
DECORATION PROPERTIES, STRUCTURAL INDUCTION, AND

STICKINESS

VERSION 3

JOHN PRYCE

1. Introduction

This position paper is intended to complement Nate Hayes’ recent paper Trits to Tetrits [4].
It is not quite a motion, but I make suggestions for discussion: see the Conclusions.

Decorations are optional attachments to intervals, chosen by P1788 as its exception-handling
method. Loosely we think of exceptions as flagging “something unusual happened”; but looking
more closely, we see their chief use in interval algorithms is to show a specific section of a run
time execution trace, namely a single function evaluation, has specific properties—or not.

I use the term prit (property digit) to mean a field in a decoration that represents a property,
and may be a bit, trit, tetrit, etc. A sticky prit is one that describes not just the current interval
but some computation history. Definition 2 in [4] gives a rule for propagating tetrit values
through interval operations, that is one definition of stickiness. All the prits that have been
discussed—excluding the old “bounded” but including (I think) Dan Zuras’ recent redefined
“bounded”, which is not discussed here—are sticky. I argue here that

1. A sticky prit enables code to deduce, at run time, a property of a function evaluation that is
proved theoretically by structural induction over the function’s computation graph. (Fact)

2. Discussing stickiness is futile unless the structural induction aspect is explicit. (Opinion)
3. Most prits we’ve considered are pointwise, meaning they relate to a predicate P (f, x) where f

is a function and x = (x1, . . . , xn) is quantified over an n-dimensional set X = X1× . . .×Xn

of arguments to f . (Fact)
4. Nate’s tetrit stickiness definition is not the only one: others might be useful. (Opinion)
5. Pointwise sticky bits are of two natural kinds, which I arbitrarily call “blue-sticky” and “red-

sticky”. My “domain” tetrit, the concatenation of a blue-sticky and a red-sticky bit, is locally
equivalent to Nate’s, but not globally equivalent since they propagate differently. (Fact)

6. Each of “blue-sticky” and “red-sticky” has four logically equivalent, all fairly natural, ways to
express it mathematically in terms of quantifiers and the symbols ∧ (“and”) and ∨ (“or”).
Each way suggests a style of writing code (probably at level 3, namely interval-library code)
to implement stickiness. (Fact)

7. P1788 should mandate a particular style, to make code and specifications easier to understand.
I make recommendations. (Opinion)

8. My “domain” prit describes the outcome of a process; it is not a property of an individual
interval. In a popular analogy, it is about sequences of fence-panels, not fence-posts. (Fact)

This leads me to conclusions about the right way to initialise it, that currently conflict
with Nate’s views, in particular with regard to the empty set.

I used to be in favour of global or regional flags to record “domain” and “discontinuous”
properties. I give examples that have changed my view: they show a decoration-based imple-
mentation is robust in face of “dead code”, in a way that global flags inherently cannot be.

I see no need for the normative standard text to mention material in this paper such as
computation graphs, alternative options, etc.; but background theory on these lines should,
IMO, go in an appendix to the standard.

Date: June 28, 2010.

1

Version 3 Decorations, induction, stickiness §2.0

Notation and terminology.
– General sets are written X,Y, . . .; intervals in R or Rn are in bold italic x,y,
– The symbols ¬, ∧ , ∨ denote logical “not”, “and” and “or” respectively. I use 0 for “false”

and 1 for “true”.
– My usage of “everywhere” is the usual one in set theory and differs from Hayes’. Given a

predicate P (x), “P holds everywhere on X” means simply

(∀x ∈ X)P (x),

whereX may be empty (in which case the above is true for any P). Similarly “P holds somewhere
on X” means (∃x ∈ X)P (x), and “P holds nowhere on X” is the negation of this, equivalent to
“(¬P) holds everywhere on X”.

– By contrast Hayes’ meaning of “everywhere” is

(∀x ∈ X)P (x) ∧ (∃x ∈ X)P (x), equivalently (∀x ∈ X)P (x) ∧ (X 6= ∅).

