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Abstract

A new deterministic uncertainty-bearing floating-point arithmetic called
variance arithmetic is developed to predict the result uncertainty variance
for analytic functions. It is based on the central limit theorem and inde-
pendence of input uncertainties. It uses Taylor expansion to predict the
result value bias and uncertainty variance due to input uncertainty vari-
ances, and such prediction is precise if the input uncertainty variances are
all precise. For floating-point rounding errors, it predicts the result un-
certainty variance numerically within approximately 4-fold of the actual
result uncertainty variance.

Variance arithmetic tracks the correlations of input within analytic
expression using standard statistics through Taylor expansion. Due to this
dependency tracing, variance arithmetic allows no numerical execution
freedom, and it has no dependency on such freedoms. Variance arithmetic
rejects certain calculations such as inverting an input near zero on the
mathematical ground of the divergence of the result uncertainty variance,
which is also the statistical ground that either a distributional pole or a
distributional zero is in the input bounding ranges statistically.

Variance arithmetic has been showcased to be widely applicable, such
as for analytic calculations, progressive calculation, regressive generaliza-
tion, polynomial expansion, statistical sampling, and transformations.
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1 Introduction

1.1 Measurement Uncertainty [38]

Except for the simplest counting, scientific and engineering measurements never give
completely precise results [1][2]. In scientific and engineering measurements, the un-
certainty of a measurement x usually is characterized by either the sample deviation
δx or the uncertainty range ∆x [1][2].

� If δx = 0 or ∆x = 0, x is a precise value.

� Otherwise, x is an imprecise value.

P ≡ δx/|x| is defined as the statistical precision (or simply precision in this paper)
of the measurement, in which x is the value, and δx is the uncertainty deviation. A
larger precision means a coarser measurement while a smaller precision mean finer
measurement. The precision of measured values ranges from an order-of-magnitude
estimation of astronomical measurements to 10−2 to 10−4 of common measurements
to 10−14 of state-of-art measurements of basic physics constants [3].

1.2 Problem of Conventional Floating-Point Arithmetic
[38]

The conventional floating-point arithmetic [8][9][10] assumes a constant and best possi-
ble precision for each value all the time, and constantly generates artificial information
during the calculation [11]. For example, the following calculation is carried out pre-
cisely in integer format:

64919121× 205117922− 159018721× 83739041 =

13316075197586562− 13316075197586561 = 1; (1.1)

If Formula (1.1) is carried out using conventional floating-point arithmetic:

64919121× 205117922− 159018721× 83739041 =

64919121.000000000×205117922.000000000−159018721.000000000×83739041.000000000 =

13316075197586562.− 13316075197586560. = 2. = 2.0000000000000000; (1.2)

1. The multiplication results exceed the maximal significance of the 64-bit IEEE
floating-point representation. They are rounded off, generating rounding errors;

2. The normalization of the subtraction result amplifies the rounding error to most
significant bit (MSB) by padding zeros.

Formula (1.2) is a showcase for the problem of conventional floating-point arithmetic.
Because normalization happens after each arithmetic operation [8][9][10], such gen-
eration of rounding errors happens very frequently for addition and multiplication,
and such amplification of rounding errors happens very frequently for subtraction and
division. The accumulation of rounding errors is an intrinsic problem of conventional
floating-point arithmetic [12], and in the majority of cases such accumulation is almost
uncontrollable [11]. For example, because a rounding error from lower digits quickly
propagates to higher digits, the 10−7 precision of the 32-bit IEEE floating-point for-
mat [8][9][10] is usually not fine enough for calculations involving input data of 10−2

to 10−4 precision.
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Self-censored rules are developed to avoid such rounding error propagation [12][13],
such as avoiding subtracting results of large multiplication, as in Formula (1.2). How-
ever, these rules are not enforceable, and in many cases are difficult to follow, e.g.,
even a most carefully crafted algorithm can result in numerical instability after exten-
sive usage. Because the propagation speed of a rounding error depends on the nature
of a calculation itself, e.g., generally faster in nonlinear algorithms than linear algo-
rithms1 [14], propagation of rounding error in conventional floating-point arithmetic
is very difficult to quantify generically [15]. Thus, it is difficult to tell if a calculation
is improper or becomes excessive for a required result precision. In common practice,
reasoning on an individual theoretical base is used to estimate the error and validity
of calculation results, such as from the estimated transfer functions of the algorithms
used in the calculation [12][16][17]. However, such analysis is both rare and generally
very difficult to carry out in practice.

Today most experimental data are collected by an ADC (Analog-to-Digital Con-
verter) [5]. The result obtained from an ADC is an integer with fixed uncertainty; thus,
a smaller signal value has a coarser precision. When a waveform containing raw digi-
talized signals from ADC is converted into conventional floating-point representation,
the information content of the digitalized waveform is distorted to favor small signals
since all converted data now have the same and best possible precision. However, the
effects of such distortion in signal processing are generally not clear.

What is needed is a floating-point arithmetic that tracks precision automatically.
When the calculation is improper or becomes excessive, the results become insignif-
icant. Each existing uncertainty-bearing arithmetic is reviewed below, with the im-
provements by variance arithmetic pointed out.

1.3 Interval Arithmetic [38]

Interval arithmetic [13][18][19][20][21][22] is currently a standard method to track cal-
culation uncertainty. It ensures that the value x is absolutely bounded within its
bounding range [x] ≡ [x, x̄], in which x and x̄ are lower and upper bounds for x, re-
spectively. In this paper, interval arithmetic is simplified and tested as the following
arithmetic formulas2 [20]:

[x] + [y] = [x + y, x̄+ ȳ] ; (1.3)

[x]− [y] = [x− ȳ, x̄− y] ; (1.4)

[x]× [y] = [min(xy, xȳ, x̄y, x̄ȳ),max(xy, xȳ, x̄y, x̄ȳ)] ; (1.5)

0 /∈ [y] : [x] / [y] = [x]× [1/ȳ, 1/y] ; (1.6)

If interval arithmetic is implemented using a floating-point representation with
limited resolution, its resulting bounding range is widened further [19].

A basic problem is that the bounding range used by interval arithmetic is not
compatible with usual scientific and engineering measurements, which instead use
the statistical mean and deviation to characterize uncertainty [1][2]. Most measured
values are well approximated by a Gaussian distribution [1][2][4], which has no limited
bounding range. Let bounding leakage be defined as the possibility of the true value

1A classic example is the contrast of the uncertainty propagation in the solutions for the
2nd-order linear differential equation vs. in those of Duffing equation (which has a x3 term
in addition to the x term in a corresponding 2nd-order linear differential equation).

2For the mathematical definition of interval arithmetic, please see [22].
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to be outside a bounding range. If a bounding range is defined using a statistical rule
on bounding leakage, such as the 6σ − 10−9 rule for Gaussian distribution [4] (which
says that the bounding leakage is about 10−9 for a bounding range of mean ± 6-fold
of standard deviations), there is no guarantee that the calculation result will also obey
the 6σ−10−9 rule using interval arithmetic, since interval arithmetic has no statistical
foundation 3.

Another problem is that interval arithmetic only provides the worst case of un-
certainty propagation, so that it tends to over-estimate uncertainty. For instance,
in addition and subtraction, it gives the result when the two operands are +1 and
-1 correlated respectively [24]. However, if the two operands are -1 and +1 corre-
lated respectively instead, the actual bounding range after addition and subtraction
reduces, which is called the best case in random interval arithmetic [25]. The vast
overestimation of bounding ranges in these two worst cases prompts the development
of affine arithmetic [24][26], which traces error sources using a first-order model. Be-
ing expensive in execution and depending on approximate modeling even for such
basic operations as multiplication and division, affine arithmetic has not been widely
used. In another approach, random interval arithmetic [25] reduces the uncertainty
over-estimation of standard interval arithmetic by randomly choosing between the
best-case and the worst-case intervals.

A third problem is that the results of interval arithmetic may depend strongly
on the actual expression of an analytic function f(x). For example, Formula (1.7),
Formula (1.8) and Formula (1.9) are different expressions of the same f(x); however,
the correct result is obtained only through Formula (1.7), and uncertainty may be
exaggerated in the other two forms, e.g., by 67-fold and 33-fold at input range [0.49,
0.51] using Formula (1.8) and Formula (1.9), respectively. This is called the depen-
dence problem of interval arithmetic [21]. There is no known generic way to apply
Taylor expansion in interval arithmetic, so that the dependence problem is an intrinsic
problem for interval arithmetic.

f(x) = (x− 1/2)2 − 1/4; (1.7)

f(x) = x2 − x; (1.8)

f(x) = (x− 1)x; (1.9)

Interval arithmetic has very coarse and algorithm-specific precision but constant
zero bounding leakage. It represents the other extreme from conventional floating-
point arithmetic. To meet practical needs, a better uncertainty-bearing arithmetic
should be based on statistical propagation of the rounding error, while also allowing
reasonable bounding leakage for normal usages, which is achieved in variance arith-
metic, as show later in this paper.

As shown previously [38], interval arithmetic grossly exaggerates calculation un-
certainty, e.g., for f−1(f(x)) the result uncertainty is much larger than the original
uncertainty. On the other hand, as shown later in this paper, variance arithmetic pro-
vides stable bounding for a given bounding leakage, e.g., ±5-fold of the result deviation

3There is some attempt [23] to connect intervals in interval arithmetic to confidence interval
or the equivalent so-called p-box in statistics. Because this attempt seems to rely heavily on
1) specific properties of the uncertainty distribution within the interval and/or 2) specific
properties of the functions upon which the interval arithmetic is used, this attempt does not
seem to be generic. Anyway, this attempt seems to be outside the main course of interval
arithmetic, which has no statistics in mind.
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from the mean for a bounding leakage of 5.73× 10−7. Variance arithmetic is based on
statistics. It has no dependency problem.

