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Abstract. The paper begins with an axiomatic definition of rounded arithmetic. The concepts
of rounding and of rounded arithmetic operations are defined in an axiomatic manner fully
independent of special data formats and encodings. Basic properties of floating-point and interval
arithmetic can directly be derived from this abstract model. Interval operations are defined as
set operations for elements of the set IR of closed and connected sets of real numbers. As such
they form an algebraically closed subset of the powerset of the real numbers. This property
leads to explicit formulas for the arithmetic operations of floating-point intervals of IF which
are executable on the computer. Arithmetic for intervals of IF forms an exception free calculus,
i.e., arithmetic operations for intervals of IF always lead to intervals of IF again.

Later sections are concerned with programming support and hardware for interval arithmetic.
Both is a must and absolutely necessary to move interval arithmetic more into the center of
scientific computing. With some minor hardware additions interval operations can be made as
fast as simple floating-point operations. Section 6 shows that nearly everything that is needed
for high speed interval arithmetic is already available on current x86-processors for multimedia
applications (parallel operations like +,−, ·, /, min, max, and compare, as well as data paths
for pairs of numbers).

In vector and matrix spaces for real, complex, and interval data the dot product is a fundamental
arithmetic operation. Computing the dot product exactly of two vectors the components of
which are floating-point numbers substantially speeds up floating-point and interval arithmetic
as well as the accuracy of the computed result. Hardware needed for the exact dot product is
very modest. The exact dot product is essential for long real and long interval arithmetic.

Section 9 illustrates that interval arithmetic as develloped in this paper has already a long
tradition. Commercial products based on these ideas have been available since 1980. Modern
processor architecture comes considerably close to what is requested in this paper [36].

1 Introduction

A standard for floating-point arithmetic IEEE 754 was established in 1985. A revision was published
in 2008. A standard for interval arithmetic IEEE P1788 is just under development. While these two
standards consider data formats, encodings, implementation, exception handling, and so on, this study
focuses on the mathematics of the arithmetic for computers and on hardware support for the basic
arithmetic operations. As usual mathematics is suited to focus the understanding on the essentials.
High speed by hardware support is a must and vital for interval arithmetic to be more widely accepted
by the scientific computing community.

Interval mathematics has been developed to a high standard over the last few decades. It pro-
vides methods which deliver results with guarantees. However, the arithmetic on existing processors
makes these methods very slow. This paper deals with the question of how interval arithmetic can
be provided effectively on computers. With more suitable processors, rigorous methods based on in-
terval arithmetic could be comparable in speed to today’s approximate methods. Interval arithmetic
is a natural extension to floating-point arithmetic, not a replacement for it. As computers speed up,
from gigaflops to teraflops to petaflops, interval arithmetic becomes a principal and necessary tool for
controlling the precision of a computation as well as the accuracy of the computed result.

Central for the considerations in this paper are operations for intervals of IR. These are closed
and connected sets of real numbers. Arithmetic for intervals of IF leads to a calculus that is free of



exceptions, i.e., arithmetic operations for intervals of IF always lead to intervals of IF again. In IR

and IF division by an interval that includes zero is defined. With it the Newton method reaches its
ultimate elegance and power. The extended interval Newton method yields enclosures of all zeros of a
function in a given domain. It is globally convergent and never fails, not even in rounded arithmetic
[7, 23].

In vector and matrix spaces1 the dot product of two vectors is a fundamental arithmetic operation
besides of the four operations +,−, ·, / for the components. It is fascinating that this fundamental
arithmetic operation is also a mean to increase the speed of computing as well as the accuracy of the
computed result. Actually the simplest and fastest way for computing a dot product is to compute it
exactly. Here the products are just shifted and added into a wide fixed-point register. By pipelining,
the exact dot product can be computed in the time the processor needs to read the data, i.e., it
comes with utmost speed. Any method that just computes a correctly rounded dot product also has
to consider the values of the summands. This results in a more complicated method. The hardware
needed for the exact dot product is comparable to that for a fast multiplier by an adder tree, accepted
years ago and now standard technology in every modern processor. The exact dot product brings the
same speedup for accumulations at comparable costs.

The reader may be well advised to begin reading this paper with section 9.

2 Axiomatic Definition of Rounded Arithmetic

Frequently mathematics is seen as the science of structures. Analysis carries three kinds of structures:
an algebraic structure, an order structure, and a topological or metric structure. These are coupled
by certain compatibility properties, as for instance: a ≤ b ⇒ a + c ≤ b + c.

It is well known that floating-point numbers and floating-point arithmetic do not obey the rules
of the real numbers R. However, the rounding is a monotone function. So the changes to the order
structure are minimal. This is the reason why the order structure plays a key role for an axiomatic
definition of computer arithmetic.

This study is restricted to the two elementary models that are covered by the two IEEE arithmetic
standards, computer arithmetic on the reals and on real intervals. Abstract settings of computer arith-
metic for higher dimensional spaces like complex numbers, vectors and matrices for real, complex, and
interval data can be developed following similar schemes. For more details see [23] and the literature
listed there.

We begin by listing a few well-known concepts and properties of ordered sets.

Definition 1. A relation ≤ in a set M is called an order relation, and {M,≤} is called an ordered
set2 if for all a, b, c ∈ M the following properties hold:

(O1) a ≤ a, (reflexivity)
(O2) a ≤ b ∧ b ≤ c ⇒ a ≤ c, (transitivity)
(O3) a ≤ b ∧ b ≤ a ⇒ a = b, (antisymmetry)

An ordered set M is called linearly or totally ordered if in addition

(O4) a ≤ b ∨ b ≤ a for all a, b ∈ M . (linearly ordered)

An ordered set M is called

(O5) a lattice if for any two elements a, b ∈ M , the inf{a, b} and the sup{a, b} exist. (lattice)

(O6) It is called conditional completely ordered if for every bounded subset S ⊆ M , the inf S and the
supS exist.

(O7) An ordered set M is called completely ordered or a complete lattice if for every subset S ⊆ M ,
the inf S and the supS exist. (complete lattice)

1 for real, complex, interval, and complex interval data
2 Occasionally called a partially ordered set.
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With these concepts the real numbers {R,≤} are defined as a conditional complete linearly ordered
field.

In the definition of a complete lattice, the case S = M is included. Therefore, inf M and supM
exist. Since they are elements of M , every complete lattice has a least and a greatest element.

If a subset S ⊆ M of a complete lattice {M,≤} is also a complete lattice, {S,≤} is called a
complete sublattice of {M,≤} if the two lattice operations inf and sup in both sets lead to the same
result, i.e., if

for all A ⊆ S, infM A = infS A and supM A = supS A.

Definition 2. A subset S of a complete lattice {M,≤} is called a screen of M , if every element
a ∈ M has upper and lower bounds in S and the set of all upper and lower bounds of a ∈ M has
a least and a greatest element in S respectively. If a minus operator exists in M , a screen is called
symmetric, if for all a ∈ S also −a ∈ S.