2. Structural induction

Assume a point function y = f(x), where x = (x1, . . . , xn) and y = (y1, . . . , ym), defined by
code f with no loops or branches. f can be described by its computation graph G, a directed
acyclic graph (DAG) whose nodes are labeled i = 1 − n, . . . , p + m, each i being identified
with a variable vi. The n input nodes v1−n, . . . , v0 are aliases for the xj . Each non-input node
represents an operation vi = ei(predecessors of vi in G) for i = 1, . . . , (p + m), where ei is an
elementary function. The last m variables vp+1, . . . , vp+m are aliases for the outputs y1, . . . , ym.
The other variables v1, . . . , vp are intermediates.

This description of code, and the vi notation, is standard in Automatic Differentiation, see
[2]. It is equivalent to static single-assignment (SSA) form, see [1].

The vi are also identified with the functions that they are of the inputs, e.g. an input vj−n is
the function (x1, . . . , xn) 7→ xj while an output vp+i is the ith component fi(x1, . . . , xn) of the
final function f .

When f is evaluated over intervals (or general sets) it has actual arguments Vj−n = Xj ,
j = 1, . . . , n that are sets, and each node of G is annotated with the set Vi that resulted from
evaluating (the interval or set version of) ei.

As said above, sticky prits are a way to deduce, at run time, properties that are proved by
applying to G the principle of

Structural induction for DAGs. If for a property P :

– P is true at the input nodes of G;
– the truth of P at all predecessors of a node implies its truth at that node;

then P is true at all nodes of G, in particular at the outputs.

Though true, this is complicated by the fact that the input and output nodes of G may not
comprise just the nominated ones x1, . . . , xn and y1, . . . , ym. Figure 1 shows the silly but valid
code of a function f , written in SSA form, with its graph alongside.

This function is to be evaluated in interval mode, with each point operation replaced by its
decorated-interval version. It illustrates some issues that decoration processing must deal with:

(a) Node v2 is not a nominated input, but is an input node of the DAG nonetheless. Hence, its
decoration must be initialised—how?

(b) Node v3 is not a nominated output, but is an output node of the DAG nonetheless. A
zero-divide exception might happen on the way to v3—does this matter to f?

(c) Input x1 does not affect the outputs, nor is output y1 affected by the inputs. Intermediates
v1, v3, v4 do not affect the outputs.

A compiler, by static code analysis, could mark the lines that set v1, v3 and v4 as “dead code”
and delete them; but our exception handling cannot assume that.

My answer to the question in item (b) is No. For the prits that concern us here—“domain”,
“discontinuous” and possibly the Zuras “bounded”—what matters is the process of computing f
values. So the only exceptional events to record are those on some path from inputs to nominated

2

Version 3 Decorations, induction, stickiness §3.1

function [y1, y2] = f(x1, x2)

v1 = x1/x2 ;

v2 = 3 ;

v3 = cos(v1) ;

v4 = sin(v2) ;

y1 =
√
v2 ;

y2 = x22 ;

end

(pseudo-Matlab notation.)

�
��

�
�

H
HH

H
H

x1 x2

v1
÷

v2
3

v3
cos

v4

sin

y1
√ y2

sqr
Graph conventions.

The nominated input nodes, at
bottom level, show just the
names x1, x2 of the inputs.
Each other node shows the
elementary function performed
and the named result.
A literal, like 3, is regarded as
naming an elementary function
with no arguments, that returns
the indicated value.
The nominated outputs y1, y2
are put at the top level.

Figure 1. Silly but valid function

outputs, where “inputs” must include both nominated inputs and constants like 3 in the above
function. Note the asymmetry between input and output this introduces.

I regard the above as a design decision, and not a total no-brainer—an opposing view is
reasonable in some contexts.

Thus P1788 exception handling is based on the following amended induction principle. Define
a node to be live if it lies on a path to the nominated outputs (otherwise dead).

Structural induction, revised. If for a property P :

– P is true at the input nodes of G;
– the truth of P at all predecessors of a live node implies its truth at that node;

then P is true at the nominated outputs.

