (x1, . . . ,xn), this function acts componentwise, producing a decorated box xd where
(xd)i = domain(xi), i = 1, . . . , n.

If the xi are given any other permitted decoration, the conclusions listed below are still valid, but
may be more cautious than necessary. Thus normal application of the FTDIA, given an expression
f(x1, . . . , xn) and a bare box x = (x1, . . . ,xn), consists of the following steps:

1. Form xd = domain(x);
2. Form ye = f(xd) by decorated interval evaluation;
3. Inspect the decoration e.

The conclusions one can draw are as follows, where f denotes the point function of the expression,
Y = range(f,x) is its true range over x, and D = dec(f,x) is its corresponding true decoration:

– If d = saf, then D must also be saf, so f is guaranteed everywhere defined, continuous and
bounded on x, which is nonempty.

– If d = def, then D must be def or saf: f is guaranteed everywhere defined on x, which is
nonempty. It might be continuous and/or bounded there as well, but this is not known.

– If d = ill, then D must be ill: dom f is empty, that is, f is nowhere defined. This can only
occur if some component of xc was constructed, not from a bare interval using domain(), but
from something ill-formed. This has a special significance of Not an Interval at computational
level: see C.2.

– If d = emp, then D must be emp or ill: dom f is guaranteed to be disjoint from x. This includes
the cases where x is empty, which has no special name, and where dom f is empty, which is the
ill case.

– If d = con, then D might be any of the five values: no conclusion can be drawn.

When f is vector-valued, then yd is a decorated interval vector, and the above applies componen-
twise.
[Example. Consider decorated interval evaluation of f(x, y) =

√
x× (y − x)− 1 with various input

intervals x, y, using the strict decorated interval extension of each arithmetic operation. The natural

domain dom f is easily seen to the union of the regions x > 0, y ≥ x+
1

x
and x < 0, y ≤ x+

1

x
.

For manageable notation, agree that an interval named x is given a decoration dx, and so on.

23 January 14, 2011

DR
AF
T
03
.1

Draft 03.1
IEEE Std P1788

IEEE Standard For Interval Arithmetic §4.8

(i) Let x = [1, 2], y = [3, 4], defining a box (x,y) contained in dom f . Applying the domain
function gives initial decorated intervals xdx = [1, 2]saf, ydy = [3, 4]saf. The first operation is

udu = ydy − xdx = [1, 3]saf.

Namely, subtraction is defined and continuous on all of R2, and bounded on bounded rectangles
(call this property “nice” for short), so the bare result decoration is du′ = dec(−, (y,x)) = saf,
whence by (10) the (strict, i.e. best possible) decoration on u is du = min{du′, dy, dx} =
min{saf, saf, saf} = saf. Multiplication is also “nice”, so the second operation similarly gives

vdv = xdx × udu = [1, 6]saf.

The constant 1, following 4.4.6, becomes a decorated interval function returning the constant
value [1, 1]saf. The next operation is again “nice”, and gives

wdw = vdv − 1 = [0, 5]saf

Finally
√
· is defined, continuous and bounded on w = [0, 5], so, arguing similarly, one has the

final result

fdf =
√
wdw = [0,

√
5]saf.

That was the mechanism. According to the FTDIA it provides a rigorous proof that for the box
zdz = (xdx,ydy) = ([1, 2]saf, [3, 4]saf),

udu = [1, 3]saf encloses the decorated range of u(x, y) = y − x over zdz;
vdv = [1, 6]saf encloses the decorated range of v(x, y) = x(y − x) over zdz;
wdw = [0, 5]saf encloses the decorated range of w(x, y) = x(y − x)− 1 over zdz;
and finally

fdf = [0,
√

5]saf encloses the decorated range of f(x, y) =
√
x(y − x)− 1 over zdz.

The final result says

[0,
√

5] ⊇ range(f, z),

saf ⊇ dec(f, zdz) = min(dec(f, z), saf, saf) = dec(f, z),

whence, dec(f, z) = saf. That is, f(x, y) is defined, continuous and bounded on the box
1 ≤ x ≤ 2, 3 ≤ y ≤ 4, and its range over this box is enclosed in [0,

√
5].