As a consequence of this definition a complete lattice and a screen have the same least and greatest
element. It can be shown that a screen is a complete sublattice of {M,≤} with the same least and
greatest element, [23].

Definition 3. A mapping : M → S of a complete lattice {M,≤} onto a screen S is called a
rounding if (R1) and (R2) hold:

(R1) for all a ∈ S, a := a. (projection)

(R2) a ≤ b ⇒ a ≤ b. (monotone)

A rounding is called downwardly directed resp. upwardly directed if for all a ∈ M

(R3) a ≤ a resp. a ≤ a. (directed)

If a minus operator is defined in M, a rounding is called antisymmetric if

(R4) (−a) = − a, for all a ∈ M . (antisymmetric)

The monotone downwardly resp. upwardly directed roundings of a complete lattice onto a screen
are unique. For the proof see [23].

Definition 4. Let {M,≤} be a complete lattice and ◦ : M × M → M a binary arithmetic operation

in M . If S is a screen of M , then a rounding : M → S can be used to approximate the operation
◦ in S by

(RG) a ◦ b := (a ◦ b), for a, b ∈ S.

If a minus operator is defined in M and S is a symmetric screen of M , then a mapping : M → S
with the properties (R1,2,4) and (RG) is called a semimorphism3.

Semimorphisms with antisymmetric roundings are particularly suited transferring properties of
the structure in M to the subset S. It can be shown [23] that semimorphisms leave a number of
reasonable properties of ordered algebraic structures (ordered field, ordered vector space) invariant.

If an element x ∈ M is bounded by a ≤ x ≤ b with a, b ∈ S, then by (R1) and (R2) the rounded

image x is bounded by the same elements: a ≤ x ≤ b, i.e., x is either the least upper
(supremum) or the greatest lower (infimum) bound of x in S. Similarly, if for x, y ∈ S the result of
an operation x ◦ y is bounded by a ≤ x ◦ y ≤ b with a, b ∈ S, then by (R1), (R2), and (RG) also

a ≤ x ◦ y ≤ b, i.e., x ◦ y is either the least upper or the greatest lower bound of x ◦ y in S. If the
rounding is upwardly or downwardly directed the result is the least upper or the greatest lower bound
respectively.

3 The properties (R1,2,4) and (RG) of a semimorphism can be shown to be necessary conditions for a homo-
morphism between ordered algebraic structures. For more details see [23]
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3 Two Elementary Models

3.1 Floating-Point Arithmetic

The set {R,≤} with R := R∪{−∞,+∞} is a complete lattice. Let F denote the set of finite floating-
point numbers and F := F∪ {−∞,+∞}. Then F is a screen of {R,≤}. The least element of the set R

and of the subset F is −∞ and the greatest element is +∞.

Definition 5. With a rounding : R → F arithmetic operations ◦ in F are defined by

(RG) a ◦ b := (a ◦ b), for a, b ∈ F and ◦ ∈ {+,−, ∗, /},

with b 6= 0 in case of division.4

If a and b are adjacent floating-point numbers and x ∈ R with a ≤ x ≤ b, then because of (R1)

and (R2) also a ≤ x ≤ b, i.e., there is never an element of F between an element x ∈ R and its

rounded image x. The same property holds for the operations defined by (RG): If for x, y ∈ F,

a ≤ x ◦ y ≤ b then by (R1), (R2), and (RG) also a ≤ x ◦ y ≤ b, for all ◦ ∈ {+,−, ∗, /}, i.e., x ◦ y is
either the greatest lower or the least upper bound of x ◦ y in F.

Frequently used roundings : R → F are antisymmetric. Examples are the rounding to the
nearest floating-point number, the rounding toward zero, or the rounding away from zero. A semimor-
phism transfers a number of useful properties of the real numbers to the floating-point numbers. The
mathematical structure of F even can be defined as properties of R which are invariant with respect
to semimorphism, [23].

For the monotone downwardly resp. upwardly directed roundings of R onto F often the special
symbols ▽ resp. △ are used. These roundings are not antisymmetric. They are related by the
property:

▽ (−a) = − △ a and △ (−a) = − ▽ a. (1)

Arithmetic operations defined by (RG) and these roundings are denoted by ▽◦ and △◦ , respectively,
for ◦ ∈ {+,−, ∗, /}. These are heavily used in interval arithmetic.

3.2 Interval Arithmetic

The set of nonempty, closed and bounded real intervals is denoted by IR. An interval of IR is denoted
by an ordered pair [a1, a2], with a1, a2 ∈ R. The first element is the lower bound and the second is
the upper bound.

Interval arithmetic over the real numbers deals with closed5 and connected sets of real numbers.
Such intervals can be bounded or unbounded. For the notation of unbounded intervals −∞ and +∞
are used as bounds. Since −∞ and +∞ are not real numbers a bound −∞ or +∞ of an unbounded
interval is not an element of the interval. Thus unbounded real intervals are frequently written as
(−∞, a] or [b,+∞) or (−∞,+∞) with a, b ∈ R.

The set of bounded and unbounded real intervals is denoted by IR. With respect to the subset
relation as an order relation the set of real intervals {IR,⊆} is a complete lattice. The subset of IR

where all finite bounds are floating-point numbers of F is denoted by IF. {IF,⊆} is a screen of {IR,⊆}.
In both sets IR and IF the infimum of a subset of IF is the intersection and the supremum is the
interval hull6. The least element of both sets IR and IF is the empty set ∅ and the greatest element
is the set R = (−∞,+∞).

Definition 6. For intervals a, b ∈ IR arithmetic operations ◦ ∈ {+,−, ∗, /} are defined as set opera-
tions

a ◦ b := {a ◦ b | a ∈a ∧ b ∈ b}. (2)

Here for division we assume that b 6= [0, 0]. a/[0, 0] is defined to be the empty set ∅ for any a ∈ IR.

4 In real analysis division by zero is not defined. It does not lead to a real number.
5 A set of real numbers is called closed, if its complement in R is open.
6 Which is the convex hull in the one dimensional case.

4



For a = [a1, a2] ∈ IR we obtain by (2) immediately

−a := 7(−1)∗a= [−a2,−a1] ∈ IR. (3)

If in (3) a ∈ IF, then also −a ∈ IF, i.e., IF is a symmetric screen of IR.
Between the complete lattice {IR,⊆} and its screen {IF,⊆} the monotone upwardly directed

rounding ♦ : IR → IF is uniquely defined. It is characterized by the following properties:

(R1) ♦ a = a , for all a ∈ IF. (projection)

(R2) a ⊆ b ⇒ ♦ a ⊆ ♦ b, for a , b ∈ IR. (monotone)

(R3) a ⊆ ♦ a , for all a ∈ IR. (upwardly directed)

For a = [a1, a2] ∈ IR the result of the monotone upwardly directed rounding ♦ is

♦ a= [ ▽ a1, △ a2]. (4)

Using (1) and (2) it is easy to see that the monotone upwardly directed rounding ♦ : IR → IF

is antisymmetric, i.e.,

(R4) ♦ (−a) = − ♦ a , for all a ∈ IR. (antisymmetric).