Recording exceptions this way is what an implementation based on propagating sticky prits
from inputs to outputs automatically does, and is what a global-flag implementation cannot do.

3. Blue and Red stickiness

This paper is mainly concerned with pointwise properties. Such a property is associated with
a predicate P (ϕ, ξ) where ϕ is some function and ξ represents its arguments ξi, as a tuple or a
comma-separated list whichever is convenient.

[Example. Let P be “ϕ is defined at ξ”, and ϕ be real division ÷(ξ1, ξ2) = ξ1/ξ2. Then “the
defined-ness of 2/0” can be written as P (÷, (2, 0)) or as P (÷, 2, 0), which evaluates to 0.]

[Example. “illformed” is a property of intervals, but not a pointwise one. The other properties
discussed here are pointwise, though “discontinuous” needs some qualifications—see later.]

3.1. Hayes’ example. Nate Hayes illustrates the needs of his branch-and-bound algorithm by
a, not everywhere defined, scalar function y = f(x) where x = (x1, . . . , xn). (In his example
n = 2, but this does not matter.) Given a box (product of intervals) x in Rn, one does

– if f is found to be everywhere defined on x, and to satisfy some other property such as being
≤ 0 on x, then accept x;

– if f is found to be nowhere defined on x then discard x;
– if the diameter of x is below a threshold then mark x indeterminate;
– else bisect x and do the same thing to the pieces.

That this is practical to implement, relies on two structural-induction facts applied to the
computation graph G of f when it is evaluated on an input box x = x1 × . . .× xn. Expressed
in ordinary language they are as follows, where an elementary operation e being “live” means
its node is live in the DAG sense defined above.

3

Version 3 Decorations, induction, stickiness §4.1

StrInd1. (every live operation e in G is everywhere defined on its input box) ⇒ f is every-
where defined on x;
or in an equivalent form that is more convenient later:
(every live operation e in G is nowhere undefined on its input box) ⇒ f is nowhere
undefined on x.

StrInd2. (some live operation e in G is nowhere defined on its input box) ⇒ f is nowhere
defined on x.

In absence of better names I call these “blue-sticky” and “red-sticky” induction, respectively.
[Note. In both cases, the reverse implication is false in general, but the idea behind the bisection

is that the smaller x is, the more often the reverse implications do hold. For vector-valued f it is
agreed that y = f(x) is undefined if any of its components is undefined.]

3.2. Formalisation. Let P (ϕ, ξ) be a predicate as above. We call its negation Q:

Q(ϕ, ξ) = ¬P (ϕ, ξ),

and do not (prima facie) favour one over the other. Hence we do not favour existential (∃) over
universal (∀) quantifiers—for instance (∃ξ)Q(ϕ, ξ) is logically the same as ¬(∀ξ)P (ϕ, ξ)—though
Hayes [4, 2.1] standardises on the former.

With the notation and definitions of Section 2, let P (ϕ, ξ) mean “ϕ is defined at ξ”, so Q(ϕ, ξ)
means “ϕ is undefined at ξ”. Let box x, the product of intervals x1, . . . ,xn, be an actual input
to the code f. For each node i = 1, . . . , p + m of G let x(i) be the resulting actual input to
operation ei. Thus x(i) is the product of ni intervals vk, where k runs over the ni predecessors
of i in G, with ni being the arity (number of arguments) of ei. Then “ei is everywhere defined
on its input box” may be written (

∀x ∈ x(i)
)
P (ei, x);

hence the left side, p∗, of the implication in StrInd1 above may be written

p∗ =
((
∀x ∈ x(1)

)
P (e1, x) ∧

(
∀x ∈ x(2)

)
P (e2, x) ∧ . . . ∧

(
∀x ∈ x(p+m)

)
P (ep+m, x)

)
. (1)

The truth of p∗ implies the conclusion

(∀x ∈ x)P (f, x), “f is everywhere defined on x”.