(ii) Let x = [1, 2] as before, but y = [52 , 4]. The box z is still contained in dom f so the true value
of dec(f, z) is still saf. However the evaluation fails to detect this because of interval widening
due to “dependency”. Namely after udu = [52 , 3]saf, vdv = [52 , 6]saf, wdw = [− 1

2 , 5]saf, the final

result has interval part f =
√

[− 1
2 , 5] = [0,

√
5] as before, but

√
· is not everywhere defined on w,

so that dw′ = dec(
√
·,w) = dec(

√
·, [− 1

2 , 5]) = con giving dec(
√
·,wdw) = min{dw′, dv} = con,

so finally fdf = [0,
√

5]con. This is a valid enclosure of the decorated range [0,
√

5]saf, but less
useful in this case.

(iii) If x = [1, 2], y = [1, 1], the box z is now wholly outside dom f , and evaluation detects this, giving
the exact result fdf = ∅emp. However, if x = [1, 2], y = [1, 32], the box is still wholly outside
dom f , but owing to widening, evaluation fails to detect this, giving fdf = [0, 0]con. This is still
a valid enclosure of the decorated range ∅emp, but “too wide” to be of any use.

]

4.8.4. User-supplied functions. A user program may define a decorated interval version of a point
function, to be used within expressions as if it were a library function. This does not invalidate the
FTDIA, subject to the one requirement that the decorated interval version be a decorated interval
extension of the point function.
[Example. In some applications, an interval extension of the function defined by

ψ(x) = x+ 1/x

is required. The expression as it stands can give poor enclosures: e.g., with x = [12 , 2], one obtains

ψ(x) = [12 , 2] + 1/[12 , 2] = [12 , 2] + [12 , 2] = [1, 4],

which is much wider than range(ψ,x) = [2, 2 1
2].

Thus it is useful to code a tight enclosure by special methods, e.g. monotonicity arguments, and

24 January 14, 2011

DR
AF
T
03
.1

Draft 03.1
IEEE Std P1788

IEEE Standard For Interval Arithmetic §4.9

provide this as a new library function. Suppose this has been done. To implement a decorated interval
extension just entails adding code to compute the decoration d of the point function x+ 1/x over an
input decorated interval xc, on the lines of the following:

// compute decoration c0 over bare interval x:
1. if x is empty or singleton [0, 0] then c0 = emp;
2. elseif 0 ∈ x then c0 = con;
3. elseif x is unbounded then c0 = def;
4. else c0 = saf;

// combine with input decoration by equation (10):
5. d = min{c0, c}.

]

4.8.5. Non-arithmetic operations. The propagation of decorations under non-arithmetic operations
is unspecified by the definitions of the semantics of decorations in 4.8.2. This must therefore
be analyzed on different grounds, including important examples of use in algorithms. For the
intersection and union operations, an analysis is given in Annex C. Its conclusions are as follows.

The specification for intersection is intended for the situation where a function (or an inter-
mediate term in a function) can be expressed by two algebraically equivalent expressions, neither
of which always gives a tighter enclosure than the other in interval mode. Then one may evaluate
both forms and intersect the results. This leads to

gdg ∩ hdh = fdf

where

– if dg = ill then fdf = hdh,
– if dh = ill then fdf = gdg,
– elseif df = emp or dg = emp or g ∩ h = ∅ then fdf = (∅, emp),
– else fdf = (g ∩ h,max(dg, dh)).

The specification for union (i.e., the interval hull) is intended for the situation where a function
(or an intermediate term in a function) is expressed for different ranges of an argument by different
expressions. This leads to

gdg ∪ hdh = fdf

where

– if dg = ill or dh = ill then fdf = (∅, emp),
– elseif df = dg = emp then fdf = (∅, emp),
– else fdf = (g ∪ h,max(con,min(dg, dh))).

4.9. Unified interval-decoration opoerations. The notion of interval extension gives a way to
convert an elementary operation with real arguments and result, say z = x • y, to one with bare
interval arguments and result, z = x • y, and one with decorated interval arguments and result,
zd = xb • yc. The P1788 model goes further. Each interval operation is “unified” to act on an
arbitrary mix of bare intervals, bare decorations and decorated intervals, and give one of these as
result.

An important motive for this is practical. There are significant applications where one wishes
to compute an interval result, provided certain exceptions don’t occur. Say, one wishes to find
an interval y that encloses the range of a function f over a box x, but only if f is everywhere
defined on the box. During evaluation of an arithmetic expression, as soon as a value worse than
def occurs one knows that pdef(f,x) is surely false. It is then permissible to discard the interval
value, and propagate the decoration through the evaluation instead, as a diagnostic.