An interval a= [a1, a2] is frequently interpreted as a point in R
2. This very naturally induces the

order relation ≤ of R
2 to the set of intervals IR. For two intervals a = [a1, a2] and b = [b1, b2] the

relation ≤ is defined by a ≤ b :⇔ a1 ≤ b1 ∧ a2 ≤ b2.
For the ≤ relation for intervals compatibility properties hold between the algebraic structure and

the order structure in great similarity to the real numbers. For instance:

(OD1) a ≤ b ⇒ a + c ≤ b + c, for all c.
(OD2) a ≤ b ⇒ −b ≤ −a .
(OD3) [0, 0] ≤ a ≤ b ∧ c ≥ [0, 0] ⇒ a ∗ c ≤ b ∗ c.
(OD4) [0, 0] < a ≤ b ∧ c > [0, 0] ⇒ [0, 0] < a/c ≤ b/c ∧ c/a ≥ c/b > [0, 0].

With respect to set inclusion as an order relation arithmetic operations in {IR,⊆} are inclusion
isotone by (2), i.e., a ⊆ b ⇒ a ◦ c ⊆ b ◦ c or equivalently

(OD5) a ⊆ b ∧ c ⊆ d ⇒ a ◦ c ⊆ b ◦ d , for all ◦ ∈ {+,−, ∗, /}, 0 /∈ b,d for ◦ = /. (inclusion isotone)

Setting c,d = −1 in (OD5) delivers immediately a ⊆ b ⇒ −a ⊆ −b which differs significantly
from (OD2).

Definition 7. With the upwardly directed rounding ♦ : IR → IF binary arithmetic operations in IF

are defined by semimorphism:

(RG) a ♦◦ b := ♦ (a ◦ b), for all a, b ∈ IF and all ◦ ∈ {+,−, ∗, /}.

Here for division we assume that a/b is defined.

If an interval a ∈ IF is an upper bound of an interval x ∈ IR, i.e., x ⊆ a , then by (R1), (R2),

and (R3) also x ⊆ ♦ x ⊆ a . This means ♦ x is the least upper bound, the supremum of x in
IF. Similarly if for x ,y ∈ IF, x ◦ y ⊆ a with a ∈ IF, then by (R1), (R2), (R3), and (RG) also

x ◦ y ⊆ x ♦◦ y ⊆ a , i.e., x ♦◦ y is the least upper bound, the supremum of x ◦ y in IF. Occasionally
the supremum x ♦◦ y of the result x ◦ y ∈ IR is called the tightest enclosure of x ◦ y .

Arithmetic operations in IF are inclusion isotone, i.e.,

(OD5) a ⊆ b ∧ c ⊆ d ⇒ a ♦◦ c ⊆ b ♦◦ d , for ◦ ∈ {+,−, ∗, /}, 0 /∈ b,d for ◦ = /. (inclusion isotone)

This is a consequence of the inclusion isotony of the arithmetic operations in IR, of (R2) and of (RG).
Since the arithmetic operations x ◦ y in IR are defined as set operations by (3) the operations

x ♦◦ y for intervals of IF defined by (RG) are not directly executable. The step from the definition of
interval arithmetic by set operations to computer executable operations still requires some effort. This
holds in particular for product sets like complex intervals and intervals of vectors and matrices of real
and complex numbers, [23]. We sketch it here for the most simple case of floating-point intervals.

7 An integral number a in an interval expression is interpreted as interval [a, a].
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3.3 Executable Interval Arithmetic

We first derive executable formulas for the arithmetic operations for nonempty, closed and bounded
real intervals a , b ∈ IR. These are then extended to unbounded intervals of IR. Arithmetic operations
for intervals are defined as set operations by a ◦b := {a ◦ b | a ∈a∧b ∈ b}. For a , b ∈ IR with 0 /∈ b in
case of division for all arithmetic operations ◦ ∈ {+,−, ∗, /} the function a◦ b is a continuous function
of both variables. The set a ◦ b is the range of the function a ◦ b over the product set a × b. Since
a and b are closed and bounded intervals a × b is a simply connected, closed and bounded subset
of R

2. In such a region the continuous function a ◦ b takes a minimum and a maximum as well as all
values in between. Therefore

a ◦ b = [ min
a∈a ,b∈b

{a ◦ b}, max
a∈a ,b∈b

{a ◦ b}] = [inf(a ◦ b), sup(a ◦ b)],

i.e., for a , b ∈ IR, 0 /∈ b in case of division, a ◦b is again an interval of IR. In other words: Arithmetic
in IR is an algebraically closed subset of the arithmetic in the powerset of the real numbers.

Actually the minimum and maximum is taken for operations with the bounds. For bounded
intervals a = [a1, a2] and b = [b1, b2] the following formula holds for all operations with 0 /∈ b in case
of division:

a ◦ b =

[

min
i,j=1,2

(ai ◦ bj), max
i,j=1,2

(ai ◦ bj)

]

for ◦ ∈ {+,−, ∗, /}. (5)

We demonstrate this in case of addition. By (OD1) we obtain a1 ≤ a and b1 ≤ b ⇒ a1 + b1 ≤
inf(a + b). On the other hand inf(a + b) ≤ a1 + b1. From both inequalities we obtain by (O3):
inf(a + b) = a1 + b1. Analogously one obtains sup(a + b) = a2 + b2. Thus

a + b = [ min
a∈a ,b∈b

{a + b}, max
a∈a ,b∈b

{a + b}] = [inf(a + b), sup(a + b)] = [a1 + b1, a2 + b2].

Similarly by making use of (OD1,2,3,4) for intervals of IR and the simple sign rules −(a ∗ b) =
(−a) ∗ b = a ∗ (−b),−(a/b) = (−a)/b = a/(−b) explicit formulas for all interval operations can be
derived, [23].

Now we get by (RG) for intervals of IF

a ♦◦ b := ♦ (a ◦ b) =

[

▽ min
i,j=1,2

(ai ◦ bj), △ max
i,j=1,2

(ai ◦ bj)

]

and by the monotonicity of the roundings ▽ and △ :

a ♦◦ b =

[

min
i,j=1,2

(ai
▽◦ bj), max

i,j=1,2
(ai △◦ bj)

]

.
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For bounded and nonempty intervals a = [a1, a2] and b = [b1, b2] of IF the unary operation −a and
the binary operations addition, subtraction, multiplication, and division are shown in the following
tables. For details see [23]. There the operator symbols for intervals are simply denoted by +,−, ∗, /.