Similarly, by definition Q(ϕ, ξ) means “ϕ is undefined at ξ”, so “ei is nowhere defined on its
input box” may be written (

∀x ∈ x(i)
)
Q(ei, x);

hence the left side, q∗, of StrInd2 may be written

q∗ =
((
∀x ∈ x(1)

)
Q(e1, x) ∨

(
∀x ∈ x(2)

)
Q(e2, x) ∨ . . . ∨

(
∀x ∈ x(p+m)

)
Q(ep+m, x)

)
, (2)

The truth of q∗ implies the conclusion

(∀x ∈ x)Q(f, x), “f is nowhere defined on x”.

One could shorten the ∧ . . . ∧ in (1), and the ∨ . . . ∨ in (2), by quantifying over i =
1, . . . , p+m; but I do not do this, because it is of a different nature from the quantifications over
each x(i). Each of the latter is a real-analysis assertion about the behaviour of an elementary
function e on a certain set of inputs; it is implemented by correct coding of a library function—
the interval version e of e. The former is evaluated by doing structural induction at run time,
while evaluating the user function f on the actual inputs x1, . . . ,xn.

4

Version 3 Decorations, induction, stickiness §4.2

4. Rewritings of StrInd1 and StrInd2

4.1. A schematic form. To show the structure, write the right side of (1) schematically as

(∀)P ∧ (∀)P ∧ . . . ∧ (∀)P.
Using Q = ¬P and the rules for negation we can write this in several equivalent ways, which
schematically are:

Versions of blue-sticky induction

p∗ =
(

(∀)P ∧ (∀)P ∧ . . . ∧ (∀)P
)
, (3)

¬p∗ =
(
¬(∀)P ∨ ¬(∀)P ∨ . . . ∨ ¬(∀)P

)
, (4)

p∗ =
(
¬(∃)Q ∧ ¬(∃)Q ∧ . . . ∧ ¬(∃)Q

)
, (5)

¬p∗ =
(

(∃)Q ∨ (∃)Q ∨ . . . ∨ (∃)Q
)
. (6)

Doing the same for (2) gives:

Versions of red-sticky induction

q∗ =
(

(∀)Q ∨ (∀)Q ∨ . . . ∨ (∀)Q
)
, (7)

¬q∗ =
(
¬(∀)Q ∧ ¬(∀)Q ∧ . . . ∧ ¬(∀)Q

)
, (8)

q∗ =
(
¬(∃)P ∨ ¬(∃)P ∨ . . . ∨ ¬(∃)P

)
, (9)

¬q∗ =
(

(∃)P ∧ (∃)P ∧ . . . ∧ (∃)P
)
. (10)

There is no way to reduce one kind to the other, by replacing the underlying predicate with its
negation or by other manipulations.

Hayes prefers existential quantifiers, so he would choose one of (5, 6, 9, 10). For instance (6),
in ordinary language, gives the negation of p∗ as “some operation in G is somewhere undefined”,
which is clearly a valid restatement.

Each version suggests a style of coding the structural induction by sticky decoration bits: the
styles differ at the “bit-twiddling” level but are equivalent. The bits associated with the two
kinds of induction will be called “blue bits” and “red bits” respectively.

For example, to code (3), decorate intervals with a blue bit p that is initialised to 1 on all the

inputs. Each ei computes
(
∀x ∈ x(i)

)
P (ei, x) and sets the blue bit on its output to the “and”

of this with the blue bits of its inputs. At the end, the “and” of all the blue bits of the outputs
y1, . . . ,ym gives p∗.

To code (6), set the blue bit to 0 on the inputs. Each ei computes
(
∃x ∈ x(i)

)
Q(ei, x)—the

negation of what (3) does—and sets the blue bit on its output to the “or” of this with the blue
bits of its inputs. At the end, the “or” of all the blue bits of the outputs y1, . . . ,ym gives ¬p∗.