Probably the most used interval type will have a 16 byte bare interval and a decorated interval
17 byte decorated interval. The latter is likely to be slow to access and wasteful to store. One
can mitigate this by letting the efficient 16-byte object store either a bare interval or a bare
decoration—which is easily done at Level 3—though not both at once. It then becomes essential
to support operations on a mix of the two.

4! Still to be revised in the light of work by Hayes and Neumaier, so I have omitted most of it.

25 January 14, 2011

DR
AF
T
03
.1

Draft 03.1
IEEE Std P1788

IEEE Standard For Interval Arithmetic §C.1

Appendix C. Decoration system: details and examples

C.1. The Fundamental Theorem of Decorated Interval Arithmetic.
C.1.1. Statement and notation.

The FTDIA was stated in 4.8.3 as follows.

Theorem C.1 (Fundamental Theorem of Decorated Interval Arithmetic, FTDIA). Let f be an
arithmetic expression. If the decorated interval function of each arithmetic operation in f is a
decorated interval extension of its corresponding point function, then any decorated interval function
of f is a decorated interval extension of the point function of f.

The proof involves several lemmas.
First, it is necessary to resolve a technical difficulty in the relation between expressions and

functions, due to the empty set being a valid interval in this standard.
[Example. Consider the vector function f = (f1, f2) where f(x, y) = (ex, x + y), evaluated on the
box B = (x,y) = ([0, 1], ∅). The standard interpretation of the FTIA is that the result of interval
evaluation,

f(x,y) = (e[0,1], [0, 1] + ∅) = ([1, e], ∅),
encloses, componentwise, the ranges of the point functions f1 and f2 over the box B, regarding the
latter as a subset of R2, namely the cartesian product x × y. In this example, B is empty, hence so
are both ranges, and in this form the FTIA gives the useless conclusion that [1, e] ⊇ ∅ and ∅ ⊇ ∅.
Introducing decorations makes things worse: the first enclosure becomes [1, e]saf ⊇ ∅emp, which is
actually false because saf does not enclose emp.

The problem is due to treating both components of f as functions of both x and y, when in fact f1
depends only on x.]

Using sparse vector notation removes this problem. Let the variables used be named z1, . . . , zn
and (see 4.4.2) represent the set vars f of variables that occur in an expression f by the corresponding
integer indices, a subset I of {1, ..., n}. If X is some set, a sparse X-vector (indexed by I) is a
member x of XI , the space of X-valued mappings on I. E.g., a sparse real vector x indexed by
I = {2, 5, 7} has three real-valued elements denoted x2, x5 and x7; other elements are “absent”,
or regarded as filled with NaNs.

A point, interval or decorated interval function of an expression f will take arguments that are
sparse X-vectors indexed over vars f, where X is R, IR or DIR, respectively, and the definitions of
expression evaluation in 4.5.2 are revised as follows.

The point function of f is a function f from Rvars f to R. Let x ∈ Rvars f. If f is a variable
zi (so vars f = {i}), then f(x) is the number xi. Recursively, if f = φ(g1, . . . , gk) (so vars f is the
union of vars g1, . . . , vars gk) then f(x) is the value of the point version of φ at (u1, . . . , uk) where
ui is the value of the point function of gi at x[vars(gi)]. The latter notation means the sub-vector
of x comprising those xi for which i ∈ vars(gi)—formally, the restriction of map x to vars(gi).

An interval function of f is any function f from IRvars f
to IR that obeys the following.

Let x ∈ IRvars f
. If f is a variable zi, then f(x) is any interval enclosing xi. Recursively, if

f = φ(g1, . . . , gk) then f(x) is the value of some interval version of φ at (u1, . . . ,uk) where ui is
the value of some interval function of gi at x[vars(gi)].

A decorated interval function of f is any function f from DIRvars f
to DIR that obeys the

following. Let xb ∈ DIRvars f
. If f is a variable zi, then f(xb) equals (xb)i (the strict extension), or

in general any interval enclosing (xb)i in the decorated interval sense.

4! This is not quite true on my present definition of decorated interval extension—specifically of
dec(f,xb). It forces xsaf to become xdef if x is unbounded, which is unsatisfactory!
Recursively, if f = φ(g1, . . . , gk) then f(xb) is the value of some decorated interval version of φ at
uc = ((uc)1, . . . , (uc)k) where (uc)i = (ui, ci) is the value of some decorated interval function of
gi at xb[vars(gi)].

