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4.8. The decoration system.

4.8.1. The purpose of decorated intervals. Decorations are properties of a function for which an
interval enclosure of its range over a box is being computed. There are two main objectives of
interval calculations:

– obtaining correct range enclosures for a real-valued function f of real variables;
– verifying the assumptions of existence, uniqueness, or nonexistence theorems.

While traditional interval analysis targets the first aim, decorations target the second aim.
The decoration system is designed in a way that naive users of interval arithmetic do not

notice anything about decorations, unless they inquire explicitly about their values. They are only
required to

– call the domain operation, see 4.8.3, for the input vector of any function evaluation used to
invoke an existence theorem,

– explicitly convert all floating-point constants (but not integer constants) to intervals,

and have the full rigor of interval calculations available. A smart compiler may even relieve users
from these tasks.

Expert users can inspect, set and modify decorations to improve the efficiency of their code, at
their own risk of having to check that the computations done in this way remain rigorously valid.

Decorations are based on the desire that, from an interval evaluation of a function f at an
interval x, one not only wants to get a range enclosure f(x) but also a guarantee that the pair
(f,x) has certain important properties, such as f(x) being well-formed, f(x) being defined for all
x ∈ x, f restricted to x being continuous or bounded, etc. This goal is achieved, in parts of a
program that require it, by adding to each interval extra information in the form of a decoration,
whose semantics is summarized as follows:

Each intermediate step of the original computation depends on some or all of the
inputs, so it can be viewed as an intermediate function of these inputs. The re-
sult interval obtained on each intermediate step is an enclosure for the range of
the corresponding intermediate function. The decoration attached to this inter-
mediate interval reflects the available knowledge about whether this intermediate
function is guaranteed to be everywhere defined, continuous, bounded, etc., on
the given inputs. For example, we may place the decoration “defined” only if a
rigorous argument ensures that the intermediate function is indeed defined in the
box determined by the input intervals.

The P1788 decoration model, in contrast with 754’s, has no global flags. A general aim, as
in 754’s use of NaN and flags, is not to interrupt the flow of computation: rather, to collate
information during evaluation for inspection afterwards.

In particular, this enables a fully local handling of exceptional conditions in interval calculations,
an important feature in a concurrent computing environment.

Note that a decoration primarily describes a property, not of the interval it is attached to, but
of the function defined by a section of code that produced that interval.

The system is outlined here at a mathematical level, with the finite-precision aspects in 5.3
and a fuller discussion of the theory in the informative Annex C. Subclause 4.8.2 gives the basic
definitions and 4.8.3 describes the mathematics that underpins the decoration model.

4.8.2. Definitions. The set D of decorations has seven elements, linearly ordered by quality:

Value Short description
bnd bounded
saf safe
def defined
con containing
emp empty
ill ill-formed
ein empty input
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The total ordering

ein < ill < emp < con < def < saf < bnd, (5)

is implied whenever taking the minimum or maximum of decorations. The smallest decoration ein

is the “worst” and the largest decoration bnd is the “best”.
Formally, each d ∈ D represents the set of pairs (f,x) consisting of a real-valued function f with

domain Dom f ⊆ Rn for some n and a box x ∈ IRn
for which the property pd(f,x) is valid. Here

pein(f,x) : x is empty.
pbnd(f,x) : x is a subset of Dom f , and the restriction of f to x is

continuous and bounded;
psaf(f,x) : x is a nonempty subset of Dom f , and the restriction of f

to x is continuous;
pdef(f,x) : x is a nonempty subset of Dom f ;
pcon(f,x) : always true;
pemp(f,x) : x is nonempty and disjoint from Dom f
pill(f,x) : x is nonempty and Dom f is empty.

(6)

In addition to the total ordering by quality, the decorations are also partially ordered by con-
tainment between the sets just defined:

ein ⊆ bnd ⊆ saf ⊆ def ⊆ con ⊇ emp ⊇ ill; (7)

note the reversal of the containment signs after con. d ⊆ d′, which is equivalent to d′ ⊇ d, says
that d is stronger than d′, i.e., that d′ is weaker than d. Thus con is the weakest decoration, where
nothing is claimed; ein and ill claim the most and are strongest.