4.2. Discussion in relation to the standard.

a. The (∀)P ’s, (∃)P ’s, etc., and the way sticky bits propagate through operations, are coded by
people who write interval libraries, so their code is not visible at user program level.

b. The initialising of inputs, and final “and”ing or “or”ing, happens at user program level. A
language or an interval package could—IMO should—offer utility functions to support this.

c. For structural induction to work on a user function, library functions must all use one style.
d. In most computing, initialising a value to 0 is more natural than initialising it to 1. The

options that initialise thus are those with ∨ . . . ∨ . Of these the simplest are (6) and (7).
e. Therefore I propose P1788 require blue-sticky bits to be implemented in style (6), and red-

sticky bits in style (7). This implies sticky bits on inputs are always initialised to 0.
f. Hence the value returned to the user shall be ¬p∗ for blue-sticky bits, q∗ for red-sticky bits.

In case of an interval function with vector output, the result is spread over the output com-
ponents; the final result comes from “or”ing the relevant bits, whether they are blue or red.

5

Version 3 Decorations, induction, stickiness §5.2

5. Some examples

We follow our version of the “domain” tetrit through some function evaluations. We define it
as the pair of bits (ND,SuD), written as a 2-bit number such as 01. Here ND means “Nowhere
Defined” and SuD means “Somewhere unDefined” on some set X, i.e. ¬(∃x ∈ X)D(φ, x) and
(∃x ∈ X)¬D(φ, x) respectively where D(φ, x) means “function φ is defined at x”. This follows
the form recommended above, since the “normal” or “success” case yields (ND,SuD) = 00,
meaning f is “Somewhere Defined, Nowhere unDefined”, i.e. defined everywhere on its nonempty
input set, (= “everywhere” in the Hayes sense).

Notation. We write, e.g., x = [1, 2] D01 (D for “domain” to identify the prit) to denote a
decorated interval whose interval part is [1, 2] and that has (ND, SuD) = 01.

5.1. The silly function of Figure 1. We evaluate (the interval version of) f at x = ([1, 2], [0, 0]),
assuming exact arithmetic. The Sticky column shows the result prit computed as the “or” of
the current operation prit and those of the inputs, with the latter in slanted text.

Var Op Value Sticky Note

x1 = = [1, 2] D00 Standard initialisation.

x2 = = [0, 0] D00 ” ”

v1 = x1/x2 = ∅ D11 11∨00∨00 ÷ is nowhere defined, somewhere undefined on
[1, 2]× [0, 0].

v2 = 3 = [3, 3] D00 Standard initialisation.

v3 = cos(v1) = ∅ D11 10∨11 cos() is nowhere defined, nowhere undefined on
∅.

v4 = sin(v2) = [sin(3), sin(3)] D00 00∨00 sin() is somewhere defined, nowhere undefined
on v2.

y1 =
√
v2 = [

√
3,
√

3] D00 00∨00 Similar.

y2 = x2
2 = [0, 0] D00 00∨00 Similar.

On “or”ing the tetrits of the two outputs we obtain, at least conceptually, the decorated
vector

y = ([
√

3,
√

3], [0, 0]) D00,

showing “success”. Some points worth noting:

(a) As desired, the “bad decorations” on v1 and v3 do not show up in the output; this would
not be the case were global flags used.

(b) In our scheme the two bits ND, SuD are propagated independently of each other (not the
case for the Hayes bits (P+, P−)). Each independently gives a fact at the end—or not:
• ND = 1 is a result: f is nowhere defined on the input box. ND = 0 gives no result.
• SuD = 0 is a result: f is everywhere defined on the input box. SuD = 1 gives no result.

(c) More than one value of the domain tetrit is possible for the empty set. In this example, v1

and v3 are both empty, with decorations D11 and D10 respectively.
Indeed, evaluating f at x = (∅, [0, 0]) shows a third possibility, namely x1 = ∅ D00 after

standard initialisation. The output is as before, namely y = ([
√

3,
√

3], [0, 0]) D00. When we
recall our prit describes a process, not the result interval, this is unsurprising.