[Note. Issues of subscripting aside, the base case of these definitions—where f is a single variable—
has the identity id(u) = u, for real u, as its point function, so the requirement on the base case for
the interval versions is that the [decorated] interval function of the identity be a [decorated] interval
extension of the point id() function. This can be achieved by regarding id() as a member of the
arithmetic operation library.]

38 January 14, 2011

DR
AF
T
03
.1

Draft 03.1
IEEE Std P1788

IEEE Standard For Interval Arithmetic §C.1

C.1.2. Proof.

4! Note on the Lemmas. I haven’t tried to put Lemma C.2 into “sparse vector” notation because I’m
not convinced that is the best way to go. So at present there is a disconnect between Lemma C.2 and
Lemma C.3. But I think Lemma C.3 is consistent with the main proof that follows.

Lemma C.2. Let g : Rn → Rk and φ : Rk → R be multivariate real functions and define the
function f : Rn → R by f = φ ◦ g, that is

f(x) = φ(g(x)), (15)

where x = (x1, . . . , xn) and g(x) = (g1(x), . . . , gk(x)). The functions may be partial, so each gi is
defined on its domain dom gi ⊆ Rn, and φ on its domain domφ ⊆ Rk.

Let x = (x1, . . . ,xn) ∈ IRn
be a box. Let u = (u1, . . . ,uk) ∈ IRk

be a box whose components
satisfy

ui ⊇ range(gi,x) for i = 1, . . . , k. (16)

Then

(a) If all g1, . . . , gk are everywhere defined on x, and φ is everywhere defined on u, then f is
everywhere defined on x.

(b) If all g1, . . . , gk are everywhere defined and continuous on x, and φ is everywhere defined and
continuous on u, then f is everywhere defined and continuous on x.

(c) If all g1, . . . , gk are bounded on x, and φ maps bounded sets in Rk to bounded sets in R, then
f is bounded on x.

(d) If any of g1, . . . , gk is nowhere defined on x, or φ is nowhere defined on u, then f is nowhere
defined on x.

(e) If any of g1, . . . , gk has empty domain, or φ has empty domain, then f has empty domain.

[Note. The phrase “function g is everywhere continuous on set s” means “the restriction of g to s is
continuous at each point of s”, not “g is continuous at each point of s”. For example, g(x) = floor(x)
is everywhere continuous on s = [0, 12], but as a function on the whole of R is not continuous at 0 ∈ s.]

Proof. Equation (15) means, by the definition of composing partial functions, that f(x) is defined
and equals φ(u) where u = (u1, . . . , uk) and

ui = gi(x), for i = 1, . . . , k

for those x such that x is in dom gi for each i and the resulting u is in domφ.
Suppose the conditions of part (a) hold. Then for any x ∈ x, ui ∈ gi by (16) and the definition

of range. Hence u ∈ u, so φ(u) is defined, so f(x1, . . . , xn) is defined, proving (a).
Suppose, in addition, the continuity assumptions of (b) hold. Let (x(r))r=1,2,... be a sequence of

points entirely within x and converging to some x ∈ x. By (b) and the definition of “continuity on

x”, each sequence u
(r)
i = gi(x

(r)), which lies entirely in gi by (16), converges to ui = gi(x). Then

the vector sequence u(r) = (u
(r)
1 , . . . , u

(r)
k) lies within u and converges to u = (u1, . . . , uk). Again

by (b), φ(u(r)) converges to φ(u). But φ(u(r)) = f(x(r)), and φ(u) = f(x), by the definition of f .
Hence f(x(r)) converges to f(x), proving f is continuous on x as well as defined there. This proves
(b).

The other parts of the Lemma are proved similarly. �

Lemma C.3. With f = φ ◦ g as in Lemma C.2, let cj = dec(gj ,x[vars gj]) for j = 1, . . . , k, and
let c0 = dec(φ,u). Then

min{c0, c1, . . . , ck} ⊇ dec(f,x) (17)

where the min is with respect to the quality ordering of decorations, and the ⊇ with respect to their
containment ordering.