Minus operator −a = [−a2,−a1].

Addition [a1, a2] + [b1, b2] = [a1
▽+ b1, a2 △+ b2].

Subtraction [a1, a2] − [b1, b2] = [a1
▽− b2, a2 △− b1].

Multiplication [b1, b2] [b1, b2] [b1, b2]

[a1, a2] ∗ [b1, b2] b2 ≤ 0 b1 < 0 < b2 b1 ≥ 0

[a1, a2], a2 ≤ 0 [a2
▽∗ b2, a1 △∗ b1] [a1

▽∗ b2, a1 △∗ b1] [a1
▽∗ b2, a2 △∗ b1]

a1 < 0 < a2 [a2
▽∗ b1, a1 △∗ b1] [min(a1

▽∗ b2, a2
▽∗ b1), [a1

▽∗ b2, a2 △∗ b2]

max(a1 △∗ b1, a2 △∗ b2)]

[a1, a2], a1 ≥ 0 [a2
▽∗ b1, a1 △∗ b2] [a2

▽∗ b1, a2 △∗ b2] [a1
▽∗ b1, a2 △∗ b2]

Division, 0 /∈ b [b1, b2] [b1, b2]

[a1, a2]/[b1, b2] b2 < 0 b1 > 0

[a1, a2], a2 ≤ 0 [a2
▽/ b1, a1 △/ b2] [a1

▽/ b1, a2 △/ b2]

[a1, a2], a1 < 0 < a2 [a2
▽/ b2, a1 △/ b2] [a1

▽/ b1, a2 △/ b1]

[a1, a2], 0 ≤ a1 [a2
▽/ b2, a1 △/ b1] [a1

▽/ b2, a2 △/ b1]

In real analysis division by zero is not defined. In interval arithmetic, however, the interval in the
denominator of a quotient may contain zero. So this case has to be considered also.

The general rule for computing the set a/b with 0 ∈ b is to remove its zero from the interval b

and perform the division with the remaining set.8 Whenever zero in b is an endpoint of b, the result of
the division can be obtained directly from the above table for division with 0 /∈ b by the limit process
b1 → 0 or b2 → 0 respectively. The results are shown in the table for division with 0 ∈ b. Here, the
parentheses stress that the bounds −∞ and +∞ are not elements of the interval.

Division, 0 ∈ b b = [b1, b2] [b1, b2]

[a1, a2]/[b1, b2] [0, 0] b1 < b2 = 0 0 = b1 < b2

[a1, a2] = [0, 0] ∅ [0, 0] [0, 0]

[a1, a2], a1 < 0, a2 ≤ 0 ∅ [a2
▽/ b1, +∞) (−∞, a2 △/ b2]

[a1, a2], a1 < 0 < a2 ∅ (−∞, +∞) (−∞, +∞)

[a1, a2], 0 ≤ a1, 0 < a2 ∅ (−∞, a1 △/ b1] [a1
▽/ b2, +∞)

When zero is an interior point of the denominator, the set [b1, b2] splits into the distinct sets [b1, 0]
and [0, b2], and the division by [b1, b2] actually means two divisions. The results of the two divisions
are already shown in the table for division by 0 ∈ b.

However, in the user’s program the two divisions appear as a single operation, as division by an
interval [b1, b2] with b1 < 0 < b2, an operation that delivers two distinct results.

A solution to the problem would be for the computer to provide a flag for distinct intervals. The situation
occurs if the divisor is an interval that contains zero as an interior point. In this case the flag would be raised
and signaled to the user. The user may then apply a routine of his choice to deal with the situation as is
appropriate for his application. This routine could be: return the entire set of real numbers (−∞, +∞) as
result and continue the computation, or set a flag and continue the computation with one of the sets and

8 This is in full accordance with function evaluation: When evaluating a function over a set, points outside
its domain are simply ignored.
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ignore the other one, or put one of the sets on a list and continue the computation with the other one, or
modify the operands and recompute, or stop computing, or some other action.

An alternative would be to provide a second division which in case of division by an interval that contains
zero as an interior point generally delivers the result (−∞, +∞). Then the user can decide when to use which
division in his program.

Deriving explicit formulas for the result of interval operations a ◦b, ◦ ∈ {+,−, ∗, /} it was assumed
so far that the intervals a and b are nonempty and bounded. Four kinds of extended intervals come
from division by an interval of IF that contains zero:

∅, (−∞, a], [b,+∞), and (−∞,+∞).

To extend the operations to these more general intervals the first rule is that any operation with the
empty set ∅ returns the empty set. Then the above tables extend to possibly unbounded intervals
of IF by using the standard formulae for arithmetic operations involving ±∞ together with one rule
that goes beyond standard rules for ±∞:

0 ∗ (−∞) = (−∞) ∗ 0 = 0 ∗ (+∞) = (+∞) ∗ 0 = 0.

This rule is not a new mathematical law, it is merely a short cut to compute the bounds of the result
of multiplication on unbounded intervals.9

In the previous section intervals of IR are defined as closed and connected sets of
real numbers. Arithmetic for intervals of IF as derived here leads to an exception free
calculus, i.e., arithmetic operations for intervals of IF always lead to intervals of IF again.

This is in sharp contrast to other models of interval arithmetic which consider intervals over
the extended real numbers R := R ∪ {−∞,+∞}. In such models obscure arithmetic operations like
∞−∞,∞/∞, 0 ∗∞ occur which require introduction of unnatural superficial objects like NaI (Not
an Interval).

4 Interval Arithmetic in Higher Dimensions

The axioms for computer arithmetic shown in section 2 also can be applied to define computer arith-
metic in higher dimensional spaces like complex numbers, vectors and matrices for real, complex, and
interval data.

If M in section 2 is the set of real matrices and S ⊆ M the set of floating-point matrices, then the
definition of arithmetic operations in S by (RG) ideally requires exact evaluation of scalar products
of vectors with floating-point components. Indeed very effective algorithms have been developed for
computing scalar products of vectors with floating-point components exactly, [23]. For a brief sketch
see section 7.

If M in section 2 is the set of intervals of real vectors or matrices, respectively, then the set
definition of arithmetic operations in M by (2) does not lead to an interval again. The result a ◦b :=
{a ◦ b | a ∈a ∧ b ∈ b} is a more general set. It is an element of the power set10 of vectors or matrices,

respectively. To obtain an interval the upwardly directed rounding from the power set onto the set
of intervals of M has to be applied. With it arithmetic operations for intervals a , b ∈ M are defined
by

(RG) a ◦ b := (a ◦ b), ◦ ∈ {+,−, · · · }.

The set S of intervals of floating-point vectors or matrices, respectively, is a screen of M . To obtain
arithmetic for intervals a , b ∈ S once more the monotone upwardly directed rounding, now denoted
by ♦ is applied:

(RG) a ♦◦ b := ♦ (a ◦ b), ◦ ∈ {+,−, · · · }.