(d) What about the interval version of a constant, if it had been a value like 0.3, not exactly
representable in a binary format? I regard this as a language issue and skate past it.

5.2. Relation to Hayes’ domain tetrit. This section has been revised following discussions
with Hayes. I apologise for any remaining misconceptions of his scheme.

Of course, our pair ND, SuD is equivalent to Hayes’ P+, P− in [4] on the individual operation
level, at which ND = ¬P+ and SuD = P−. Before giving further examples we show, in the
table below, the relation between them. It also expresses Hayes’ 3-2-1-0 priority rank in terms
of the tetrit, essentially as in Hayes [3]. We use boolean algebra notation: ′ is logical not, and

6

Version 3 Decorations, induction, stickiness §5.3

+ is addition modulo 2, alias xor.

Status (ND,SuD) (P+, P−)

(ND′,

ND′+SuD) = Priority
Somewhere defined Nowhere undefined 00 10 11 = 3
Somewhere defined Somewhere undefined 01 11 10 = 2

Nowhere defined Somewhere undefined 11 01 01 = 1
Nowhere defined Nowhere undefined 10 00 00 = 0

However, the Hayes tetrit propagates differently from ours in an extended computation because
its “stickiness rule” is to take the least1 (normal integer sense) of the priority returned by the
current operation and those of the inputs, by contrast to the bitwise “or” of ours. Here are the
op-tables for propagation of both methods, expressed in terms of priority:

Hayes (P+, P−) Pryce (ND,SuD)
00 01 11 10

inf 3 2 1 0 “or” 3 2 1 0
3 3 2 1 0 00, 3 3 2 1 0
2 2 2 1 0 01, 2 2 2 1 1
1 1 1 1 0 11, 1 1 1 1 1
0 0 0 0 0 10, 0 0 1 1 0

So one might say the difference is technical, in how priority 0 interacts with priorities 1 and 2.
However, the more important difference is in meaning.

The (ND,SuD) tetrit merely records whether, in a specific segment of computation, certain
events occurred. It is clear from [4] (e.g. 2.2) that the Hayes tetrit has a similar aim. But also
[Hayes, private email 2010/06/25]: (a) he has deliberately left the description of initialisation
to a separate paper, so it is currently not clearly specified what segment of computation is
monitored; (b) priority 0 is used to denote “illformed” (formerly “invalid”). I personally view
“illformed” as an attribute of the interval-in-itself rather than of the history that produced it;
and the Hayes scheme yields results I find strange, as illustrated by the example

Compute f(x) where f(x) = exp(log(x)) and x = [−2,−1].

The following table shows the decorations produced by the two schemes, on evaluating this.

Var Op Pryce Hayes Note

x = = [−2,−1] D00=P3 [−2,−1] P3 Assuming Hayes initialises as we do.

v = log(x) = ∅ D11=P1 ∅ P1 log() is nowhere defined, somewhere undefined
on x.

y = exp(v) = ∅ D11=P1 ∅ P0 exp() is nowhere defined, nowhere undefined on
v.

The final result ∅ P1 in our scheme just says “at some stage, a function was nowhere defined,
somewhere undefined on its input”. On the Hayes scheme, the empty, priority-1, value of v has
converted to an empty, priority-0, value of y. That is, the final y is recorded as illformed. More
generally, applying any algebraic function (that is, interval extension of a point-function) to an
empty input has this result because the current operation necessarily gives (P+, P−) = (0, 0),
i.e. priority 0. The “inf” propagation rule thus gives priority 0 on the output.

Hayes has explained why he does not regard this result as contradictory, but I find it far from
intuitive. My feeling is that by combining history data with properties of the interval-in-itself,
the Hayes scheme is trying to pack more than two bits of information into two bits.

Until initialisation is specified for the Hayes scheme, I am also not sure how it handles the
“plug y back into g” aspect of the next example.

1Hayes shows this is equivalent to the & operation on the bool set type, but we do not need this here.