Proof. Write d = dec(f,x).
If c0, c1, . . . , ck all equal saf then the hypotheses of Lemma C.2(b, c) are satisfied, whence f

is everywhere defined and continuous on the nonempty x, and bounded on it. That is, property
psaf holds on (f,x). Properties pemp and pill must be false, while pill and pdef are weaker than
psaf. By definition d is the strongest value, in the containment order, for which pd(f,x) holds, so
d = saf and (17) is satisfied.

39 January 14, 2011

DR
AF
T
03
.1

Draft 03.1
IEEE Std P1788

IEEE Standard For Interval Arithmetic §C.1

If min{c0, c1, . . . , ck} is def then each cj is either def or saf. In either case the hypotheses of
Lemma C.2(c) are satisfied, whence f is everywhere defined on the nonempty x. That is, property
pdef(f,x) holds. Arguing as in the previous paragraph we see d equals either def or saf (we cannot
know which). In either case d ⊆ def and again (17) is satisfied.

If min{c0, c1, . . . , ck} is con then d could have any of the five values; in all cases (17) is satisfied.
If min{c0, c1, . . . , ck} is emp then by definition either pemp(gj ,x[vars gj]) holds for at least one

i, or pemp(φ,u) holds. In either case the hypotheses of Lemma C.2(d) are satisfied, whence f is
nowhere defined on x. That is, pemp holds on (f,x). In fact pill might hold. Neither of psaf or pdef
can hold since they require f to be somewhere defined on x. Arguing as before, we see d equals
either emp or ill (we cannot know which). In either case d ⊆ emp and again (17) is satisfied.

If min{c0, c1, . . . , ck} is ill then by definition either pill(gj ,x[vars gj]) holds for at least one
i, or pill(φ,u) holds. In either case the hypotheses of Lemma C.2(e) are satisfied, whence f has
empty domain. That is, pill holds on (f,x). Arguing as before, we see d equals ill, and again
(17) is satisfied. �

Lemma C.4. Let c0, . . . , ck and c′0, . . . , c
′
k be decorations such that ci ⊇ c′i for i = 0, . . . , k. Then

min{c0, . . . , ck} ⊇ min{c′0, . . . , c′k}.

That is, making the terms stronger (in the “weak sense”!) makes the minimum stronger.
Note that ⊇ is the containment order, and the min is with respect to the quality order.

Proof. Since ⊇ is transitive, we can prove the result inductively by changing ci to c′i one term at
a time. That is, it suffices to consider the case where ci 6= c′i holds for just one i; hence, without
loss, to prove that if b ⊇ b′, then

min{b, c1, . . . , ck} ⊇ min{b′, c1, . . . , ck}. (18)

Denote the left and right sides of (18) by d and d′. Clearly, in the quality order, which is total,
d ≤ d′ or d ≥ d′ according as b ≤ b′ or b ≥ b′.

If b′ = con then by the definition of the containment order, b ⊇ b′ implies b = con also, and the
result is trivial. Otherwise if, in the quality order, b′ is worse than con, the relation b ⊇ b′ implies
b satisfies b′ ≤ b ≤ con, so also d′ ≤ d ≤ con by the previous paragraph, which by the definition of
the containment order gives d ⊇ d′.

Similarly if b′ is better than con, the relation b ⊇ b′ implies b satisfies b′ ≥ b ≥ con, so also
d′ ≥ d ≥ con, which again gives d ⊇ d′.

This proves (18) and hence the Lemma, as argued above. �

Proof of FTDIA. Let f be an arithmetic expression. Let it have n independent variables, which
without loss we label z1, . . . , zn. Let f denote the point function of f, or its decorated interval
function, as appropriate. Let the actual argument xb = ((x1, b1), . . . , (xn, bn)) be any decorated

box in DIRn
. Any of the xi may be empty.

It is required to prove that the result of decorated interval evaluation, fd = f(xb), encloses the
decorated range drange(f,xb) of the point function.

Base case. Expression f is one of the variables zi. The theorem holds in this case, since it is
assumed that the decorated interval version of the identity map id(x) = x (x ∈ R) is a decorated
interval extension of id(), see note at end of C.1.1.