A decorated interval is a pair, written interchangeably as (x, d) or xd, where x ∈ IR is a real
interval and d ∈ D is a decoration, such that the following invariance property holds:

d is in { bnd, saf, def, con } if x is nonempty, and in { emp, ill, ein } if x is empty. (8)

(The other combinations would not make sense.) The set of decorated intervals is denoted by DIR.
An interval or decoration may be referred to as a bare interval or decoration, to emphasize that
it is not a decorated interval.

xd may also be a decorated interval vector, where x and d are vectors of intervals xi and
decorations di respectively, defining decorated interval components (xi, di) of xd. The set of

decorated interval vectors of length n is denoted by DIRn
.

In program format, e.g. pseudocode, the interval part of a decorated interval named x is written
x.box, and its decoration part is written x.dec.

A containment order ⊇ is defined componentwise:

(x, d) ⊇ (x′, d′) iff x ⊇ x′ and d ⊇ d′, (9)

using set inclusion for the first component and the order (7) for the second component.
As used in the Fundamental Theorem below, x′ need not be a real interval but can be a general

subset of R. In this case (x′, d′) is termed a decorated set.

4.8.3. The Fundamental Theorem. The decoration system provides an extended version of Moore’s
Theorem 4.1 in terms of the concept of a decorated interval extension of a function, which is now
defined.

Let f be a function and x a (bare) box as in 4.8.2. The decoration of f over x, written
dec(f,x), is defined to be the strongest decoration d for which pd(f,x) is true. That is,

dec(f,x) =



ein if pein(f,x) holds;
bnd if pein(f,x) fails and pbnd(f,x) holds;
saf if pbnd(f,x) fails and pbnd(f,x) holds;
def if psaf(f,x) fails and pdef(f,x) holds;
ill if pill(f,x) holds;
emp if pill(f,x) fails and pemp(f,x) holds;
con otherwise.

(10)

This is well-defined because pd(f,x) cannot hold for both d = ein and d = ill.
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Note that though con loooks trivial on first sight, to have dec(f,x) = con is not trivial: it asserts
pemp and pdef are both false. In particular, dec(f,x) = con implies that x contains infinitely many
points.

The decoration dec(f,xc) of f over a decorated box xc is defined by the formula:

dec(f,xc) := min{c′, c′′} where c′ = min{c1, . . . , cn}, (11)

and c′′ = dec(f,x) whenever c′ < bnd, and the minimum is with respect to the quality order
(5). That is, in this case the decoration of a function over a decorated box equals the worst of its
decoration over the bare box and the decorations of all the box components. In the remaining case
c′ = bnd, we require instead c′′ = min dec(f,y) over all bounded y ⊆ x, to match the semantics of
the bnd decoration.

For a point function f from Rn to R and a decorated box xc ∈ DIRn
as above, the decorated

range of f over xc, written Drng(f,xc), is the pair

Drng(f,xc) = (Rng(f,x), dec(f,xc)). (12)

It is a decorated set, as defined earlier, consisting of the range of f over the bare box, and the
decoration of f over the decorated box. A decorated interval extension of f is a mapping f
from decorated boxes xd ∈ DIRn

to decorated intervals, such that

f(xd) ⊇ Drng(f,xd) (13)

in the componentwise containment order defined in (9), for any such decorated box xd, where its
interval part is regarded as a subset of Rn.

A decorated interval version of an expression f is a decorated interval extension whose
interval part is an interval extension of f whose value is ∅ein when the input box is empty, i.e.,
has an empty component. (The second specification is needed in order to cover correctly the case
when some input variable is not present in the expression.)

The generalized fundamental theorem is as follows.

Theorem 4.2 (Fundamental Theorem of Decorated Interval Arithmetic, FTDIA). Any decorated
interval version of an arithmetic expression f is a decorated interval extension of the point function
of f.

The rigor necessary to make interval arithmetic a reliable tool for verified computing warrants
a detailed proof, given in Annex C.

Just as the FTIA gives a computable enclosure of the usually non-computable range of a function
over a box, so the FTDIA gives along with an enclosure of the range an enclosure in the sense of
(7), providing information on properties of a function being everywhere defined, continuous, etc.,
over a box.

To obtain maximal information about f over a particular bare box, each of its components
should be initialized with the “best”—in the quality order—decoration consistent with its value.
This is done by the domain() function which converts a bare interval or box x to a decorated
interval (box) as follows:

domain(x) = xd where di =

 ein if x is empty (i.e., has some empty component),
saf if xi is unbounded and x is nonempty,
bnd if xi is bounded and x is nonempty.

(14)

Note that this function acts componentwise

domain(x) = (domain(x1), . . . ,domain(xn)) (15)

only if all components of x are nonempty, whereas

domain(x) = (∅emp, . . . , ∅emp) (16)

if any component of x is empty. Note also that this function erases any potential information
about the ill-formedness of a component xi.