7

Version 3 Decorations, induction, stickiness §6.0

5.3. A more normal function. Let g(x) = 1 +
√
x, and evaluate y = g(x) where x = [−1, 4].

Converting g to standard form we have

Var Op Value Sticky Note

x1 = = [−1, 4] D00 Standard initialisation.

v1 =
√
x1 = [0, 2] D01 01∨00 √

is somewhere defined, somewhere undefined

on [−1, 4].

v2 = = [1, 1] D00 Standard initialisation.

y1 = v1 + v2 = [1, 3] D01 00∨01∨00

giving y = [1, 3] D01. We may be seeking a fix-point of g, which exists at x = (3+
√

5)/2 ≈ 2.618.
To this end we may wish to plug y back into g and find z = g(y). At this point the existing
decoration D01 on y is irrelevant—it must be re-initialised to D00 to continue. Then we do:

Var Op Value

x1 = = [1, 3] D00
v1 =

√
x1 = [1,

√
3] D00

v2 = = [1, 1] D00
y1 = v1 + v2 = [2, 1 +

√
3] D00

giving z = [2, 1+
√

3] D00 ≈ [2, 2.732]. The SuD bit in this case is identical to the “discontinuous”
bit SuC below, and indicates that g is everywhere defined and continuous on y. Since also z ⊆ y,
we deduce that there is a fix-point of g within z, as is indeed the case.

5.4. Implications of triviality. “Edge cases” are instructive. Consider the trivial function
h(x) = x, and evaluate y = h(x) where x is the empty set.

The standard code form does not allow the input x1, aka v0, to be the same variable as the
output y1, aka v1. Thus, apart from initialising x1, there must be one line of code: y1 = x1.
Execution looks like this:

Var Op Value Note

x1 = = ∅ D00 Standard initialisation.

y1 = x1 = ∅ D10 D10 because h is nowhere defined, nowhere undefined on ∅.
giving y = ∅ D10. We deduce simple assignment can change the decoration. This is natural, as
assignment consists of applying the identity function i(x) = x (same as h). This must be regarded
as an elementary function, and given an interval version following normal rules. In particular
i() is nowhere defined, nowhere undefined on ∅, and should set the decoration accordingly.

6. Continuity

Interval algorithms that use fixed point theorems require to verify continuity, in the form
“The restriction of f to box x is everywhere defined and continuous”.

The “restriction” phrase is essential: consider the function f(x) = floor(x)+ 1
2 . Its restriction

to x = [1, 1.9] is everywhere defined and continuous, being the constant 1.5. Evaluating y = f(x)
we find y ⊆ x so we can deduce by Brouwer’s Theorem that f has a fixed point in x, which
indeed it does. However the “unrestricted” f is not continuous at 1 ∈ x, since as x → 1 from
below, f(x) = 1

2 6→ f(1) = 3
2 . Thus if we drop the “restriction” phrase we cannot deduce that

the fixed point theorem applies in this example.
For these applications we just need one decoration bit. It is a little more complicated than

“defined” because of the need to mention the input box x. The underlying predicate is

C(f, a,x) = “The restriction of f to x is defined and continuous at a”.

This can be formalised in more than one way; Dan Zuras, with good reason, disliked one way
I suggested. However all the ways I have tried are exactly equivalent as far as intervals are
concerned (they differ on more complicated sets). The following is one way.

f(a) is defined, and for all ε > 0 there exists δ > 0 such that whenever x is in x
and f(x) is defined and |x− a| ≤ δ, then |f(x)− f(a)| ≤ ε.

8

Version 3 Decorations, induction, stickiness §8.0

With the notation used above, it is easy to prove that if (∀a ∈ x(i))C(ei, a,x
(i)) holds at each

live non-input node of the computation graph, then we conclude that (∀a ∈ x)C(f, a,x): the
restriction of f to x is everywhere continuous.

Thus, applications that require to prove continuity can do it with one (blue-sticky) bit that I
call “discontinuous” and denote by SuC, “Somewhere unContinuous”, initialised to 0 as usual.