Induction step. Expression f has the form

f = φ(g1, . . . , gk).

where the g1, . . . , gk are expressions and φ is an arithmetic operation.
Let decorated box gc = (g1, c1), . . . , (gk, ck) be the result of evaluating the decorated interval

function of each gj on the relevant subvector of the input decorated box:

(gj , cj) = gj(xb[vars gj]), j = 1, . . . , k. (19)

40 January 14, 2011

DR
AF
T
03
.1

Draft 03.1
IEEE Std P1788

IEEE Standard For Interval Arithmetic §C.1

By the inductive hypothesis, this is a decorated interval extension of the point function of gj , so
for j = 1, . . . , k

gj ⊇ range(gj ,x[vars gj]), (20)

cj ⊇ dec(gj ,xb[vars gj]) (21)

= min{b0j , b[vars gj]}, (22)

where b0j = dec(gj ,x[vars gj]) and b[vars gj] denotes the list of bi for i ∈ vars gj .
By the hypothesis of the theorem, we compute

fd = φ(gc) (23)

with a decorated interval extension of the point version of φ, so that

f ⊇ range(φ, g), (24)

d ⊇ dec(φ, gc),

= min{c0, c1, . . . , ck} (25)

where

c0 = dec(φ, g). (26)

It is required to prove

f ⊇ range(f,x), (27)

d ⊇ dec(f,xb). (28)

For (27), take any y ∈ range(f,x). By the definition of composing partial functions, there exists
x ∈ x[vars f] such that γj = gj(x[vars gj]) is defined for j = 1, . . . , k (here we used vars gj ⊆ vars f),
and φ(γ1, . . . , γk) is defined and equals y. By (20), γj ∈ gj for j = 1, . . . , k, hence

y ∈ range(φ, g) by the definition of range

⊆ f by (24).

Since y was arbitrary this proves (27).
For (28), write

c′0 = dec(φ, g), (29)

c′j = dec(gj ,xb[vars gj]) for j = 1, . . . , k. (30)

Then by (21) we have cj ⊇ c′j for j = 1, . . . , k and by (26) this holds for j = 0 also, hence by
Lemma C.4

min{c0, c1, . . . , ck} ⊇ min{c′0, c′1, . . . , c′k}. (31)

Also, by Lemma C.3,

min{c′0, c′1, . . . , c′k} ⊇ dec(f,xb) (32)

Since ⊇ is transitive, combining (25, 31, 32) proves (28).
This completes the induction step and the proof. �

C.1.3. Discussion. 4! The main problem that I see is that my concept “decoration of a function over
a decorated box”, dec(f,xb), is faulty. It seemed attractive to derive it from “decoration of a function
over the bare box x” combined with the decoration vector b. But boundedness can’t be handled by
separating interval from decoration in this way.
[Example. In some finite precision inf-sup type, let xb = [0, realmax]saf and apply sqr(x) = x2.
We have yc = sqr(xb) = [0,+∞]saf (OK) but then zd = sqr(yc) = [0,+∞]def so the boundedness
information has been lost.]

We need a redefinition so that this loss doesn’t occur. I have been trying an “intrinsic” definition of
dec(f,xb) based on what seems to me a natural idea, of a history of f : Rn → R over xb ∈ DIRn

.

This means a map ξ : dom ξ ⊆ Rm → Rn and a nonempty box s ∈ IRm
such that

range(ξ, s) ⊆ x

pbi(ξi, s) is true for i = 1, . . . , n.

Informally, a history is a possible way by which xb might have arisen from previous computation.

41 January 14, 2011

DR
AF
T
03
.1

Draft 03.1
IEEE Std P1788

IEEE Standard For Interval Arithmetic §C.3

Then I want dec(f,xb) to be the strongest decoration d such that pd(f ◦ξ, s) is true for all histories
of f over xb.

This seems to nearly work, and for most cases to give the min{c0, c1, . . . , cn} formula. But as far
as I can see there are cases where “strongest decoration” is not well defined. Can anyone help analyse
this idea?

C.2. The “Not an Interval” object. From 4.4.6, the zero-argument function with empty do-
main is the real constant function with value NaN, “Not a Number”. It is easily seen that NaN’s
strict interval extension is the interval constant function with value ∅, and its strict decorated
interval extension is the decorated interval constant function with value NaI = (∅, ill). (This was
pointed out by Arnold Neumaier.)

The decorated interval NaI has behaviour that qualifies it for the role of “Not an Interval”. By
definition it signals that it is the result of evaluating a null function, with empty domain.

It is returned by any invalid call to an interval constructor, such as “the interval from 3 to NaN”.
It is unconditionally “sticky” within arithmetic expressions, in the sense that if any argument to
an arithmetic operation is NaI, then that operation’s output is NaI.