4! This is AN’s proposed definition. JDP thinks one should set

domain(x) = (∅ill, . . . , ∅ill)

if any component of x is ill-formed.
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Thus normal application of the FTDIA, given an expression f(x1, . . . , xn) and a bare box x =
(x1, . . . ,xn), consists of the following steps:

1. Form xd = domain(x);
2. Form ye = f(xd) for some decorated interval extension;
3. Inspect the decoration e.

The conclusions one can draw are as follows, where f denotes the point function of the expression,
Y = Rng(f,x) is its true range over x, and D = dec(f,x) is its corresponding true decoration:

(i) d = ein iff D = ein iff the input box is empty.
(ii) Otherwise the input box is guaranteed to be nonempty, and we have one of the following

possibilities:
– If d = bnd then D must also be bnd, so f is guaranteed to be everywhere defined, continuous

and bounded on the nonempty box x.
– If d = saf then D must also saf or bnd, so f is guaranteed to be everywhere defined and

continuous on the nonempty box x. It might be bounded there as well, but this is not
known.

– If d = def, then D must be def or saf or bnd, so f is guaranteed to be everywhere defined
on the nonempty box x. It might be continuous and/or bounded there as well, but this is
not known.

– If d = ill, then D must be ill: Dom f is empty, that is, f is nowhere defined, although
the box x is nonempty. This occurs if and only if some intermediate constant operation was
ill-formed. This has a special significance of Not an Interval at the computational level:
see C.2. In particular, ill-formedness is sticky in expressions evaluated on a box generated
by the domain function.

– If d = emp, then D must be emp or ill: Dom f is guaranteed to be disjoint from the
nonempty box x. This includes the cases where x is empty, which has no special name,
and where Dom f is empty, which is the ill case.

– If d = con, then D might be any of the decorations 6= ein, and no further conclusion can
be drawn.

When f is vector-valued, then yd is a decorated interval vector, and the above applies component-
wise.

[Example. Consider the decorated interval evaluation of f(x, y) =
√
x(y − x)− 1 with various input

intervals x, y, using the natural decorated interval extension of each arithmetic operation. The natural
domain Dom f is easily seen to be the union of the regions x > 0, y ≥ x+1/x and x < 0, y ≤ x+1/x.

For manageable notation, we agree that an interval named x is given a decoration dx, and so on.

(i) Let x = [1, 2], y = [3, 4], defining a box (x,y) contained in Dom f . Applying the domain
function gives initial decorated intervals xdx = [1, 2]bnd, ydy = [3, 4]bnd. The first operation is

udu = ydy − xdx = [1, 3]bnd.

Namely, subtraction is defined and continuous on all of R2, and bounded on bounded rectangles
(call this property “nice” for short), so the bare result decoration is du′ = dec(−, (y,x)) = bnd,
whence by (11) the (best possible) decoration on u is du = min{du′, dy, dx} = min{bnd, bnd, bnd} =
bnd. Multiplication is also “nice”, so the second operation similarly gives

vdv = xdx × udu = [1, 6]bnd.

The constant 1, following 4.4.4, becomes a decorated interval function returning the constant
value [1, 1]bnd. The next operation is again “nice”, and gives

wdw = vdv − 1 = [0, 5]bnd

Finally
√
· is defined, continuous and bounded on w = [0, 5], so, arguing similarly, one has the

final result

fdf =
√
wdw = [0,

√
5]bnd.
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That was the mechanism. According to the FTDIA it provides a rigorous proof that for the box
zdz = (xdx,ydy) = ([1, 2]bnd, [3, 4]bnd),

udu = [1, 3]bnd encloses the decorated range of u(x, y) = y − x over zdz;
vdv = [1, 6]bnd encloses the decorated range of v(x, y) = x(y − x) over zdz;
wdw = [0, 5]bnd encloses the decorated range of w(x, y) = x(y − x)− 1 over zdz;
and finally

fdf = [0,
√

5]bnd encloses the decorated range of f(x, y) =
√
x(y − x)− 1 over zdz.

The final result says

[0,
√

5] ⊇ Rng(f, z),

bnd ⊇ dec(f, zdz) = min(dec(f, z), bnd, bnd) = dec(f, z),

whence, dec(f, z) = bnd. That is, f(x, y) is defined, continuous and bounded on the box
1 ≤ x ≤ 2, 3 ≤ y ≤ 4, and its range over this box is enclosed in [0,

√
5].