Many standard functions are either defined and continuous everywhere, or continuous precisely
where they are defined; in either case they always set SuC to the same value as SuD. The
few exceptions are less often used and logically simple: sign, ceil, floor, nint, trunc

which are everywhere defined but have jump discontinuities. Thus, I believe that SuC can be
implemented on top of SuD with almost no extra code and insignificant run time overhead.

7. Well-formedness

Not all important prits describe process. The “wellformed/illformed” (formerly “valid/in-
valid”) prit does not, even though it can only be defined by induction.

Namely, now we have the decoration mechanism, I see no sense in letting an invalid constructor
call such as “the interval from NaN to 2” return any normal interval. It should return an object
that is clearly marked as “nonsense”. Recursively, the result of any interval operation with a
nonsense input should also be so marked.

A parallel or vector computation may construct large arrays of such intervals (from, say, pairs
of reals) with some nonsense ones scattered among them. In that situation, marking them as
nonsense provides a totally foolproof way to recognise them, which one cannot achieve from a
scheme based on setting the object to Empty or Entire or whatever.

Such an “illformed” mark is essentially equivalent to Not an Interval, NaI, but can be im-
plemented very cheaply using decorations, far more so than can an NaI value encoded in the
interval part of an object—as pointed out in the Hayes–Neumaier motion 8 paper.

The Hayes scheme aims to encode illformed-ness as one of the values of the domain tetrit.
It is easy to see that this cannot be done in my scheme; it should be a separate “illformed”
bit—sticky, but not pointwise and therefore neither “blue” nor “red”—within a decoration.

Much of the behaviour of illformed objects is for us to choose, rather than dictated by the
mathematics. For example, how do they behave in comparisons? What is returned when they
are arguments to point-valued functions such as midpoint? My view: an illformed interval
should be like a “black hole” with no usable properties; but these issues need a separate motion.

8. Conclusion

My specific conclusions and suggestions are:

A. The P1788 group should not, at this stage, require all decoration prits to be of the same
kind: bits, trits, tetrits, etc. should all be considered on their merits.

B. Sticky bits should be implemented in such a way that they are initialised to zero.
C. The “domain” prit, giving sufficient conditions for a function to be everywhere, or nowhere,

defined, can be implemented as two such bits ND, SuD.
D. The “discontinuous” prit, giving sufficient conditions for a function to be everywhere defined

and continuous, can be implemented as another such bit SuC, which most library functions
always set the same as SuD.

E. There should be an “illformed” sticky bit.

So I propose 4 bits of decoration, with possibly more to be added.
About naming. When teaching these concepts it is natural to discuss “wellformed-ness” and

“continuity”; but if one adopts the principle of initialising to 0 (false) and propagating by “or”,
the actual properties being recorded are the opposite of these. So pedagogically, “illformed” and
“discontinuous” seem better names. The name “domain” is neutral and seems appropriate.

9

Version 3 Decorations, induction, stickiness §8.0

References

[1] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck, Efficiently computing static
single assignment form and the control dependence graph, ACM Transactions on Programming Languages
and Systems, 13 (1991), pp. 451–490.

[2] A. Griewank, Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, no. 19 in
Frontiers in Appl. Math., SIAM, Philadelphia, Penn. (2000).

[3] N. Hayes, Tetrits and ”stickiness”, email to P1788 (14 April 2010).
[4] N. Hayes, Trits to Tetrits, P1788 Position Paper (version of 28 May 2010).

10

	1. Introduction
	Notation and terminology

	2. Structural induction
	Graph conventions

	3. Blue and Red stickiness
	3.1. Hayes' example
	3.2. Formalisation

	4. Rewritings of StrInd1 and StrInd2
	4.1. A schematic form
	4.2. Discussion in relation to the standard

	5. Some examples
	5.1. The silly function of Figure 1.
	5.2. Relation to Hayes' domain tetrit
	5.3. A more normal function.
	5.4. Implications of triviality

	6. Continuity
	7. Well-formedness
	8. Conclusion
	References