1.4 Statistical Propagation of Uncertainty [38]

If each operand is regarded as a random variable, and the statistical correlation be-
tween the two operands is known, the resulting uncertainty is given by the statistical
propagation of uncertainty [27][28], with the following arithmetic equations, in which
σ is the deviation of a measured value x, P is its precision, and γ is the correlation
between the two imprecise values:

(x± δx) + (y ± δy) = (x+ y) ±
√

δx2 + δy2 + 2δxδyγ; (1.10)

(x± δx)− (y ± δy) = (x− y) ±
√

δx2 + δy2 − 2δxδyγ; (1.11)

(x± δx)× (y ± δy) = (x× y) ±|x× y|
√

Px
2 + P (y)2 + 2PxP (y)γ; (1.12)

(x± δx)/(y ± δy) = (x/y) ±|x/y|
√

Px
2 + P (y)2 − 2PxP (y)γ; (1.13)

Tracking uncertainty propagation statistically seems a better solution. However,
in practice, the correlation between two operands is generally not precisely known, so
the direct use of statistical propagation of uncertainty is very limited. As show later in
this paper, variance arithmetic is based on a statistical assumption much more lenient
than knowing the correlation between imprecise values.

1.5 Significance Arithmetic [38]

Significance arithmetic [32] tries to track reliable bits in an imprecise value during the
calculation. In the two early attempts [33][34], the implementations of significance
arithmetic are based on simple operating rules upon reliable bit counts, rather than
on formal statistical approaches. They both treat the reliable bit counts as integers
when applying their rules, while in reality, a reliable bit count could be a fractional
number [35], so they both can cause artificial quantum reduction of significance. The
significance arithmetic marketed by Mathematica [35] uses a linear error model that
is consistent with a first-order approximation of interval arithmetic [13][20][21], and
further provides an arbitrary precision representation which is in the framework of
conventional floating-point arithmetic. It is definitely not a statistical approach.

Stochastic arithmetic [15] [36], which can also be categorized as significance arith-
metic, randomizes the least significant bits (LSB) of each of input floating-point values,
repeats the same calculation multiple times, and then uses statistics to seek invariant
digits among the calculation results as significant digits. This approach may require
too much calculation since the number of necessary repeats for each input is specific
to each algorithm, especially when the algorithm contains branches. Its sampling
approach may be more time-consuming and less accurate than direct statistical char-
acterization [4], such as directly calculating the mean and deviation of the underlying
distribution. It is based on modeling rounding errors in conventional floating-point
arithmetic, which is quite complicated. A better approach may be to define arithmetic
rules that make error tracking by probability easier.

One problem of significance arithmetic is that itself can not properly specify the
uncertainty [38]. For example, if the least significand bit of significand is used to
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specify uncertainty, then the representation has very coarse precision, such as 1 ±
10−3 = 1024× 2−10 [38]. Introducing limited bits calculated inside uncertainty cannot
avoid this problem completely. Thus, the resolution of the conventional floating-point
representation is desired. This is the reason why variance arithmetic has abandoned
the significance arithmetic nature of its predecessor [38].

1.6 An Overview of This Paper

In this paper, a new floating-point arithmetic called variance arithmetic is developed
to track uncertainty during floating-point calculations of analytic functions:

1. Section 1 compares variance arithmetic with each known uncertainty-bearing
arithmetic.

2. Section 2 contains the theoretical foundation for variance arithmetic.

3. Section 3 contains standard and methodology to validate variance arithmetic.

4. Section 4 presents a new criterion to truncate an expansion.

5. Section 5 applies variance arithmetic to adjugate matrix and matrix inversion.

6. Section 6 applies variance arithmetic to process time-series data.

7. Section 7 associates result convergence in variance arithmetic with distributional
pole and distributional zero.

8. Section 8 tests variance arithmetic for the most common math library functions.

9. Section 9 focuses on the effect of numerical library errors and shows that such
library errors can be very significant, especially when they resonate with input
data.

10. Section 10 applies variance arithmetic to regression.

11. Section 11 provides a summary and some discussion for variance arithmetic.
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2 Variance arithmetic

2.1 Foundation for Variance Arithmetic

The statistical precision P (x) = δx/|x| represents the reliable information content
of a measurement statistically, with finer or smaller statistical precision means higher
reliability and better reproducibility of the measurement [1][2]. When 1 ≤ P (x), either
δx is too coarse to determine the actual value of x, or x± δx is a measurement of 0.

The inputs to variance arithmetic should obey the uncorrelated uncertainty as-
sumption [38], which means that the uncertainty of any input can be regarded as
uncorrelated of any other input uncertainty and all input values . This assumption is
consistent with the common methods in processing experimental data [1][2], such as
the common knowledge or belief that precision improves with the count n as 1/

√
n

during averaging. It is much weaker than requiring any two different inputs to be
independent of each other. It can be turned into a realistic and simple statistical
requirement or test between two inputs.

Taylor expansion can be used to calculate the result variance of analytic functions.

The uncorrelated uncertainty assumption only applies to imprecise inputs. When
the inputs obey the uncorrelated uncertainty assumption, in the intermediate steps,
variance arithmetic uses statistics to account for the correlation between uncertainties
through their associated variables. Therefore, variance arithmetic has no dependency
problem.

2.2 The Uncorrelated Uncertainty Assumption [38]

When there is a good estimation of the sources of uncertainty, the uncorrelated un-
certainty assumption can be judged directly, e.g., if noise [1][2] is the major source
of uncertainty, the uncorrelated uncertainty assumption is probably true. This crite-
rion is necessary to ascertain repeated measurements of the same signal. Otherwise,
the uncorrelated uncertainty assumption can be judged by the correlation and the
respectively precision of two measurements.

The correlated parts common to different measurements are regarded as signals,
which can either be desired or unwanted. Let X, Y , and Z denote three mutually
independent random variables [4] with variance V (X), V (Y ) and V (Z), respectively.
Let α denote a constant. Let Cov() denote the covariance function. Let γ denote the
correlation between (X + Y ) and (αX + Z). And let:

η2
1 ≡ V (Y )

V (X)
; η2

2 ≡ V (Z)

V (αX)
=

V (Z)

α2V (X)
; (2.1)

γ =
Cov(X + Y, αX + Z)√
V (X + Y )

√
V (αX + Z)

=
α/|α|√

1 + η2
1

√
1 + η2

2

≡ α/|α|
1 + η2

; (2.2)

Formula (2.2) gives the correlation γ between two random variables, each of which
contains a completely uncorrelated part and a completely correlated part X, with η
being the average ratio between these two parts. Formula (2.2) can also be interpreted
reversely: if two random variables are correlated by γ, each of them can be viewed hy-
pothetically as containing a completely uncorrelated part and a completely correlated
part, with η being the average ratio between these two parts 4.

4The widely used common factor analysis is also based on this principle.
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Figure 1: Effect of noise on bit values of a measured value. The triangular
wave signal and the added white noise are shown at top using the thin black
line and the grey area, respectively. The values are measured by a theoretical
4-bit Digital-to-Analog Converter in ideal condition, assuming LSB is the 0th
bit. The measured 3rd and 2nd bits without the added noise are shown using
thin black lines, while the mean values of the measured 3rd and 2nd bits with
the added noise are shown using thin grey lines. This figure has been published
previously [38].

Figure 2: Allowed maximal correlation between two values vs. input preci-
sions and independence standard (as shown in legend) for the independence
uncertainty assumption of variance arithmetic to be true. This figure has been
published previously [38].
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One special application of Formula (2.2) is the correlation between a measured
signal and its true signal, in which noise is the uncorrelated part between the two.
Figure 1 shows the effect of noise on the most significant two bits of a 4-bit measured
signal when η = 1/4. Its top chart shows a triangular waveform between 0 and 16 as
a black line, and a white noise between -2 and +2, using the grey area. The measured
signal is the sum of the triangle waveform and the noise. The middle chart of Figure
1 shows the values of the 3rd digit of the true signal as a black line, and the mean
values of the 3rd bit of the measurement as a grey line. The 3rd bit is affected by the
noise during its transition between 0 and 1. For example, when the signal is slightly
below 8, only a small positive noise can turn the 3rd digit from 0 to 1. The bottom
chart of Figure 1 shows the values of the 2nd digit of the signal and the measurement
as a black line and a grey line, respectively. Figure 1 clearly shows that the correlation
between the measurement and the true signal is less at the 2nd digit than at the 3rd
digit. Quantitatively, according to Formula (2.2):

1. The overall measurement is 99.2% correlated to the signal with η = 1/8;

2. The 3rd digit of the measurement is 97.0% correlated to the signal with η = 1/4;

3. The 2nd digit of the measurement is 89.4% correlated to the signal with η = 1/2;

4. The 1st digit of the measurement is 70.7% correlated to the signal with η = 1;

5. The 0th digit of the measurement is 44.7% correlated to the signal with η = 2.

The above conclusion agrees with the common experiences that, below the noise level
of measured signals, noises rather than true signals dominate each digit.

Similarly, while the correlated portion between two values has the same value at
each bit of the two values, the ratio of the uncorrelated portion to the correlated
portion increases by 2-fold for each bit down from MSB of the two values. Quantita-
tively, let P denote the precision of an imprecise value, and let ηP denote the ratio
of the uncorrelated portion to the correlated portion at level of uncertainty; then ηP
increases with decreased P according to Formula (2.3). According to Formula (2.2),
if two significant values are overall correlated with γ, at the level of uncertainty the
correlation between the two values decreases to γP according to Formula (2.4).

ηP =
η

P
, P < 1; (2.3)

1

γP
− 1 =

(
1

γ
− 1

)
1

P 2
, P < 1; (2.4)

Figure 2 plots the relation of γ vs. P for each given γP in Formula (2.4). When γP
is less than a predefined maximal threshold (e.g., 2%, 5% or 10%), the two values can be
deemed uncorrelated to each other at the level of uncertainty. For each independence
standard γP , there is a maximal allowed correlation between two values below which
the uncorrelated uncertainty assumption of variance arithmetic holds. The maximal
allowed correlation is a function of the larger precision of the two values according to
Formula (2.4). Figure 2 shows that for two precisely measured values, their correlation
γ is allowed to be quite high. Thus, the uncorrelated uncertainty assumption has much
weaker statistical requirement than the assumption for independence arithmetic, which
requires the two values to be independent of each other.

It is tempting to add noise to otherwise unqualified values to make them satisfy
the uncertainties uncertainty assumption. As an extreme case of this approach, if two
values are constructed by adding noise to the same signal, they are 50% correlated
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Figure 3: The probability distribution Pn
2
(x) of Formula (2.6), assuming P 1

2
(x)

is uniformly distributed between (−1/2,+1/2). The legend shows n. P2(x) is
already close to the corresponding Gaussian distribution with the same mean
and deviation, which is plotted in dash line of the same color. This figure has
been published previously [38].

at the uncertainty level so that they will not satisfy the uncorrelated uncertainty
assumption, which defines the upper bound for γP .