9 Intervals of IF are closed and connected sets of real numbers. So multiplication of any such interval by 0
can only have 0 as the result.

10 The power set of a set M is the set of all subsets of M .
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This leads to the best possible operations in the interval spaces M and S. So for intervals in higher
dimensional spaces generally an additional rounding step is needed. It can be shown that in all relevant
cases these best possible operations can be expressed by executable formulas just using the bounds of
the intervals. Showing this for more complicated cases (e.g. complex intervals or intervals of real and
complex vectors and matrices) requires a more detailed study. For details see [23] and the literature
listed there. The dot product of two vectors the components of which are floating-point numbers is a
key operation in all these spaces. Computing it exactly can considerably speed up floating-point and
interval arithmetic.

5 Operations with Directed Roundings and Programming Languages

The IEEE standard 754 for floating-point arithmetic seems to support interval arithmetic. It requires
the basic four arithmetic operations to be available with rounding to nearest, towards zero, and
downwards and upwards. The latter two are essential for interval arithmetic. But almost all processors
that provide IEEE 754 arithmetic separate the rounding from the basic operation, which proves to be a
severe drawback. In a conventional floating-point computation this does not cause any difficulties. The
rounding mode is set only once. Then a large number of operations is performed with this rounding
mode, one in every cycle. However, when interval arithmetic is performed the rounding mode has
to be switched very frequently. The lower bound of the result of every interval operation has to be
rounded downwards and the upper bound rounded upwards. Thus, the rounding mode has to be reset
for every arithmetic operation. If setting the rounding mode and the arithmetic operation are equally
fast this slows down the computation of each bound unnecessarily by a factor of two in comparison to
conventional floating-point arithmetic. On almost all existing commercial processors, however, setting
the rounding mode takes a multiple (three, five, ten) of the time that is needed for the arithmetic
operation. Thus an interval operation is unnecessarily at least eight (or twenty and even more) times
slower than the corresponding floating-point operation not counting the necessary case distinctions for
interval multiplication and interval division. This is fatal for interval arithmetic. The rounding must
be an integral part of the arithmetic operation. Every one of the rounded arithmetic operations with
rounding to nearest, downwards or upwards should be equally fast.

For interval arithmetic we need to be able to call each of the operations ▽+ , ▽− , ▽× , ▽/

and △+ , △− , △× , △/ as one single operation, that is, the rounding must be inherent to each.
Therefore in programming languages notations for arithmetic operations with different roundings shall
be provided. They could be:

+, -, *, / for operations with rounding to the nearest floating-point number,

+>, ->, *>, /> for operations with rounding upwards,

+<, -<, *<, /< for operations with rounding downwards, and

+|, -|, *|, /| for operations with rounding towards zero (chopping).

New operation codes are necessary! Each of these operations shall be callable as one single operation.
Frequently used programming languages regrettably do not provide four plus, minus, multiply,

and divide operators for floating-point numbers. This, however, does not justify generally separating
the rounding from the arithmetic operation!

Instead, a floating-point arithmetic standard should require that every future processor shall
provide the 16 operations listed above. In languages like C++ which just provide operator overloading
and do not allow user defined operators these operations could be written as functions:

addp, subp,mulp, divp, and addn, subn,muln, divn.

Here p stands for rounding toward positive and n for rounding toward negative infinity. With these
operators interval operations can easily be programmed. They would be very fast and fully transferable
from one processor to another.

In such languages the operations with the directed roundings are hidden within the interval op-
erations. If operations with directed roundings are needed, interval operations are performed instead
and the upper and lower bound of the result then gives the desired answer.

This is exactly the way interval arithmetic is provided in the C++ class library C-XSC which has
been successfully used for more than 20 years [16, 17]. Since C++ only allows operator overloading,
the operations with the directed roundings cannot and are not provided in C-XSC. These operations
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are rarely needed in applications. If they are needed, interval operations are performed instead and
the upper or lower bound of the result then gives the desired answer.

6 Hardware for Interval Arithmetic

Figure 1 gives a brief sketch of what hardware support for interval arithmetic may look like. It would
not be hard to realize it in modern technology.

The circuitry broadly speaks for itself. The lower and the upper bound of the result of an operation
are computed simultaneously. The interval operands are loaded in parallel from a register file or a
memory access unit. Then, after multiplexers have selected the appropriate operands, the lower bound
of the result is computed with rounding downwards and the upper bound with rounding upwards with
the selected operands. If in case of multiplication both operands contain zero as an interior point
a second multiplication is necessary. In the figure it is assumed that the two multiplications are
performed sequentially and that the results of both multiplications are delivered to the lower part of
the circuitry. They are then forwarded to a comparison unit. Here for the lower bound of the result
the lower and for the upper bound the higher of the two products is selected. This lower part of the
circuitry could also be used to perform comparison relations.

64-bit
1-bitc = [c1, c2]

lower bound upper bound

Register File
(or memory access unit)
pairs of reals

a1 a2

sa1 sa2

b1 b2

sb1 sb2

zero

za1

zero

za2

zero

zb1

zero

zb2

0 1 0 1 0 1 0 1sv1 sv2 sv3 sv4

a1|a2 =: al a1|a2 =: au b1|b2 =: bl b1|b2 =: bu

al
▽◦ bl au △◦ bu

◦ ∈ {+,−, ∗, /}c1 c2

a1
▽∗ b2 a2

▽∗ b1 a1 △∗ b1 a2 △∗ b2

a1
▽∗ b2 ≤ a2

▽∗ b1 a1 △∗ b1 ≥ a2 △∗ b2

0 1 0 1
c1 c2

operands: a = [a1, a2], b = [b1, b2], result: c = [c1, c2].
s: sign, z: zero, o: operand select.

Fig. 1. Circuitry for Interval Operations
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Multiplication B = 0 b1 < 0, b2 ≤ 0 b1 < 0 < b2 0 ≤ b1, 0 < b2

A = 0 [0, 0] [0, 0] [0, 0] [0, 0]

a1 < 0, a2 ≤ 0 [0, 0] [a2
▽∗ b2, a1 △∗ b1] [a1

▽∗ b2, a1 △∗ b1] [a1
▽∗ b2, a2 △∗ b1]

sv = 1100 sv = 0100 sv = 0110

a1 < 0 < a2 [0, 0] [a2
▽∗ b1, a1 △∗ b1] [min(a1

▽∗ b2, a2
▽∗ b1), [a1

▽∗ b2, a2 △∗ b2]

max(a1 △∗ b1, a2 △∗ b2)]

sv = 1000 sv = 0100, sv = 1011 sv = 0111

0 ≤ a1, 0 < a2 [0, 0] [a2
▽∗ b1, a1 △∗ b2] [a2

▽∗ b1, a2 △∗ b2] [a1
▽∗ b1, a2 △∗ b2]

sv = 1001 sv = 1011 sv = 0011

Table 1. Interval multiplication.