However, it cannot be generated “new” during evaluation of any expression that uses normal
operations, even if the theoretical function being defined has empty domain. For example, the
expression

f(x) =
√
−1− x2

clearly defines, over the reals, a function with empty domain; but decorated interval evaluation
can never notice this. With any non-NaI input, it will return (∅, emp) and not (∅, ill).

Hence, in practice, NaI behaves as one expects it to do: it records the “taint of illegitimacy” of
an interval’s ancestry. A decorated interval is NaI iff it is the result of an ill-formed construction
or is the computational descendant of such a result.

C.3. Some implementation considerations. (Informative.) 4! Still to be revised in the light
of work by Hayes and Neumaier.

Treating BIs, BDs and DIs as all one abstract type is fairly straightforward at level 1 (and at
level 2 for a given interval type). By promotion, the BIs can be identified with a subset of the DIs.
This is analogous to how a real number x may be identified with the point interval [x, x] or the
complex number x+0i. It is also consistent, in the sense that promoting, doing a DI operation, and
taking the interval part of the result is always equivalent to doing the corresponding BI operation.

However this identification is not particularly useful. One reason is that for BDs, no consistent
way exists to identify them with a subset of the DIs, so they must be regarded as a separate set.
More important reasons are to do with storage and efficiency.

For illustration consider the interval type that is likely to be most commonly used: a 754-
conforming binary64 inf-sup representation. A bare interval thus takes up 16 bytes. Sophisticated
encodings aside, a general decorated interval must use extra space for the decoration: say a byte.
Thus we have 16-byte BIs and 17-byte DIs.

Because access across the memory hierarchy is typically in chunks of 4, 8 or 16 bytes, 17-byte
objects are likely to be read and written about half as fast as 16-byte ones, and might also be stored
with nearly 50% waste space. Clever compiler methods may avoid this by storing the decoration
byte separately, but this is not to be relied on. Hence the Level 1 datatype should be implemented
to avoid 17-byte arithmetic where possible.

Some algorithms need to carry both an interval value and a decoration even after the latter
becomes “not safe”. They need 17-byte arithmetic. However, for various important algorithms,
the interval value is of no interest after an exception occurs. The set {BI }∪{BD } is closed under
arithmetic operations, so such algorithms are happy with an arithmetic that stores either a BI or
a BD, but never both together, and does so in a 16 byte interval format.

This can be done by encoding the BDs in unused bit-patterns, of which there are many. For
implementations that represent the empty set as (NaN,NaN), one possibility is to store the deco-
ration value in the payload of an empty set. Arithmetic on the resulting interval format proceeds
by doing the standard bare interval operation. If all arguments are BIs and the local status s of
the operation is saf, the interval result is returned; otherwise a decoration computed from s and
any BD arguments is returned.

42 January 14, 2011

DR
AF
T
03
.1

Draft 03.1
IEEE Std P1788

IEEE Standard For Interval Arithmetic §C.4

Logic is needed to extract any argument payloads on entry, and to combine s with any other
decorations and choose which result to return, on exit. This apart, no extra tests or other change to
the numeric operation’s code are needed because payloads are invisible to floating point arithmetic
operations. There is some parallelism between the numeric and decoration processing, which could
make this {BI } ∪ {BD } arithmetic nearly as fast as bare interval arithmetic.

If the memory access and storage problems of 17-byte objects were overcome, full {BI }∪{DI }∪
{BD } arithmetic could also be nearly as fast as bare interval arithmetic.

In summary, implementations shall provide BI arithmetic and {BI }∪{DI }∪{BD } arithmetic,
which the standard requires. On efficiency grounds, for inf-sup interval types, they should provide
the more limited {BI } ∪ {BD } arithmetic.
C.4. Examples of use of decorations.

TBW

43 January 14, 2011

	4. Level 1 description
	4.1. Numbers
	4.2. Intervals
	4.3. Hull
	4.4. Expressions and functions
	4.5. Functions defined by expressions
	4.8. The decoration system
	4.9. Unified interval-decoration opoerations

	Appendix C. Decoration system: details and examples
	C.1. The Fundamental Theorem of Decorated Interval Arithmetic
	C.2. The ``Not an Interval'' object
	C.3. Some implementation considerations
	C.4. Examples of use of decorations