5

2.3 Pure Rounding

Theoretically, the pure rounding error due to round-off is generally shown to be uni-
formly distributed between the half bit of the least significant bit of the siginficand
[38], whose probability density function is shown in Formula (2.5):

P 1
2
(x) ≡ 1, −1/2 ≤ x ≤ +1/2; (2.5)

2.4 Addition and Subtraction [38]

The uncorrelated uncertainty assumption suggests that the result error distribution
density function of addition or subtraction is the convolution of the input density
functions [4].

Pn
2
(x) ≡

∫ +∞

−∞
P 1

2
(y)Pn−1

2
(x− y)dy =

∫ +1/2

−1/2

Pn−1
2

(x− y)dy, n = 2, 3, 4 . . . ; (2.6)

5The 50% curve in Figure 2 defines the maximal possible correlations between any two
measured signals. This other conclusion of Formula (2.4) makes sense because the measurable
correlation between two measurements should be limited by the precision of their measure-
ments.
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Figure 3 shows the probability distribution Pn
2
(x) of Formula (2.6). P2(x) is already

close to the corresponding Gaussian distribution with the same mean and deviation,
which is plotted in dash line of the same color.

The Lyapunov form of the central limit theorem [4] states that if Xi is a random
variable with mean µi and variance Vi for each i among a series of n mutually indepen-

dent random variables, then with increased n, the sum
n∑
i

Xi converges in distribution

to the Gaussian distribution with mean
n∑
i

µi and variance
n∑
i

Vi. Applying the central

limit theorem to the addition and subtraction:

� Pn/2(x) converges in distribution to a Gaussian distribution.

� Figure 3 shows that such convergence to Gaussian distribution is very quick.

� The stable rounding error distribution is independent of any initial rounding
error distribution.

Also due to the center-limit theorem, uncertainty in general is expected to be
Gaussian distributed [1] [4]. The rounding error distribution is extended to describe
uncertainty distribution in general.

For simplicity, define operator δ2f(x) ≡ (δf(x))2. Formula (2.7) gives the result
variance of addition and subtraction surrounding x± y. Formula (2.8) gives the prob-
ability density function for x± δx in general, in which N(x) is the density function of
the Normal distribution [4]. Formula (2.8) can be normalized as Formula (2.9).

δ2(x± y) = (δx)2 + (δy)2; (2.7)

ρ(x̃, x, δx) =
1

δx
N(

x̃− x

δx
); (2.8)

z̃ ≡ x̃− x

δx
: ρ(x̃, x, δx)dx̃ = N(z̃)dz̃; (2.9)

Formula (2.7) is different from Formula (1.10) and (1.11), because in variance arith-
metic, the correlation between x and y does not contribute to the result distribution
as far as the uncorrelated uncertainty assumption is satisfied.

2.5 A Variance Representation

A variance arithmetic representation uses a pair of 64-bit standard floating-point num-
bers to represent the value x and the variance (δx)2 of an imprecise value x±δx. When
the uncertainty δx is not specified initially:

� For an integer value:

– If it is within the range of [−253 + 1,+253 − 1], it has 0 as its uncertainty;

– Otherwise, it is converted to a conventional floating-point value, whose
rounding error is the uncertainty.

� For a 64-bit standard floating-point value 6:

– If its least 22 bits are all 0, it has 0 as its uncertainty, which is a 2’s
fractional value down to 10−9 for 1− 2.384 10−7 probability;

6including the hidden bit.
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– Otherwise, it is assumed to be imprecise in the least significant bit of its
53-bit significand , and the error is assumed uniformly distributed within
the bit.

The equivalent floating-point value of the least significant bif of significand of a floating-
point value is defined as the least significant value 7, so that the uncertainty is 1/

√
3-

fold of the least significant value. The term least significant value can be abbreviated
as LSV for simplicity.

2.6 Comparison

Two imprecise values can be compared statistically using their difference.

When the value difference is zero, the two imprecise values are equal. In statistics,
such two imprecise values have 50% possibility to be less than or greater to each other
but no chance to be equal to each other [4]. In variance arithmetic, these two imprecise
values are neither less nor greater than each other, so they are equal. In reality, the
probability of two values equal exactly to each other is very low.

Otherwise, the standard z-method [4] is used to judge whether they are equal,
or less or more than each other. For example, the difference between 1.002 ± 0.001
and 1.000 ± 0.002 is 0.002 ± 0.00224, so that the z-value for the difference is z =
0.002/0.00224, and the probability for them to be not equal is 2ξ(|z|) = 62.8%, in which
ξ(z) is the cumulative density function for Normal distribution [4]. If the threshold
probability of not equality is 50%, 1.000 ± 0.002 < 1.002 ± 0.001. Instead of using
the threshold probability, the equivalent bounding range for z can be used, such as
|z| ≤ 0.67448975 for the equal threshold probability of 50%.

2.7 Multiplication

The result variance of multiplying x±δx by a precise value y is y2δ2x [4]. The result of
multiplying 0±δx by 0±δy is a normal production distribution [4], which is centered at
0 with variance (δx)2(δy)2. The general multiplication can be decomposed as Formula
(2.10), which leads to Formula (2.11) [38].

(x± δx)× (y ± δy) = (x+ (0± δx))× (y + (0± δy)); (2.10)

δ2(xy) = x2(δy)2 + y2(δx)2 + (δx)2(δy)2; (2.11)

Formula (2.11) is identical to Formula (1.12) for statistical propagation of uncer-
tainty except their cross term, representing difference in their statistical requirements,
respectively. Formula (2.11) is simpler and more elegant than Formula (1.5) for in-
terval arithmetic multiplication. The result of Formula (1.2) calculated by variance
arithmetic is 2± 2

√
5. It is 2± 9 for interval arithmetic.

2.8 Distributional Zero and Distributional Pole

Let ỹ = f(x̃) be a strictly monotonic function, so that x̃ = f−1(ỹ) exist. Formula
(2.12) is the uncertainty distribution density function [1]. In Formula (2.12), the same
distribution can be expressed in either x̃ or ỹ or z̃ , which are different representations

7Together with least significant bit, it is a more indicative name for “unit in the last place”.
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Figure 4: The probability density function for (x± 1)2, for different x as shown
in the legend. The y-axis is scaled as

√
ỹ. Some probability density function

ρ(x̃) in solid line is compared with a Normal distribution N(x̃) of the same
mode in the dash line of the same color. The legend for the Normal distribution
shows the value of Normal difference in percentage.

Figure 5: The probability density function for ỹ =
√
x± 1, for different x as

shown in the legend. The x-axis is scaled as ỹ2. Each probability density
function ρ(x̃) in solid line is compared with a Normal distribution N(x̃) of the
same mode in the dash line of the same color. The legend for the Normal
distribution shows the value of Normal difference in percentage.
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of the same underlying random variable. Using Formula (2.12), Formula (2.13), (2.14),
and (2.15) give the ρ(ỹ, y, δy) for ex, ln(x), and xc, respectively.

N(z̃)dz̃ = ρ(x̃, x, δx)dx̃ = ρ(f−1(ỹ), x, δx)
dx̃

dỹ
dỹ = ρ(ỹ, y, δy)dỹ; (2.12)

y = ex : ρ(ỹ, y, δy) =
1

ỹ

1

δx
N(

ln(ỹ)− x

δx
); (2.13)

y = ln(x) : ρ(ỹ, y, δy) = eỹ
1

δx
N(

eỹ − x

δx
); (2.14)

y = xc : ρ(ỹ, y, δy) = cỹ
1
c
−1 1

δx
N(

ỹ
1
c − x

δx
); (2.15)

Viewed in the f−1(ỹ) coordinate, ρ(ỹ, y, δy) is Gaussian modulated by dx̃
dỹ

= 1/f
(1)
x .

A distributional pole of the uncertainty distribution happens when f
(1)
x = ∞ →

ρ(ỹ, y, δy) = 0, while a distributional zero happens when f
(1)
x = 0 → ρ(ỹ, y, δy) = ∞.

Zeros and poles have different impacts on the properties of of the uncertainty distri-
butions.

� If y = f(x) is a linear transform of x, f
(1)
x is a constant, and ρ(ỹ, y, δy) is known

to be Gaussian [4]. From another perspective, a linear transformation generates
neither distributional zero nor distributional pole according to Formula (2.12).

� Figure 4 shows the probability density function for (x±1)2 according to Formula
(2.15), which has a distributional zero at x = 0 that separates two defined region
x ≥ 0 and x ≤ 0. (0± 1)2 is the χ2 distribution [1].

� Figure 5 shows the probability density function for
√
x± 1 according to Formula

(2.15), which has a distributional pole at x = 0.

In all the figures, the probability density function in the z̃ representation becomes
more Normal-like when the mode of the distributions is further away from either
distributional zero or distributional pole.

Formula (2.12) gives the uncertainty distribution of an analytic function. However,
normal scientific and engineering calculations usually do not care about the result
distribution, but just some simple statistics of the result, such as the result mean
and deviation [1] [2]. When the underlying distribution can be simplified as Normal
distribution, such simple statistics can be obtained using Taylor expansion.

2.9 Analytic Functions

2.9.1 Uncertainty of Taylor Expansion

An analytic function f(x) can be precisely calculated in a range by the Taylor series
as shown in Formula (2.16). Using Formula (2.9), Formula (2.19) and (2.20) [38] gives
the mean f(x) and the variance δ2f(x), respectively, in which ζ(n) is the variance
momentum defined by Formula (2.17), and σ is defined as the bounding factor. f(x)−
f(x) is defined as the uncertainty bias which is the effect of the input uncertainty to
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the result.

ỹ = f(x+ x̃) = f(x+ z̃δx) =

∞∑
n=0

f
(n)
x

n!
z̃n(δx)n; (2.16)

ζ(n) ≡
∫ +σ

−σ

z̃nN(z̃)dz̃; (2.17)

ζ(2n+ 1) = 0; (2.18)

f(x) =

∫ +σ

−σ

f(x+ z̃δx)N(z̃)dz̃ = f(x) +

∞∑
n=1

(δx)2n
f
(2n)
x ζ(2n)

(2n)!
; (2.19)

δ2f(x) = f(x)2 − f(x)
2
=

∞∑
n=0

(δx)2n (2.20)(
ζ(2n)

2n−1∑
j=1

f
(j)
x

j!

f
(2n−j)
x

(2n− j)!
−

n−1∑
j=1

f
(2j)
x ζ(2j)

(2j)!

f
(2n−2j)
x ζ(2n− 2j)

(2n− 2j)!