Division B = 0 b2 < 0 b1 < b2 = 0 b1 < 0 < b2 0 = b1 < b2 0 < b1

A = 0 ∅ [0, 0] [0, 0] [0, 0] [0, 0] [0, 0]

a1 < 0, a2 ≤ 0 ∅ [a2
▽/ b1, a1 △/ b2] [a2

▽/ b1, +∞) (−∞, a2 △/ b2] (−∞, a2 △/ b2] [a1
▽/ b1, a2 △/ b2]

∪[a2
▽/ b1, +∞)

sv = 1001 sv = 10xx sv = 1011 sv = xx11 sv = 0011

a1 < 0 < a2 ∅ [a2
▽/ b2, a1 △/ b2] (−∞, +∞) (−∞, +∞) (−∞, +∞) [a1

▽/ b1, a2 △/ b1]

sv = 1101 sv = 0010

0 ≤ a1, 0 < a2 ∅ [a2
▽/ b2, a1 △/ b1] (−∞, a1 △/ b1] (−∞, a1 △/ b1] [a1

▽/ b2, +∞) [a1
▽/ b2, a2 △/ b1]

∪[a1
▽/ b2, +∞)

sv = 1100 sv = xx00 sv = 0100 sv = 01xx sv = 0110

Table 2. Interval division.

In the figure it is assumed that the second product is computed with the same circuitry sequentially.
This slows down interval multiplication in comparison with the other interval operations. This can be
avoided by doubling the circuitry for multiplication and performing the two multiplications in parallel.

The selector signals sv1, sv2, sv3, and sv4 control the multiplexers. The circuitry shown in the
figure performs all arithmetic operations.

In addition the lower bounds of a and b are simply added with rounding downwards and the
upper bounds with rounding upwards [a1

▽+ b1, a2 △+ b2]. The selector signals are set to sv1 = 0,
sv2 = 1, sv3 = 0, and sv4 = 1.

In subtraction the bounds of b are exchanged by the operand selection. Then the subtraction
is performed, the lower bound being computed with rounding downwards and the upper bound with
rounding upwards [a1

▽− b2, a2 △− b1]. The selector signals are set to sv1 = 0, sv2 = 1, sv3 = 1, and
sv4 = 0.

These two operations, addition and subtraction, reveal a close relationship between the arithmetic
operations shown in Tables 1 and 2 and the operand selector signals which select the lower or the
upper bound of the operands a and b for the operation to be performed. The index of the operand
component to be selected minus 1 gives the value of the selector signal svi, i = 1, 2, 3, 4 for the selection
of the operand.

This simple rule also holds for the operand selections in the cases of multiplication and division.
In the Tables 1 and 2 the selector signals sv1, sv2, sv3, sv4 are summarized into a selection vector
sv = (sv1, sv3, sv2, sv4) which is shown directly below the formulas for the arithmetic operations. In
Table 2 both cases 0 /∈ b and 0 ∈ b are merged into a single table.

For intervals a , b ∈ IR subtraction is defined by a − b := a + (−1) ∗ b. Thus subtraction could
be reduced to addition by negation of the operand b.
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6.1 Interval Arithmetic on X86-Processors

It is interesting to note that most of what is needed for fast hardware support for interval arithmetic
is already available on current x86-processors. Figure 2 shows figures from various publications by
Intel.

Figure 6. Packed double precision floating-point data type

Figure 11-3. Packed Double-Precision Floating-Point Operation

Figure 11-5. SHUFFD Instruction Packed Shuffle Operation

Fig. 2. Figures from various Intel publications.

On an Intel Pentium 4, for instance, eight registers are available for words of 128 bits (xmm0,
xmm1, . . ., xmm7). The x86-64 processors even provide 16 such registers. These registers can hold
pairs of double precision floating-point numbers. They can be viewed as bounds of intervals. Parallel
operations like +, −, ·, /, min, max, and compare can be performed on these pairs of numbers. What
is not available and would be needed is for one of the two operations to be rounded downwards and
the other one rounded upwards. The last picture in Figure 2 shows that even shuffling of bounds is
possible under certain conditions. This is half of operand selection needed for interval arithmetic. So
an interval operation would need two such units or to pass this unit twice. Also nearly all of the data
paths are available on current x86-processors. Thus full hardware support of interval arithmetic would
probably add very little to a current Intel or AMD x86 processor chip.

Full hardware support of fast interval arithmetic on RISC processors may cost a little more as
these lack pairwise processing. But most of them have two arithmetic units and use them for super
scalar processing. What has to be added is some sophisticated control.
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7 High Speed Computing by an Exact Dot Product

The IFIP Working Group on Numerical Software and other scientists repeatedly requested that a
future arithmetic standard should consider and specify an exact dot product (EDP) [5, 6], [1,2]. In Nov.
2009 the IEEE standards committee P1788 on interval arithmetic accepted a motion for including the
EDP into a future interval arithmetic standard. In Numerical Analysis the dot product is ubiquitous.
It is a fundamental arithmetic operation in vector and matrix spaces for real, complex, and interval
data. It is the EDP which makes residual correction effective. This has a direct and positive influence
on all iterative solvers of systems of equations. The EDP is essential for fast long real and long interval
arithmetic [23]. By operator overloading variable precision interval arithmetic is very easy to use. With
it the result of every arithmetic expression can be guaranteed to a number of correct digits.

A later motion revised the motion for the EDP. It now requires a correctly rounded dot product
instead. Computing this via an EDP is recommended. The literature contains many excellent and
intelligent methods for computing ”accurate” sums and dot products or a correctly rounded dot
product in particular. Several of these methods are claimed to be fast or even ultimately fast. All
these methods use conventional floating-point arithmetic. The speed of the faster of these methods
comes considerably close to the time T needed for (a possibly wrong) computation of the dot product in
conventional floating-point arithmetic. The speed mildly decreases with increasing condition number.

Computing dot products exactly on the contrary considerably speeds up computing. Actually the
simplest and fastest way for computing a dot product is to compute it exactly. By pipelining the stages:
loading the data, computing, shifting, and accumulation of the products the EDP is computed in the
time the processor needs to read the data, i.e., it comes with utmost speed. Here the computing time is
independent of the condition number. It is much less than T . The summands are just shifted and added
into a long fixed-point register. Fixed-point accumulation of the products is simpler than accumulation
in floating-point. Many intermediate steps that are executed in a floating-point accumulation such as
normalization and rounding of the products and of the intermediate sum, composition into a floating-
point number and decomposition into mantissa and exponent for the next operation do not occur in the
fixed-point accumulation. It simply is performed by a shift and addition of the products of full double
length into a wide fixed-point register. Fixed-point addition is error free! This brings a substantial
speed increase compared to a possibly wrong accumulation of the dot product using conventional
floating-point arithmetic. So the EDP is a mean to considerably speed up floating-point and interval
arithmetic.