(ii) Let x = [1, 2] as before, but y = [ 52 , 4]. The box z is still contained in Dom f so the true value of
dec(f, z) is still bnd. However the evaluation fails to detect this because of interval widening due
to the dependence problem of interval arithmetic. Namely after udu = [ 52 , 3]bnd, vdv = [ 52 , 6]bnd,

wdw = [− 1
2 , 5]bnd, the final result has interval part f =

√
[− 1

2 , 5] = [0,
√

5] as before, but
√
·

is not everywhere defined on w, so that dw′ = dec(
√
·,w) = dec(

√
·, [− 1

2 , 5]) = con giving

dec(
√
·,wdw) = min{dw′, dv} = con, so finally fdf = [0,

√
5]con. This is a valid enclosure of

the decorated range [0,
√

5]bnd, but safety (though true) is not guaranteed by the computation
performed.

(iii) If x = [1, 2], y = [1, 1], the box z is now wholly outside Dom f , and evaluation detects this, giving
the exact result fdf = ∅emp. However, if x = [1, 2], y = [1, 32 ], the box is still wholly outside
Dom f , but owing to widening, evaluation fails to detect this, giving fdf = [0, 0]con. This is still
a valid enclosure of the decorated range ∅emp, but too wide to be of any use.

]

4.8.4. User-supplied functions. A user program may define a decorated interval version of a point
function, to be used within expressions as if it were a library function. This does not invalidate the
FTDIA, subject to the one requirement that the decorated interval version be a decorated interval
extension of the point function.

[Example. In some applications, an interval extension of the function defined by

ψ(x) = x+ 1/x

is required. The expression as it stands can give poor enclosures: e.g., with x = [ 12 , 2], one obtains

ψ(x) = [12 , 2] + 1/[ 12 , 2] = [12 , 2] + [ 12 , 2] = [1, 4],

which is much wider than Rng(ψ,x) = [2, 2 1
2 ].

Thus it is useful to code a tight enclosure by special methods, e.g. monotonicity arguments, and
provide this as a new library function. Suppose this has been done. To implement a decorated interval
extension for the above function just entails adding code to compute an enclosure of the decoration
d = dec(ψ,xc) over an input decorated interval xc, along the lines of the following:

// compute decoration c0 over bare interval x:
1. if x is empty then c0 = ein;
2. if x is the singleton [0, 0] then c0 = emp;
3. elseif 0 ∈ x then c0 = con;
4. elseif x is unbounded then c0 = saf;
5. else c0 = bnd;

// combine with input decoration by equation (11):
6. d = min{c0, c}.

]
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4.8.5. Case expressions and case function. Subclause 4.6.2 defined the function case(b, g, h) and
its behavior on bare intervals. Its decorated interval version case(bdb, gdg,hdh) is defined according
to the standard worst case semantics, and returns fdf where df = min{df ′, db, dg, dh} and

df ′ =



emp if b contains neither 0 nor 1
(in normal use this only occurs when b is empty)

bnd elseif b contains 0 and h is bounded
or b contains 1 and g is bounded

saf elseif b contains 0 and h is unbounded
or b contains 1 and g is unbounded

con otherwise.

Note that this correctly handles empty input: In this case, one of db, dg, dh is ein, resulting in
df = ein.

[Note. The above handling of cases renders superfluous the use of interval comparisons or overlap
relations (which are both incompatible with the decoration concept since there is no way to account
for exceptions) as a mechanism for handling cases.]

4.8.6. Bare object arithmetic with a threshold. Bare intervals and bare decorations are called bare
objects. For experienced users, and for more efficient execution (see ??4! forward ref, probably
to level 3), we define the arithmetic operations, and intersection and union, also on bare objects,
extending the standard interval arithmetic on bare intervals.

In many applications, the use of decorations is limited to the following particular situation.
The only use that is made of a function evaluation f(x) at a decorated interval x (initialized as a
domain) depends on a check whether the resulting decoration is ≥ T in the quality order where T
is an application-dependent exception threshold. The threshold T is one of {con, def, saf, bnd}.
It declares any decoration < T to be an exception.

– If so, the decoration is not used, but one exploits the range enclosure given by the interval part.
– Otherwise, the interval part is not used, but one exploits the information given by the decoration.

In this case, one can implement the decoration scheme without storing explicit decorations.
This is done dependent on the exception threshold; the programmer or a compiler can choose the
appropriate threshold based on the final use made of the interval evaluation. The storage of bare
object data, whether interval or decoration, can be done within two floating-point numbers. Thus
in the kind of applications mentioned above, bare objects usually give equivalent results to full
decorated intervals at less cost in storage and communication.