)
;

To deduce Formula (2.19) from Formula (2.16), according to Formula (2.18), x̃2n →
ζ(2n)(δx)2n and x̃2n+1 → 0 .

2.9.2 Multiple Dimensional Expansion

Due to uncorrelated uncertainty assumption, the Taylor expansion can be applied to
multiple inputs, such as Formula (2.23) [38] .

f(x+ x̃, y + ỹ) =

∞∑
m=0

∞∑
n=0

f
(m,n)

(x,y)

m!n!
x̃mỹn; (2.21)

f(x, y) =

∫ ∫
f(x+ x̃, y + ỹ)ρ(x̃, x, δx)ρ(ỹ, y, δy) dx̃dỹ (2.22)

=

∞∑
m=0

∞∑
n=0

(δx)2m(δy)2n
ζ(2m)ζ(2n)f

(2m,2n)

(x,y)

(2m)!(2n)!
;

δ2f(x, y) = f(x, y)2 − f(x, y)
2
=

∞∑
m=0

∞∑
n=0

(δx)2m(δy)2n (2.23)

(ζ(2m)ζ(2n)

2m∑
i=0

2n∑
j=0

f
(i,j)

(x,y)

i! j!

f
(2m−i,2n−j)

(x,y)

(2m− i)! (2n− j)!

−
m∑
i=0

n∑
j=0

ζ(2i)ζ(2j)f
(2i,2j)

(x,y)

(2i)!(2j)!

ζ(2m− 2i)ζ(2n− 2j)f
(2m−2i,2n−2j)

(x,y)

(2m− 2i)!(2n− 2j)!
);

Formula (2.7) and (2.11) are two special cases of Formula (2.23). Although Formula
(2.23) is only for 2-dimensional, it can be extended to any dimensional. Because the
Taylor expansions for x/y and x 1/y are identical, x/y = x 1/y.

2.9.3 Bounding Factor and Bounding Leakage

Formula (2.17) provides statistical bounding x̃ ∈ (x−σδx, x+σδx). The choice of the
bounding factor σ needs careful considerations. If σ = ∞, ζ(2n) = (2n − 1)!!, which
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Figure 6: The value of variance momentum ζ(2n) vs the expansion order 2n
when σ = 5. Also included are the uncertainty of the ζ(2n) due to rounding
errors, 2(n− 1)!!, and the linear fit of the ζ(2n) value, which use y-axis on the
left. The percentage difference between the linear fit and ζ(2n) also included,
which use y-axis on the right.

may cause Formula (2.20) to diverge in most cases. When σ is limited, Formula (2.17)
becomes Formula (2.24):

� For small 2n, ζ(2n) can be approximated by ζ(2n) = (2n − 1)!! according to
Formula (2.25).

� For large 2n, Formula (2.24) reduces to Formula (2.26), which shows that ζ(2n)
increases slower than σ2n for increasing 2n.

ζ(2n) = 2N(σ)σ2n
∞∑
j=1

σ2j−1 (2n− 1)!!

(2n− 1 + 2j)!!
; (2.24)

= (2n− 1)ζ(σ, 2n− 2)− 2N(σ)σ2n−1; (2.25)

σ2 ≪ 2n : ζ(2n) ≃ 2N(σ)
σ2n+1

2n+ 1
; (2.26)

The property of ζ(2n) when σ2 ≪ 2n is not sensitive to the underlying uncer-

tainty distribution. If the Normal distribution N(z̃) in Formula (2.17) is replaced by
a uniform distribution between [−σ,+σ], Formula (2.27) is similar to Formula (2.26):

ζ(2n) ≡
∫ +σ

−σ

1

2σ
z̃2ndz̃ = 2

1

2σ

σ2n+1

2n+ 1
; (2.27)

The limited range of x̃ ∈ (−σδx,+σδx) in Formula (2.17) causes a bounding
leakage ϵ according to Formula (2.28), in which ξ(z) is the cumulative density function
for Normal distribution [4]. When σ = 5, ϵ = 5.73 × 10−7, which is small enough for
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most applications. σ = 5 is also a golden standard to assert a negative result [2].

ϵ = 2− 2ξ(
1

2
+ σ); (2.28)

Thus, σ = 5 in variance arithmetic.
Figure 6 shows the value and uncertainties of the corresponding ζ(2n), as well as

its linear increase with 2n when σ2 ≪ 2n. The difference between ζ(2n) and the linear
fit suggests systematic error, confirming Formula (2.26). When 2n < 20, ζ(2n) can
be well approximated by (2n− 1)!!, so that both uncertainty and uncertainty bias are
almost independent of σ except for their convergence. Formula (2.20) and (2.23) can
be approximated as Formula (2.29) and (2.30), respectively.

δ2f(x) ≃ (δx)2(f (1)
x )2 + (δx)4

(
f (1)
x f (3)

x +
1

2
(f (2)

x )2
)

(2.29)

+ (δx)6
(
1

4
f (1)
x f (5)

x +
1

2
f (2)
x f (4)

x +
5

12
(f (3)

x )2
)
;

δ2f(x, y) ≃ (δx)2(f
(1,0)

(x,y))
2 + (δy)2(f

(0,1)

(x,y))
2 (2.30)

+

(
δx)4f

(1,0)

(x,y)(
1

2
f
(2,0)

(x,y) + f
(3,0)

(x,y)

)
+ (δy)4

(
1

2
f
(0,2)

(x,y) + f
(0,1)

(x,y)f
(0,3)

(x,y)

)
+ (δx)2(δy)2

(
(f

(1,1)

(x,y))
2 + f

(0,1)

(x,y)f
(2,1)

(x,y) + f
(1,0)

(x,y)f
(1,2)

(x,y)

)
;

2.9.4 One-dimensional Examples

Formula (2.32) and (2.33) give the uncertainty bias and variance for ex, respectively:

ex+x̃ = ex
∞∑

n=0

x̃n

n!
; (2.31)

ex

ex
= 1 +

∞∑
n=1

(δx)2nζ(2n)
1

(2n)!
; (2.32)

δ2ex

(ex)2
=

∞∑
n=1

(δx)2n
(

2n−1∑
j=1

ζ(2n)

j! (2n− j)!
−

n−1∑
j=1

ζ(2j)

(2j)!

ζ(2n− 2j)

(2n− 2j)!

)
(2.33)

= (δx)2 +
3

2
(δx)4 +

7

6
(δx)6 +

5

8
(δx)8 + o((δx)10); (2.34)

Formula (2.36) and (2.37) give the uncertainty bias and variance for ln(x), respec-
tively:

ln(x+ x̃)− ln(x) = ln(1 +
x̃

x
) =

∞∑
j=1

(−1)j+1

j

x̃j

xj
; (2.35)

ln(x) = ln(x)−
+∞∑
n=1

P (x)2n
ζ(2n)

2n
; (2.36)

δ2 ln(x) =

+∞∑
n=1

P (x)2n
(

2n−1∑
j=1

ζ(2n)

j(2n− j)
−

n−1∑
j=1

ζ(2j)

2j

ζ(2n− 2j)

2n− 2j

)
(2.37)

= P (x)2 + P (x)4
9

8
+ P (x)6

119

24
+ P (x)8

991

32
+ o(P (x)10); (2.38)



20 CP Wang, Variance Arithmetic

Formula (2.40) and (2.41) give the uncertainty bias and variance for sin(x), re-
spectively:

sin(x+ x̃) =

∞∑
n=0

sin(x)(−1)n
x̃2n

(2n)!
+

∞∑
n=0

cos(x)(−1)n
x̃2n+1

(2n+ 1)!
; (2.39)

sin(x) = sin(x) + sin(x)

∞∑
n=0

(δx)2n(−1)n
ζ(2n)

(2n)!
; (2.40)

δ2 sin(x) =

∞∑
n=1

(δx)2n(−1)n−1 (2.41)(
cos(x)2

n−1∑
j=0

ζ(2n)

(2j + 1)!(2n− 2j − 1)!
− sin(x)2

n−1∑
j=1

ζ(2n)− ζ(2j)ζ(2n− 2j)

(2j)!(2n− 2j)!

)

= (δx)2 cos(x)2 − (δx)4(cos(x)2
3

2
− 1

2
) + (δx)6(cos(x)2

7

6
− 1

2
) + o((δx)8);

(2.42)

Formula (2.44) and (2.45) give the uncertainty bias and variance for xc, respec-

tively, in which

(
c
n

)
=

∏n−1
j=0 (c−j)

n!
:

(x+ x̃)c = xc(1 +
x̃

x
)c = xc + xc

∞∑
n=1

x̃n

xn

(
c
n

)
; (2.43)

xc

xc
= 1 + 1

∞∑
n=1

P (x)2nζ(2n)

(
c
2n

)
; (2.44)

δ2xc

(xc)2
=

∞∑
n=1

P (x)2n
(

2n−1∑
j=1

ζ(2n)

(
c
j

)(
c

2n− j

)
−

n−1∑
j=1

ζ(2j)

(
c
2j

)
ζ(2n− 2j)

(
c

2n− 2j

))
(2.45)

= c2P (x)2 +
3

2
c2(c− 1)(c− 5

3
)P (x)4 +

7

6
c2(c− 1)(c− 2)2(c− 16

7
)P (x)6 + o(P (x)8);

(2.46)

As special cases for Formula (2.44) and (2.45), (2.47), (2.48), (2.49), (2.50), (2.51),
(2.52), (2.53), and (2.54) give the mean and variance for x2,

√
x, 1/x, and 1/x2,

respectively:

x2 = x2 + (δx)2; (2.47)

δ2x2 = 4x2(δx)2 + 2(δx)4; (2.48)
√
x√
x

= 1− 1

8
P (x)2 − 15

128
P (x)4 − 315

1024
P (x)6 + o(P (x)8); (2.49)

δ2
√
x

(
√
x)2

=
1

4
P (x)2 +

7

32
P (x)4 +

75

128
P (x)6 + o(P (x)8); (2.50)
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1/x

1/x
= 1 + P (x)2 + 3P (x)4 + 15P (x)6 + o(P (x)8); (2.51)

δ21/x

(1/x)2
= P (x)2 + 8P (x)4 + 69P (x)6 + o(P (x)8); (2.52)

1/x2

1/x2
= 3P (x)2 + 15P (x)4 + 105P (x)6 + o(P (x)8); (2.53)

δ21/x2

(1/x2)2
= 4P (x)2 + 66P (x)4 + 960P (x)6 + o(P (x)8); (2.54)

The variance formulas using Taylor expansion show the nature of the calculation,
such as δx → P (ex), δx → δ sin(x), P (x) → P (xc), and P (x) → δ ln(x), and the
difference speed of variance increases of xc depending on different c. Section 7 will
discuss the convergence of Formula (2.33), (2.37), (2.41), and (2.45), as well as the
statistical context for the convergence in details.