This section briefly illustrates how the EDP can be implemented on computers. There is indeed
no simpler way of accumulating a dot product. Any method that just computes an approximation
also has to consider the relative values of the summands. This results in a more complicated method.

Let (ai), (bi) ∈ F
n be two vectors with n components which are floating-point numbers ai, bi ∈

F(b, l, e1, e2), for i = 1(1)n. Here b is the base of the number system in use, l the number of digits
of the mantissa, e1 is the least and e2 the greatest exponent respectively. We compute the sum

s :=
∑n

i=1
ai · bi = a1 · b1 + a2 · b2 + . . . + an · bn, ai · bi ∈ F(b, 2 · l, 2 · e1, 2 · e2), for i = 1(1)n,

where all additions and multiplications are the operations for real numbers.
All summands can be taken into a fixed-point register of length 2 · e2 + 2 · l + 2 · |e1| without loss

of information. We call it a complete register, CR for short.

2l
2l |e1|

2|e1|
e2

k 2e2

Complete register for exact scalar product accumulation.

If the register is built as an accumulator with an adder, all summands could be added in without
loss of information. To accommodate possible overflows, it is convenient to provide a few, say k, more
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digits of base b on the left, allowing bk accumulations to be computed without loss of information due
to overflow. k can be chosen such that no overflows of the long register will occur in the lifetime of
the computer.

For IEEE-arithmetic double precision we have:
b = 2; 64 bits word length; 1 bit sign; 11 bits exponent; l = 53 bits; e1 = −1022, e2 = 1023. With
k = 92 the entire unit consists of
L = k + 2 · e2 + 2 · l + 2 · |e1| = k + 4196 bits = 4288 bits. It can be represented by 67 words of 64
bits. L is independent of n.

Figure 3 informally describes the implementation of an EDP. The long register (here represented
as a chest of drawers) is organized in words of 64 bits. The exponent of the products consists of 12
bits. The leading 6 bits give the address of the three consecutive drawers to which the summand of 106
bits is added. The low end 6 bits of the exponent are used for the correct positioning of the summand
within the selected drawers. A possible carry is absorbed by the next more significant word in which
not all bits are 1. For fast detection of this word a flag is attached to each word. It is set 1 if all
bits of the word are 1. This means that a carry will propagate through the entire word. In the figure
the flag is shown as a red (dark) point. As soon as the exponent of the summand is available the
flags allow selecting and incrementing the carry word. This can be done simultaneously with adding
the summand into the selected positions. Figure 4 shows a sketch for the parallel accumulation of a
product into the complete register.

By pipelining, the accumulation of a product into the complete register can be done in the time
the processor needs to read the data. Since every other method computing a dot product also has
to read the data this means that no such method can exceed computing the EDP in speed. For the
pipelining and other solutions see [23]. Rounding the EDP into a correctly rounded dot product is
done only once at the very end of the accumulation.

In [23] three different solutions for pipelining the dot product computation are dealt with. They
differ by the speed with which the vector components for a product can be read into the scalar
product unit. They can be delivered in 32- or 64-bit portions or even at once as one 128 bit word.
With increasing bus width and speed more hardware has to be invested for the multiplication and the
accumulation to keep the pipeline in balance.

The hardware cost needed for the EDP is modest. It is comparable to that for a fast multiplier
by an adder tree, accepted years ago and now standard technology in every modern processor. The
EDP brings the same speedup for accumulations at comparable costs.

Figures 3 and 4 informally specify the implementation of the EDP on computers. For more details
see [23] and [25].

Possibilities to compute the EDP by only making use of a hardware complete register window are
discussed in [23].

To be successful interval arithmetic occasionally has to be complemented by some easy way to
use multiple precision real and interval arithmetic. The fast and exact dot product is the tool to
provide these operations. By operator overloading multiple precision arithmetic can be used very easily.
Multiple precision real and interval operations for addition, subtraction, multiplication, division, the
scalar product, and the square root are defined in [23]. In [30] the authors show that even extremely
ill conditioned matrices with a condition number of about 10100 can successfully be inverted using
such tools.

In 1984 a hardware unit for the EDP was developed in bit-slice technology [12]. This technology
was expensive and did not allow production of the unit in large quantities. Then in 1995 the EDP was
implemented on a single chip using a VLSI gate-array technology [9]. It was connected with the PC
via the PCI-bus and embedded into powerful PASCAL-XSC and C-XSC programming environments.
Although the technology available for the chip was considerably weaker than that available for the PC,
the chip computed the EDP faster than a (possibly wrong) evaluation in conventional floating-point
arithmetic.

Ultimately the EDP must be integrated into the arithmetic unit of the processor. A
little register space on the arithmetic unit will be rewarded by a substantial increase in
speed and reliability of computing.

Interval arithmetic brings guarantees and mathematics into computing, while the EDP brings
higher precison, accuracy, and speed.
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interface

register file (or memory access unit)

128

exp(a) exp(b) mant(a) mant(b)

11 11 53 53

adder multiplier 53 × 53

12 106

mant(a)×mant(b)

106

ringshifter

LSB0123

456

MSB

6

6

Fig. 3. Illustration for computing the exact dot product

CR

Fig. 4. Parallel accumulation of a product into the CR.
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8 Early Super Computers

It is interesting that the technique for computing dot products exactly is not new at all. It can be
traced back to the early computer by G. W. Leibniz (1673). Also old mechanic calculators added
numbers and products of numbers into a wide fixed-point register. It was the fastest way to use the
computer. So it was applied as often as possible. No intermediate results needed to be written down
and typed in again for the next operation. No intermediate roundings or normalizations had to be
performed. No error analysis was necessary. As long as no underflow or overflow occurred, which
would be obvious and visible, the result was always exact. It was independent of the order in which
the summands were added. Rounding was only done, if required, at the very end of the accumulation.

This extremely useful and fast fifth arithmetic operation was not built into the early floating-point
computers. It was too expensive for the technologies of those days. Later its superior properties had
been forgotten. Thus floating-point arithmetic is still comparatively incomplete.

Fig. 5. Mechanical computing devices equipped with the desired capability:
Burkhart Arithmometer, Glashütte, Germany, 1878; Brunsviga, Braunschweig, Germany, 1917;
MADAS, Zürich, Switzerland, 1936; MONROE, New Jersey, USA, 1956.

The two lower calculators in Figure 5 are equipped with more than one long result register. In the
previous section it was called a complete registers CR. It is an early version of the recommended new
data format complete.

In summary it can be said: The technique of speeding up computing by accumulation of numbers
and of products of numbers exactly into a wide fixed-point register is as old as technical computing
itself. It proves an excellent feeling of the old mathematicians for efficiency in computing.