The promotion scheme ensures that the tightest enclosing decoration compatible with the input
is returned. Hence, in an extended calculation, the claim about the result of a function evaluation
using bare object arithmetic is never stronger than the result of the same evaluation using full
decorated interval arithmetic. Therefore, the FTDIA continues to hold.

The results for arithmetic operations (or one of the nonarithmetic operations intersect and union)
on bare objects are determined according to the following rules for promoting bare objects to
decorated intervals, which follow necessarily if the fundamental theorem is to cover computations
involving bare and/or decorated arguments.

Each nonempty bare interval is treated as decorated with decoration T , and each empty bare
interval as decorated with decoration emp. Operations on bare intervals are performed in this mode
as if they were decorated in the way described, resulting in a decorated interval zd converted back
into a bare object. Whenever a result with decoration d < T is obtained, the result is recorded as
the bare decoration d. Otherwise, the result is recorded as the bare interval z.

For arithmetic operations with at least one bare decoration input, the result is always a bare
decoration. A bare decoration d in {emp, ill} is promoted to ∅d, and a bare decoration d in
{saf, def, con} is promoted (conceptually, not algorithmically) to xd with any nonempty x. In the
latter case, after performing the operation leading to the result zd, the tightest decoration (in the
containment order (7)) enclosing all compatible z is returned. This analysis is done conceptually;
since there are only a few decorations, one can prepare complete operation tables for the decorations
according to these promotion rules, and only these tables need to be implemented. They are
simplified by the fact that a bare decoration input to an operation must necessarily be < T .

[*** I think this table belongs to an Annex. It spells out consequences of the requirements,
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Table 5. Bare object operations for +,−,×,÷ and
√
· with threshold T ∈ {con, def, saf}.

Here c, d are bare decorations < T , and x,y are bare intervals. Independently of T , if
any input is ill the result is ill, else if any input is emp or the empty interval the result
is emp. The tables below give the remaining cases where

con ≤ c < T , con ≤ d < T , and x, y are nonempty. (17)

Binary operations, where x or c is the left operand and y or d is the right operand.
+,−,× y d

x
Normal bare

interval result
d

c c min(c, d)

÷ y = [0, 0] 0 ∈ y 6= [0, 0] 0 /∈ y d

x emp
If T>con then con, else

normal bare interval result
Normal bare

interval result
con

c emp con c con

Square root, where x = [x, x].

case
√
x x < 0 emp

x < 0 ≤ x If T>con then con, else normal bare interval result

x ≥ 0 Normal bare interval result
√
c con

not requirements themselves, and is therefore redundant, though very useful for the implementor.
Moreover, the tables need extension to handle bnd and to cover all required elementary functions.
***] Table 5 gives the operation tables for the four basic operations.

[Examples. In items (b) onwards, conditions (17) are assumed.

(a) Justification for emp + x = emp, independent of T .
This promotes to (∅, emp) + (x, T ) =

(
∅,min(emp, T, emp)

)
. Since emp < T this equals (∅, emp)

which gives an exception (again because emp < T ) so is recorded as the bare decoration emp. The
same holds if + is replaced by −,× or ÷.

(b) Justification for x× d = d independent of T .
Since x is nonempty and d ≥ con, this promotes to (x, T ) × (y, d) with arbitrary nonempty y,
giving

(
x× y,min(T, d, e)

)
where e is saf if x× y is bounded, otherwise def. Now d < T so d

cannot exceed def, hence d ≤ e, so min(T, d, e) = d.
(c) Justification for c/d = con independent of T .

Since c, d ≥ con, c/d promotes to (x, c)/(y, d) with arbitrary nonempty x,y, giving
(
x/y,min(c, d, e)

)
where e = emp if y = [0, 0], else e = con if 0 ∈ y, else e = saf. So min(c, d, e) ≥ con and can
equal con, so the tightest enclosing decoration is con.

(d) Justification for x/y when 0 ∈ y 6= [0, 0].
x/y promotes to (x, T )/(y, T ) giving

(
x/y,min(T, T, con)

)
= (x/y, con). If T > con this gives

an exception so the decoration con is returned; if T = con it is not an exception, so the interval
x/y is returned.

(e) Justification for
√
x with x = [x, x] and x < 0 ≤ x.√

x promotes to
√

(x, T ), giving (
√
x, con) which in the given case equals ([0,

√
x], con). As with

the previous item, if T > con then con is returned; if T = con then
√
x is returned.

]
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