2.10 Dependency Tracing

δ2(f + g) = δ2f + δ2g + 2(fg − fg); (2.55)

δ2(fg) = f2g2 − fg
2
; (2.56)

δ2f(g) = f(g)2 − f(g)
2
; (2.57)

δ2(c1f + c0) = c21δ
2f ; (2.58)

When all the inputs obey the uncorrelated uncertainty assumption, variance arith-
metic uses statistics to trace dependency in the intermediate steps. By convention,
variance arithmetic treats different input variables as imprecise values satisfying un-
correlated uncertainty assumption. For example:

� Formula (2.55) shows δ2(f +g), whose dependence tracing can be demonstrated
by δ2(f−f) = 0, and δ2(f(x)+g(y)) = δ2f+δ2g, with the latter case correspond-
ing to Formula (2.7). Formula (2.59) shows that Formula (2.20) uses Formula
(2.55) between any two terms in the Taylor expansion of Formula (2.16).

� Formula (2.56) shows δ2(fg), whose dependence tracing can be demonstrated by

δ2(f/f) = 0, δ2(ff) = δ2f2, and δ2(f(x)g(y)) = f
2
(δ2g)+(δ2f)g2+(δ2f)(δ2g),

with the latter case corresponding to Formula (2.11).

� Formula (2.57) shows δ2f(g(x)), whose dependence tracing can be demonstrated
by δ2(f−1(f)) = (δx)2.

� Formula (2.58) shows the variance of linear transformation of a function, which
can be applied to Formula (2.55) and (2.56) for more generic dependency tracing.

δ2
(
f
(m)
x x̃m

m!
+

f
(n)
x x̃n

n!

)
= (δx)2m(

f
(m)
x

m!
)2η(2m) + (δx)2n(

f
(n)
x

n!
)2η(2n) (2.59)

+ 2(δx)m+n

(
f
(m)
x f

(n)
x

m! n!
η(m+ n)− f

(m)
x

m!
η(m)

f
(n)
x

n!
η(n)

)
;

Variance arithmetic uses dependency tracing to guarantee that the result uncer-
tainty bias and uncertainty fit statistics. Dependency trading comes with a price:
variance calculation is generally much more complex than value calculation.
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2.11 Traditional Execution and Dependency Problem

Dependency tracing requires an analytic solution to apply Taylor expansion for the
result mean and variance, such as using Formula (2.20) and (2.23). It conflicts with
traditional numerical executions on analytic functions:

� Traditionally, using intermediate variables is a common practice. But it upsets
dependency tracing through variable usage.

� Traditionally, conditional executions are used to optimize numerical executions
and to minimize rounding errors, such as the Gaussian elimination to mini-
mize floating-point rounding errors for matrix inversion [45]. Unless required by
mathematics such as for the definition of identity matrix, conditional executions
need to be removed for dependency tracing, e.g., Gaussian elimination needs to
be replaced by direct matrix inversion as described in Section 5.

� Traditionally, approximations on the result values are carried out during ex-
ecutions. Using variance arithmetic, Formula (2.20) shows that the variance
converges much slower than that of the value in Taylor expansion, so that the
target of approximation should be more on the variance. Section 5 provides an
example of first order approximation on calculating matrix determinant.

� Traditionally, results from math library functions are trusted blindly down to
every bit. As shown in Section 9, variance arithmetic can now illuminate the
numerical errors in math library functions, and demands these functions to be
recalculated with uncertainty as part of the output.

� Traditionally, an analytic expression can be broken down into simpler and inde-
pendent arithmetic operations of negation, addition, multiplication, and division
8. But this is no longer true for uncertainty-bearing arithmetic. For example, if
x2−x is calculated as Formula (1.7), (1.8), and (1.9) using Formula (2.7), (2.11),
and (2.48) as separated and independent arithmetic operations, only Formula
(1.7) gives the correct result because the input variable x appears only once,
while the other two give wrong results for wrong independence assumptions, re-
spectively, as shown in Table 1. In variance arithmetic, Taylor expansion unifies
different analytic expressions of the same function, to give the same result 9.

� Traditionally, a large calculation may be broken into sequential steps, such as
calculating f(g(x)) as f(y)|y=g(x). But this method may no longer work in
variance arithmetic due to dependency tracing of g(x) inside f(g(x)). δ2f(g(x))
is calculated as Formula (2.60), which is different from Formula (2.61) for δ2f(x)
with x = g(x) and δ2x = δ2g(x). The result of Formula (2.61) depends on the
sequence of the composite functions, such as the difference between Formula
(2.62) and (2.63). In contrast, the result of Formula (2.60) is not sequence
dependent.

8Sometimes square root is also regarded as an arithmetic operation.
9Until now, Taylor expansion cannot be used as a general method in interval arithmetic.
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Table 1: The dependency problem when applying variance arithmetic without
dependency tracing for x2 − x when the input variance is (δx)2. The correct
result variance is (2x− 1)2(δx)2 + 2(δx)4.

Formula Result difference Wrong independence
(1.7) 0
(1.8) 4x(δx)2 between x2 and x
(1.9) −(2x2 − 2x)(δx)2 − (δx)4 between x− 1 and x

δ2f(g(x)) ≃ (δx)2(f (1)
x g(1)x )2 (2.60)

+ (δx)4
(
(f (1)

x )2(g(1)x g(3)x +
1

2
(g(2)x )2) +

1

2
(f (2)

x )2(g(1)x )4
)

+ (δx)4
(
f (1)
x f (2)

x (g(1)x )4 + 4f (1)
x f (2)

x (g(1)x )2g(2)x

)
+ o((δx)6);

δ2f(x)|x=g(x), (δx)2=δ2g(x) ≃ (δx)2(f (1)
x g(1)x )2 (2.61)

+ (δx)4
(
(f (1)

x )2(g(1)x g(3)x +
1

2
(g(2)x )2) +

1

2
(f (2)

x )2(g(1)x )4
)

+ (δx)4
(
f (1)
x f (3)

x (g(1)x )4
)
+ o((δx)6);

δ2y2|y=√
x, (δy)2=δ2

√
x ≃ (δx)2 +

9

2
(δx)4; (2.62)

δ2
√
y|y=x2, (δy)2=δ2x2 ≃ (δx)2 +

9

8
(δx)4; (2.63)

Many traditional numerical algorithms are pure numerical, such as numerical equa-
tion root finding and Monte Carlo simulation. Although they cannot be described
analytically, their results usually have clear uncertainties, such as the uncertainty for
the root. Variance arithmetic cannot apply to their execution but can ingest their
results.

When the dependency tracing is not applied strictly, variance arithmetic will have
dependency problem. Dependency tracing gets rid of almost all freedoms in the tra-
ditional numerical executions, as well as the associated dependence problems. All
traditional numerical algorithms need to be reexamined or reinvented for variance
arithmetic.
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3 Verification of Variance arithmetic

3.1 Verification Methods and Standards

Analytic functions or algorithms each with precisely known results are used to validate
the result from variance arithmetic using the following statistical properties:

� value error : as the difference between the numerical result and the corresponding
known precise analytic result.

� normalized error : as the ratio of a value error to the corresponding uncertainty.

� error deviation: as the standard deviation of the normalized errors.

� error distribution: as the histogram of the normalized errors.

� uncertainty mean: as the mean of the result uncertainties.

� uncertainty deviation: as the deviation of the result uncertainties.

� error response: as the relation between the input uncertainties and the result
uncertainties.

� calculation response: as the relation between the amount of calculation and the
result uncertainties.

One goal of calculation involving uncertainty is to precisely account for all input
errors from all sources, to achieve ideal coverage. In the case of ideal coverage:

1. The error deviation is exactly 1.

2. The central limit theorem converges the result error distribution toward Normal
distribution, unless at a distributional zero, or the expected result is zero. When
the expected result is zero, the result error distribution is Delta distribution.

3. The error response fits the function, such as a linear error response is expected
for a linear function.

4. The calculation response fits the function, such as more calculations generally
result in larger result uncertainties.

If instead, the input uncertainty is only correct for the input errors on the order of
magnitude, the proper coverage is achieved when the error deviations are in the range
of [0.1, 10].

When an input contains unspecified errors, such as floating-point rounding errors,
or numerical errors of library functions, Gaussian or white noises of increasing devia-
tions can be added to the input, until ideal coverage is reached. The needed minimal
noise deviation gives a good estimation of the amount of unspecified input uncertain-
ties. The existence of ideal coverage is a necessary verification if variance arithmetic
correctly tracks the result uncertainty. The input noise range for the idea coverage
defines the ideal application range of input uncertainties.

Gaussian or white noises of specified deviations can also be added to the input to
measure the error responses of a function.

3.2 Types of Uncertainties

There are five sources of result uncertainty for a calculation [1][12]:

� input uncertainties,

� rounding errors,
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� truncation errors,

� external errors,

� modeling errors.

The examples in this paper show that when the input uncertainty precision is
10−15 or larger, variance arithmetic can provide ideal coverage for input uncertainties.

Empirically, variance arithmetic can provide proper coverage to rounding errors,
with the error deviations in the range of [0.5, 2].

Section 4 shows that variance arithmetic no longer needs theoretical reminder
estimator. Instead, it uses stability truncation, to guarantee that the truncation error
is statistically small enough for the result uncertainty.

The external errors are the value errors which are not specified by the input uncer-
tainties, such as the numerical errors in the library math functions. Section 9 studies
the effect of sin and tan numerical errors. It demonstrates that when the external
errors are large enough, neither ideal coverage nor proper coverage can be achieved.
It shows that the library functions need to be recalculated to have corresponding
uncertainty attached to each value.