Also early super computers (until ca. 2005) got their high speed by pipelining the dot product
(vector processing). They provided so-called compound operations like accumulate or multiply and
accumulate. The second computes the sum of products, the dot product of two vectors. Advanced
programming languages offered these operations. Pipelining made them really fast. A vectorizing
compiler filled them into a users program as often as possible. However, the accumulation was done
in floating-point arithmetic by the so-called partial sum technique. This altered the sequence of the
summands and caused errors beyond of the conventional floating-point errors. So finally this technique
was abolished.

Fixed-point accumulation of the dot product, as discussed in the previous section, is simpler and
faster than accumulation in floating-point arithmetic. In a very natural pipeline the accumulation is
done in the time which is needed to read the data into the arithmetic unit. This means that no other
method of computing a dot product can be faster, in particular not a conventional computation in
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double or quadruple precision floating-point arithmetic. Fixed-point accumulation is error free! It is
high speed vector processing in its perfection.

9 Early Products and Motivation

Between 1976 and 1980 a powerful programming environment PASCAL-XSC for support of interval
arithmetic was developed at the authors institute together with a major number of problem solv-
ing routines for all kinds of standard problems of numerical analysis. These routines delivered close
bounds for the solution. The project was supported by Nixdorf Computers. The Z-80 based system
was exhibited at the Hannover Exhibition in April 1980. Nixdorf Computers donated a number of
such systems to the University at Karlsruhe. This made it possible to decentralize the programming
education in the summer semester 1980 while batch processing and punch cards and punch tapes were
standard elsewhere.

When IBM became aware of this development a ten years lasting cooperation with the authors
institute was started in 1980. The aim was to develop corresponding Fortran based products for
their /370 architecture which at that time dominated the market. The corresponding IBM program
products were called ACRITH (1983) and ACRITH-XSC (1990) [32–34]. Siemens and Hitachi followed
soon by developing similar products for their /370 based systems. The Siemens product was called
ARITHMOS [35]. The commercial success of these new products, however, was modest. During the
development time other architectures appeared. The PC entered the market in 1982 and several new
workstations in 1983/84. All these new systems made use of the new computer arithmetic standard
IEEE 754 which was officially available since 1985. Scientific computing slowly but steadily moved
from the old /370 systems to these more modern looking architectures.

In adapting the new situation the old Z-80 based PASCAL-XSC system was immediately trans-
ferred to the PC and to workstations at the authors institute. Books on PASCAL-XSC were published
in German, English and Russian. See [13–15]. The book and the PASCAL-XSC system are now freely
available. Further, after appearance of C and C++ a corresponding C-XSC was developed as a C++
class library again with a major number of problem solving routines [16, 17]. These books are also
freely available.

High speed by support of hardware and programming languages is vital for interval arithmetic to
be more widely accepted by the scientific computing community. The IEEE standard 754 seems to
support interval arithmetic. It requires floating-point operations with the directed roundings. But in
practice these have to be simulated by slow software. No commercial processor provides them directly
by hardware. In 2008 the author published a book entitled: Computer Arithmetic and Validity -
Theory, Implementation, and Applications [23]. It puts considerable emphasis on speeding up interval
arithmetic. It extends the accuracy requirements for floating-point arithmetic as given by the IEEE
standard 754 to the usual product spaces of computation like complex numbers and vectors and
matrices for real, complex, and interval data. The book shows and states already in its preface that
interval arithmetic for all these spaces can efficiently be provided on the computer if two additional
features are made available by fast hardware:

I. Fast and direct hardware support for double precision interval arithmetic and
II. a fast and exact multiply and accumulate operation or, an exact dot product (EDP).

Realization of I. and II. is discussed at detail in the book [23]. It is shown that I. and II. can be
obtained at very little hardware cost. With I. interval arithmetic would be as fast as simple floating-
point arithmetic. The simplest and fastest way for computing a dot product is to compute it exactly. To
make II. conveniently available a new data format complete is used together with a few very restricted
arithmetic operations. By pipelining the EDP can be computed in the time the processor needs to
read the data, i.e., it comes with utmost speed. I. and II. would boost both the speed of a computation
and the accuracy of the result. Fast hardware support for I. and II. must be added to conventional
floating-point arithmetic. Both are necessary extensions. Computing the dot product exactly even can
be faster than computing it conventionally in double or extended precision floating-point arithmetic.

In [23] a real interval is defined as a closed and connected set of real numbers. Such intervals
can be bounded or unbounded. In the latter case −∞ or +∞ occur as bounds of the interval. They
are, however, not elements of the interval. Six months after publication of the book [23] the IEEE
Computer Society founded a standard committee P1788 for interval arithmetic in August 2008. Work
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on the standard began immediately and is still in progress. Much emphasis is put on specifying details.
The definition of a real interval as a closed and connected set of real numbers was accepted. But a
majority of members in the standard committee views the intention of the standard in specifying the
functionality of interval arithmetic only. Demanding particular hardware and language support for
interval arithmetic is not seen as task of the standard.

This paper is intended to complement the current state of the development of the IEEE P1788
standard by clearly stating what hardware and language support is vital and must be made available
for interval arithmetic to increase its acceptance in the scientific computing community and to move
interval arithmetic more into the mainstream of scientific computing.

Computer technology has been dramatically improved since 1985. Arithmetic speed has gone from
megaflops (106 flops) to gigaflops (109 flops) to teraflops (1012 flops), and it is already in the petaflops
(1015 flops) range. This is not just a gain in speed. A qualitative difference goes with it. At the time of
the megaflops computer a conventional error analysis was recommended in every numerical analysis
textbook. Today the PC is a gigaflops computer. For the teraflops or petaflops computer conventional
error analysis is no longer practical. An avalanche of numbers is produced when a petaflops computer
runs. If the numbers processed in one hour were to be printed (500 on one page, 1000 on one sheet,
1000 sheets 10 cm high) they would need a pile of paper that reaches from the earth to the sun and
back. Computing indeed has already reached astronomical dimensions!

Every floating-point operation is potentially in error. This brings to the fore the question of
whether the computed result really solves the given problem. The only way to answer this question
seriously is by using the computer itself. The capability of a computer should not be judged by the
number of operations it can perform in a certain amount of time without asking whether the computed
result is correct. It would be much more reasonable to ask how fast a computer can compute correctly
to 3, 5, 10 or 15 decimal places for certain problems. If the question were asked that way, it would
very soon lead to better computers. Mathematical methods that give an answer to this question are
available for very many problems. Computers, however, are at present not designed in a way that
allows these methods to be used effectively. The tremendous progress in computer technology since
1985 should be accompanied by improving the mathematical capacity of the computer. Old mechanic
calculators (section 8) are already pointing the way what can be done.

Modern processor architecture is coming considerably close to what is requested in this paper. See
[36], and in particular pp.1-1 to 1-3 and 2-5 to 2-6. These processors provide register space of 16 K
bits. Only about 4 K bits suffice for a complete register.
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