The modelling errors arise when an approximate analytic solution is used, or when
a real problem is simplified to obtain the solution. For example, Section 9 demonstrates
that the discrete Fourier transformation is only an approximation for the mathemat-
ically defined Fourier transformation. Conceptually, modelling errors originate from
mathematics, so they are outside the domain for variance arithmetic.

3.3 Types of Calculations to Verify [38]

Algorithms of completely different nature with each representative for its category are
needed to test the generic applicability of variance arithmetic. An algorithm can be
categorized by comparing the amount of its input and output data:

� application,

� transformation,

� generation,

� reduction.

An application algorithm calculates numerical values from an analytic formula.
Through Taylor expansion, variance arithmetic is directly applicable to application
problems.

A transformation algorithm has about equal amounts of input and output data.
The information contained in the data remains about the same after transforming. For
reversible transformations, a unique requirement for variance arithmetic is to introduce
the least amount of additional uncertainty after a round-trip transformation which
is a forward followed by a reverse transformation. The errors after the roundtrip
transformation should be Delta distributed with 0 error deviation 10. Discrete Fourier
Transformation is a typical reversible transforming algorithm, which contains the same
amount of input and output data, and its output data can be transformed back to the
input data using essentially the same algorithm. A test of variance arithmetic using
FFT algorithms is provided in Section 9.

10When noises are added to the original input signal, the value errors should be the results
minus the overall input data. The previous approaches [38] used the original input data
wrongly.
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A generation algorithm has much more output data than input data. The gen-
erating algorithm codes mathematical knowledge into data, so there is an increase of
information in the output data. Some generating algorithms are theoretical calcula-
tions which involve no imprecise input so that all result uncertainty is due to rounding
errors. Section 10 demonstrates such an algorithm, which calculates a table of the
sine function using trigonometric relations and two precise input data, sin(0) = 0 and
sin(π/2) = 1.

A reduction algorithm has much less output data than input data such as numerical
integration and statistical characterization of a data set. Some information of the data
is lost while other information is extracted during reducing. Conventional wisdom is
that a reducing algorithm generally benefits from a larger input data set [4]. A test of
statistical characterization through sampling is provided in Section 8.
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4 Polynomial and Taylor Expansion

4.1 Polynomial

For a polynomial f(x) ≡
∑N

j=0 cjx
j , Formula (4.1) gives the corresponding Taylor

expansion:

f(x+ x̃) =

N∑
j=0

cj(x+ x̃)j =

N∑
j=0

x̃j
N−j∑
k=0

xk−jcj+k

(
j + k
j

)
; (4.1)

When f(x) = (ax + b)N , the result of applying Formula (4.1) to Formula (2.20) is
Formula (2.45) with c = N and x = ax + b. Unlike Formula (2.45), Formula (4.1)
converges for all x± δx, because the exponent for power is limited to positive integers
only.

4.2 Truncation Error

Formula (2.59) shows that Taylor expansion such as Formula (2.19) and (2.20) can be
treated as polynomial with N → ∞.

A numerical calculation can only calculate limited terms in a Taylor expansion,
and the count of terms of the Taylor expansion to approximate a function f(x) is
defined as the Taylor expansion order. The needed Taylor expansion order can be
obtained by theoretical reminder estimation: If the estimation is less than LSV of the
current expansion, the Taylor expansion can stop [12]. However, this method has not
considered floating-point rounding errors, so that it cannot guarantee that the result
is correct until LSV .

In practice, without reminder estimator, the expansion is stopped if the change of
the expansion is less than an ad hoc threshold [12]. Such truncation by stability is
generally not reliable because traditional calculation has no idea on what the result
uncertainty should be.

Formula (4.2) gives the Taylor expansion of 1/(1− x). In Formula (4.2), each |x|n
generates the same rounding error, but the difference in sign means that the same
rounding error will have different effects for the accumulated rounding error. Instead
of a reminder estimator, the true reminder r(N) is calculated as Formula (4.3).

e(N) =

N∑
n=0

xn =

{
x > 0 : 1 + |x|+ |x|2 + |x|3 + . . .

x < 0 : 1− |x|+ |x|2 − |x|3 + . . .
; (4.2)

r(N) =

∣∣∣∣e(N)− 1

1− x

∣∣∣∣ ; (4.3)

By treating LSV of each conventional floating-point value as imprecise, variance
arithmetic can trace floating-point rounding errors. Formula (4.2) tests the ability of
variance arithmetic to predict the effect of floating-point rounding errors.

4.3 Rounding Error

Figure 7 shows r(N) and the corresponding uncertainties for x = ±0.6,±0.7. For
x = ±0.6,−0.7, after r(N) reaches LSV of 1/(1−x), the LSV equals the corresponding
expansion uncertainty, so that variance arithmetic reproduces the result of traditional
expansion truncation. For x = 0.7, r(N) does not reach LSV , leaving the least two
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Figure 7: The reminders and result uncertainties for Taylor expansion of 1/(1−
x), for different Taylor expansion order N as shown in the x-axis, and different x
as shown in the legend. The y-axis is for either absolute reminder or expansion
uncertainty. In the legend, Reminder Value is the value of Formula (4.3), and
Expansion Uncertainty is the uncertainty of Formula (4.2).

Figure 8: The reminders for Taylor expansion of 1/(1− x), for different Taylor
expansion order N as shown in the x-axis, and different x as shown in the legend.
The y-axis is for absolute reminder. In the legend, Reminder Value is the value
of Formula (4.3), Expansion LSV is the LSV of the value of Formula (4.2), and
Accumulated Rounding Error is the sum of rounding errors of xn, n = 1 . . . N .



arXiv.org, 2024 29

Figure 9: The accumulated rounding errors for Taylor expansion of 1/(1 − x),
for different Taylor expansion order N as shown in the x-axis, and different x
as shown in the legend. The y-axis is for accumulated rounding errors.

Figure 10: The accumulated rounding errors for Taylor expansion of 1/(1− x),
for different x as shown in the x-axis. The y-axis is for accumulated rounding
errors. In the legend, Result LSV is the LSV of the value of 1/(1 − x), Un-
certainty is the uncertainty of Formula (4.2), and Value Error is the value of
Formula (4.3).
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significant bits incorrect, which shows that traditional numerical Taylor expansion can
be less accurate than its theoretical claim. The result uncertainty has correct trend,
but it does not reach r(N) at the end.

In addition to r(N), Figure 8 shows expansion LSV , |x|N , and accumulated round-
ing errors, zooming in at where the expansions terminate.

1. When xN is added to e(N) in Formula (4.2), it is digitized by the LSV of e(N),
to generate rounding error at N . For example, 0.7100 = 3.23 10−16 is digitized
by the LSV = 4.44 10−16 as 4.44 10−16 for 1/(1 − 0.7). Such digitization is
observed to be round to the nearest.

2. When xN reaches below half of LSV of e(N), it vanishes so that e(N) reaches
its final value.

3. Figure 8 shows that while the accumulated rounding errors fluctuate around 0,
the last few accumulated rounding errors when xN approaches LSV of e(N)
determine the final value error of e(N), such as the accumulation of 2-bit errors
for 1/(1− 0.7).

4. Figure 9 shows that such accumulation of rounding errors is not random for
1/(1−0.7). When x differs by a small amount, the accumulated rounding errors
vs Taylor expansion order N is very similar after the expansion LSV has been
stabilized when N > 60.

5. 1/(1 − 0.6) has similar coherent accumulated rounding errors, but because the
corresponding |x|N decreases faster as shown in Figure 8, the final accumulated
error is less than that of 1/(1− 0.7).

6. The sign difference in Formula (4.2) for 1/(1 + 0.7) determines that the accu-
mulated rounding errors vs Taylor expansion order N have different and less
coherent pattern than that of 1/(1− 0.7).

A value error due to rounding error results from coherent contribution of consecutive
rounding errors, so that it is not a random process. Figure 10 shows value errors and
uncertainties for 1/(1−x), x ∈ [−0.75,+0.75]. It shows that the calculated uncertain-
ties from variance arithmetic provides an average coverage to value errors, resulting
in an overall error deviation of 2.22. The step change of uncertainty in Figure 10 is
due to change of result LSV . Variance arithmetic can only give proper coverage for
floating-point rounding errors.

4.4 Stability Truncation

The input to an expansion can also be imprecise. Figure 11 shows that the abso-
lute reminder values decrease exponentially with increasing expansion order, while the
expansion uncertainty stabilizes quickly above the input uncertainty 0.01. The ex-
pansion can terminate when the reminder value equals the expansion value LSV for
x = ±0.6± 0.01,−0.7± 0.01, but not for x = 0.7± 0.01. Figure 11 is very similar to
Figure 7 except that the expansion uncertainty is much larger.

When input uncertainty increases from 0.01 to 0.04, Figure 12 shows that the
absolute reminder value decreases slower than exponentially with increasing expansion
order, while the expansion uncertainty remains about the same with increasing Taylor
expansion order after reaching their stable values, respectively. For example, the
expansion of 1/(1 + 0.7± 0.04) now terminates at Taylor expansion order 105 instead
of 70 in Figure 11. The reason for such changes is due to the increase of uncertainty
bias in Formula (4.1).
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Figure 11: The reminder values and the expansion uncertainties for Taylor
expansion of 1

1−x±δx , for different Taylor expansion order N as shown in the x-
axis, and different input x±δx as shown in the legend. In the legend, Reminder
Value is the value of Formula (4.3), Expansion LSV is the LSV of the value of
Formula (4.2), Expansion Uncertainty is the uncertainty of Formula (4.2).

Figure 12: The reminder values and the expansion uncertainties for Taylor
expansion of 1

1−x±δx , for different Taylor expansion order N as shown in the x-
axis, and different input x±δx as shown in the legend. In the legend, Reminder
Value is the value of Formula (4.3), Expansion LSV is the LSV of the value of
Formula (4.2), Expansion Uncertainty is the uncertainty of Formula (4.2).
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Figure 13: The truncation orders for Taylor expansion of 1
1−x±δx , for different

input uncertainty δx as shown in the x-axis, and different input value x and
truncation rule as shown in the legend. In the legend, Reminder LSV means
when the value of r(N) is less than the LSV of the value of 1

1−x±δx , Reminder
Error means when the absolute value change from e(N − 1) to e(N) is less
than τ -fold of the uncertainty of 1/(1− x), Stability means to use the stability
criterion to decide maximal N for e(N).

Figure 14: The truncation errors for Taylor expansion of 1
1−x±δx , for different

input uncertainty δx as shown in the x-axis, and different input value x and
truncation rule as shown in the legend. In the legend, Reminder Error means
when the absolute value change from e(N − 1) to e(N) is less than τ -fold of the
uncertainty of 1/(1− x), Stability means to use the stability criterion to decide
maximal N for e(N).
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It is questionable to use the expansion truncation standard for precise input to
imprecise input. Specifically, it is questionable to always calculate the result value to
10−16 precision while the result precision is only about 0.16 for 1/(1 + 0.6 ± 0.04) =
2.526 ± 0.26. Because variance arithmetic allows statistical bounding leakage of ϵ =
5.73 × 10−7 according to Formula (2.28), the precision on the result value should be
likewise statistically. Formula (4.4) gives the required value precision τ , in which ξ(z)
is the cumulative density function for Normal distribution [4].

2ξ(τ) = ϵ = 2− 2ξ(
1

2
+ σ) : τ ≃ ϵ

√
2π

2
= 7.18× 10−7; (4.4)

Using τ as the tolerance, the rule for stability truncation for truncating an expan-
sion e(N) at the expansion order N is the following:

� The absolute uncertainty change from e(N − 1) to e(N) is less than τ -fold of
the uncertainty of e(N), and

� The absolute value change from e(N − 1) to e(N) is less than either τ -fold of
the uncertainty of e(N), or the LSV of the value of e(N).

The stability truncation is free from reminder estimator, and it is based on the stability
of e(N) at the expansion order N . The true reminder r(N) at the truncation is
renamed as the truncation error.

Figure 13 shows the stability truncation orders for Taylor expansion of 1/(1− x±
δx), while Figure 14 shows the corresponding truncation errors. To validate stability
truncation in this case, the truncation marked as Reminder Error is calculated using
the same rule for stability truncation but using the uncertainty of 1/(1 − x) instead
of the uncertainty of e(N). Figure 13 and 14 shows that both truncation method
have very similar results, so that truncation without reminder estimator is validated
in this case. Figure 14 shows that truncation errors are linearly proportional to input
uncertainties, which serves as another validation.

As an comparison, the truncation marked as Reminder LSV in Figure 13 is the
traditional truncation method, whose truncation orders generally double the corre-
sponding stability truncation orders, showing that stability truncation is more effi-
cient.

Figure 13 shows that for each case, the truncation order has a global minimum,
and on each side, either increases slowly with decreasing input uncertainty, or increases
fast with increasing input uncertainty. Even when the input uncertainty is comparable
to the floating-point rounding error, stability truncation still works by comparing the
expansion value change with the LSV of the value after the expansion uncertainty has
been stable.

Due to the digital limitation of the 64-bit standard floating-point representation,
ζ(2n) can only be calculated up to 2n = 252, so that Formula (4.1) can only be
calculated for n < 126. If after 126 orders of expansion, stability truncation can still
not be achieved, the expansion is deemed to be practically unstable.

The application of Taylor expansion for uncertainty and uncertainty bias is more
than polynomial expansion as described in Formula (4.1). Besides stability truncation
and practical stability check, it also has convergence check and reliability check, as
described in Section 7. In Figure 13 and Figure 14, 1/(1 − 0.7 ± δx) terminates at
δx ≥ 0.06 not due to practically unstable, but due to the divergence of 1/(1−0.7±δx)
when δx ≥ 0.06. Even after 1/(1−0.7±δx) diverges, Formula (4.1) still gives numerical
results because it does not have convergence check, such as 1/(1 − 0.7 ± 0.09) =
1.453 ± 0.197, which would have given runaway errors in Figure 14. This example
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shows that the context of a calculation is as import as the result of the calculation.
The uncertainty is the most important context of any value, and that is the very
reason why variance arithmetic is superior than traditional floating-point calculations
for values only.
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5 Matrix Inversion

5.1 Uncertainty Propagation in Matrix Determinant

Let vector [p1, p2 . . . pn]n denote a permutation of the vector (1, 2 . . . n) [45]. Let
$[p1, p2 . . . pn]n denote the permutation sign of [p1, p2 . . . pn]n [45]. Formula (5.1) [45]
defines the determinant of a n-by-n square matrix M with the element xi,j , i, j =
1 . . . n. The sub-determinant [45] Mi,j at index (i, j) is formed by deleting the row i
and column j of M , whose determinant is given by Formula (5.2) [45]. Formula (5.3)
holds for the arbitrary row index i or the arbitrary column index j [45].

|M| ≡
∑

[p1...pn]n

$[p1 . . . pn]n
∏

k=1...n

xk,pk ; (5.1)

|M|i,j ≡
pi=j∑

[p1...pn]n

$[p1 . . . pn]n

k ̸=i∏
k=1...n

xk,pk ; (5.2)

|M| =
∑

j=1...n

|Mi,j |xi,j =
∑

i=1...n

|Mi,j |xi,j ; (5.3)

Assuming p1, p2 ∈ {1 . . . n}, let [p1, p2]n denote the length-2 unordered permuta-
tion which satisfies p1 ̸= p2, and let < p1, p2 >n denote the length-2 ordered permuta-
tion which satisfies p1 < p2, and let < i1, i2 >n be an arbitrary ordered permutation
11. Formula (5.3) can be applied to Mi,j , as:

|M<i1,i2>n,[j1,j2]n | ≡
pi1=j1,pi2=j2∑

[p1...pn]n

$[p1 . . . pn]n

k ̸∈{i1,i2}∏
k=1...n

xk,pk ; (5.4)

|M| =
∑

j1=1...n

xi1,j1 |Mi1,j1 | =
∑

j1=1...n

j2 ̸=j1∑
j2=1...n

|M<i1,i2>n,[j1,j2]n |xi1,j1xi2,j2 ; (5.5)

The definition of a sub-determinant can be extended to Formula (5.6), in which m =
1...n. Formula (5.5) can be generalized as Formula (5.7), in which < i1 . . . im >n is an
arbitrary ordered permutation. The (n−m)-by-(n−m) matrix in |M<i1...im>n[j1...jm]n |
is obtained by deleting the rows in {i1 . . . im} and the columns in {j1 . . . jm}. This
leads to Formula (5.8) 12.

|M<i1...im>n,[j1...jm]n | ≡
k∈{i1...im}:pk=jk∑

[p1...pn]n

$[p1 . . . pn]n

k ̸∈{i1...im}∏
k=1...n

xk,pk ; (5.6)

|M| =
∑

[j1...jm]n

|M<i1...im>n,[j1...jm]n |
m∏

k=1

xik,jk ; (5.7)

∣∣|M<i1...im>n,[j1...jm]n |
∣∣ = ||M<i1...im>n,<j1...jm>n || ; (5.8)

Formula (5.9) give the Taylor expansion |M̃| of |M|, which leads to Formula (5.10)

11An ordered permutation is a sorted combination.
12||M|| in Formula (5.8) means absolute value of determinant.
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and (5.11) for mean and variance of matrix determinant, respectively.

|M̃| =
∑

[p1...pn]n

$[p1 . . . pn]n
∏

i=1...n

(xi,pi + x̃i,pi) (5.9)

=
∑

m=0...n

∑
<i1...im>n

∑
[j1...jm]n

M<i1...im>n,[j1...jm]n

i∈{i1...im}∏
i=1...m

x̃i,pi ;

|M| = |M|; (5.10)

δ2|M| =
n∑

m=1

∑
<i1...im>n

∑
[j1...jm]n

|M<i1...im>n,<j1...jm>n |
2

ik∈{i1...im}∏
k=1...n

(δxik,jk )
2;

(5.11)

Formula (5.10) and (5.11) assume that the uncertainties of matrix elements are in-
dependent of each other. In contrast, for the special matrix in Formula (5.12), after
applying Formula (2.22) and (2.23), Formula (5.13) and (5.14) give the result mean
and variance, respectively.

|M| =

∣∣∣∣∣∣
x, z, y
z, y, x
y, x, z

∣∣∣∣∣∣ = 3xyz − x3 − y3 − z3; (5.12)

|M| = |M| − 3x(δx)2 − 3y(δy)2 − 3z(δz)2; (5.13)

δ2|M| = 3(5x4 − 12x2yz + 2xy3 + 2xz3 + 3y2z2)(δx)2 (5.14)

+ 3(5y4 − 12y2xz + 2yx3 + 2yz3 + 3x2z2)(δy)2

+ 3(5z4 − 12z2xy + 2zx3 + 2zy3 + 3x2y2)(δz)2

+ 9(z2 + 2xy)(δx)2(δy)2 + 9(y2 + xz)(δx)2(δz)2 + 9(x2 + 2yx)(δy)2(δz)2

+ 9(5x2 − 2yz)(δx)4 + 9(5y2 − 2xz)(δy)4 + 9(5z4 − 2xy)(δz)4

+ 15(δx)6 + 15(δy)6 + 15(δz)6;

5.2 Adjugate Matrix

The square matrix whose element is (−1)i+j |Mj,i| is defined as the adjugate matrix
[45] MA to the original square matrix M. Let I be the identical matrix for M. Formula
(5.15) and (5.16) show the relation of MA and M [45], which only involve addition,
subtraction and multiplication.

M×MA = MA ×M = |M|I; (5.15)

|M|MA = |MA|M; (5.16)

To test Formula (5.11):

1. A matrix M is constructed using random integers uniformly distributed in the
range of [−28,+28], which has a distribution deviation of 28/

√
3. The integer

arithmetic grantees that |M|, MA, and |MA| are precise.

2. Gaussian noises of predefined levels are added to M, to construct a M̃ which
contains imprecise values. Variance arithmetic is used to calculate |M̃|, M̃A,

and |M̃A|. For example, to construct a M̃ with 10−3 input noise precision, the
deviation of the Gaussian noise is 10−3 × 28/

√
3.
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Figure 15: The result uncertainty means vs. input noise precision and matrix

size for the difference between M̃A and MA. The input noise precision runs
from 10−17 to 10−1, while the matrix size runs from 4 to 8.

Figure 16: The result error deviations vs. input noise precision and matrix size

for the difference between M̃A and MA. The input noise precision runs from
10−17 to 10−1, while the matrix size runs from 4 to 8.
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Figure 17: The result error deviations vs. input noise precision and matrix size
for the difference of Formula (5.15). The input noise precision runs from 10−17

to 10−1, while the matrix size runs from 4 to 8.

Figure 18: The result error deviations vs. input noise precision and matrix size
for the difference of Formula (5.16). The input noise precision runs from 10−17

to 10−1, while the matrix size runs from 4 to 8.
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Figure 19: The result histograms for the normalized errors of the adjugate
matrix for the same matrix size 7 and different input noise precision as shown
in the legend.

Figure 20: The result histograms for the normalized errors of the adjugate
matrix for the same matrix size 8 and different input noise precision as shown
in the legend.
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Error Deviation Input Noise Precision
Matrix Size 0 10−17 10−16 10−15

4 0 0 0.68 1.03
5 0 0.003 0.60 0.96
6 0 0.006 0.80 1.04
7 0 0.083 1.05 1.05
8 4.62 3.91 3.01 1.01

Table 2: The error deviation as a function of matrix size and input noise preci-
sion for MA in which M is generated by random integers between [−28,+28].
The measured error deviations change slightly for different runs.

3. The difference between M̃A and MA defines the Adjugate Test. Figure 15 shows
that the result uncertainties increase exponentially with both the input noises
and the matrix size, while Figure 16 shows that the ideal coverage is achieved
for the input precision greater than 10−16.

4. Formula (5.15) defines the Forward Test. Figure 17 shows that Formula (5.15)
is strictly observed for the idea coverage.

5. Formula (5.16) defines the Roundtrip Test. Figure 18 shows that Formula (5.16)
is strictly observed for the idea coverage.

Figure 19 and 20 shows that the error values are normal distributed for the input
noise precision of 10−10, as a typical example of the histograms for ideal coverage.

The existence of ideal coverage validates Formula (5.11).

5.3 Floating Point Rounding Errors

The significand of the conventional floating-point representation [10] has 52-bit reso-
lution, which is equivalent to 10−16. Adding noise below this level will not change the
value of a conventional floating-point value, so the result uncertainties are caused by
the round errors in the floating-point calculations.

Figure 19 shows that the histograms of the normalized errors is Delta distributed
for the input uncertainty 10−17, because the adjugate matrix calculation involves about
8×6 = 48 significand bits for a matrix size 7. Such Delta distribution also holds when
the matrix size is less than 7, or when the input noise precision is 0. When the matrix
size is 8, 8 × 7 = 56 significand bits are needed so rounding occurs. As a result, in
Figure 20, the distribution becomes Gaussian with a hint of Delta distribution. Such
delta-like distribution persists until the input noise precision reaches 10−10, which is
also the transition of the two trends in Figure 15.

When the input noise precision increases from 10−17 to 10−10, the distributions
become less delta-like and more Gaussian, as shown in both Figure 19 and Figure
20. The non-ideal behaviors in Figure 16, 17, and 18 are all attributed to the round-
ing errors. Table 2 shows that variance arithmetic achieves proper coverage for the
calculation rounding errors for adjugate matrix.

Figure 20 suggests that an histogram of normalized errors is more sensitive to
rounding errors than the corresponding error deviation, due to averaging effect of the
latter. Histograms of normalized errors can be used as a finger-print for the associated
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calculation. In case error deviation is not known, a nearly Normal-distributed result
histogram may be used to identify ideal coverage.

5.4 Matrix Inversion

A major usage of |M| and MA is to define M−1 in Formula (5.17) which satisfies
Formula (5.18). Formula (5.19) gives the Taylor expansion for the element M−1

j,i .

From it, M−1
j,i and δ2M−1

j,i can be deduced, in the same way as how |M| and δ2|M|
are deducted from |M̃|. Although the analytic expression for |M| and δ2|M| is very
complex on paper, the deduction is straight-forward in analytic programming such as
using SymPy.

M−1 ≡ MA/|M|; (5.17)

(M−1)−1 = M; (5.18)

M̃−1
j,i = (−1)i+j |M̃i,j |

|M̃|
(5.19)

= (−1)i+j

 n∑
m=0

i∈{i1...im}∑
<i1...im>n

ji=j∑
[j1...jm]n

M<i1...im>n,[j1...jm]n

k∈{i1...im}∏
k=1...m

x̃k,pk


∞∑

h=0

(−1)h

|M |h+1

 n∑
m=1

∑
<i1...im>n

∑
[j1...jm]n

M<i1...im>n,[j1...jm]n

k∈{i1...im}∏
k=1...m

x̃k,pk

h

;

Formula (5.19) suggests that M−1 ̸= MA/|M|, and δ2M−1 is much larger than δ2M,
which agrees with the common practice to avoid using Formula (5.17) directly [12].

Traditionally, the error response of M−1 is quantified by matrix condition number
[45]. In Formula (5.17), M−1 is dominated by 1/|M|, suggesting that the precision of
M−1 is largely determined by the precision of |M|. Variance arithmetic treats the least
significant value of a floating-point value to be imprecise, so it can use Formula (5.14)
to calculate the determinant variance for a matrix containing floating-point elements,
including a randomly generated matrix, or a Hilbert matrix [45] after it is converted
to a floating-point matrix 13. Figure 21 shows that there is a strong linear correlation
between the conditional number and the determinant precision of matrices, so that
the determinant precision can replace the condition number, which is more difficult to
calculate 14.

In fact, condition number may not be the best tool to describe the error response of
a matrix. Formula (5.20) shows an example matrix inversion using variance arithmetic
representation. It clearly shows the overall precision dominance by the value of 2 ±
0.161 on the denominator, e.g., 1±0.1 in the adjugate matrix becomes −0.510±0.180 in
the inverted matrix, while the direct calculation of 1±0.1/−2±0.161 = −0.503±0.065
has 3-fold better result precision. In Formula (5.20), even though the input matrix
has element precision ranging from 10−1 to 2.5 10−5, the inverted matrix has element
precision all near 0.2 except the worst one at 0.35, showing how dramatically the

13Although Hilbert matrix is defined using fractional number, its condition number is also
calculated using floating-point arithmetic in math libraries such as SciPy.

14There are currently different definitions of matrix condition number, each based on a
different definition of matrix norm.
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element precision gets worse in matrix inversion. Formula (5.19) suggests that the
precision of inverted matrix deteriorates exponentially with matrix size.

(
1± 10−1, 2± 10−2

3± 10−3, 4± 10−4

)−1

=

(
4± 10−4, −2± 10−2

−3± 10−3, 1± 10−1

)
−2± 0.161

(5.20)

≃
(
−2.000± 0.401, 1.000± 0.201
1.500± 0.301, −0.510± 0.180

)
;

5.5 First Order Approximation

Formula (5.21) shows the first order approximation of |M̃| leads to the first order
approximation of δ2|M|. It essentially states that when the input precision is much
less than 1, the determinant |M| of an imprecise matrix M can be calculated in
variance arithmetic using Formula (5.1) directly.

|M̃| ≃
∑

[p1...pn]n

$[p1 . . . pn]n
∏

k=1...n

(xk,pk + x̃k,pk ); ⇒ δ2|M| ≃
n∑
i

n∑
j

Mi,j(δxi,j)
2;

(5.21)
Figure 22 contains the result of applying Formula (5.21). It is very similar to Figure
16, validating Formula (5.21).
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Figure 21: The linear correlation between the precision of a matrix determinant
to its condition number. The x-axis shows the condition number, while the y
axis shows the precision of the determinant. The legend shows the size of the
matrix, as well as the type of the matrix as Random for randomly generated
matrix, and Hilbert as the Hilbert matrix.

Figure 22: The error deviation of the first approximation calculation of |M| vs.
input noise precision and matrix size.
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Figure 23: Coefficients of X in Formula (6.4) and (6.8) at a current and the next
position in a time series of the α + β Y fit. It shows that the βj+1 in Formula
(6.4) can be calculated progressively from βj , as Formula (6.6) and (6.5) in
order. It also shows that the δ2βj+1 in Formula (6.8) cannot be calculated
easily from δ2βj .

6 Moving-Window Linear Regression

6.1 Moving-Window Linear Regression Algorithm [38]

Formula (6.1) and (6.2) give the result of the least-square line-fit of Y = α + βX
between two set of data Yj and Xj , in which j is an integer index to identify (X,Y )
pairs in the sets [12].

α =

∑
j Yj∑
j 1

; (6.1)

β =

∑
j XjYj

∑
j 1−

∑
j Xj

∑
j Yj∑

j XjXj

∑
j 1−

∑
j Xj

∑
j Xj

; (6.2)

In many applications, data set Yj is an input data stream collected with fixed rate
in time, such as a data stream collected by an ADC (Analogue-to-Digital Converter)
[5]. Yj is called a time-series input, in which j indicates time. A moving window
algorithm [12] is performed in a small time-window around each j. For each window
of calculation, Xj can be chosen to be integers in the range of [−H,+H] in which H
is an integer constant specifying window’s half width so that

∑
j Xj = 0, to reduce

Formula (6.1) and (6.2) into Formula (6.3) and (6.4), respectively:

αj = α 2H =

H∑
X=−H+1

Yj−H+X ; (6.3)

βj = β
H(H + 1)(2H + 1)

3
=

H∑
X=−H

XYj−H+X ; (6.4)

According to Figure 23, in which H takes an example value of 2, the calculation
of (αj , βj) can be obtained from the previous values of (αj−1, βj−1), to reduce the
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Figure 24: The result of fitting α + β Y to a time-series input Y within a
moving window of size 2 ∗ 2 + 1. The x-axis marks the time index. The y-axis
on the left is for the value of Y , α, and β, while the y-axis on the right is for
the uncertainty of α and β. The uncertainty for Y is a constant of 0.2. In the
legend, Unadjusted means the result of applying Formula (6.5) and (6.6) directly
using variance arithmetic, while Adjusted means using Formula (6.5) and (6.6)
for α and β values but using Formula (6.7) and (6.8) for α and β variances.

Figure 25: The error deviations of the α + β Y fit vs time index. The x-axis
marks the time index. The y-axis on the left is for error deviation. An input
time-series signal Y is also provided for reference, whose value is marked by the
y-axis on the right.
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calculation of Formula (6.3) and (6.4) into a progressive moving-window calculation
of Formula (6.5) and (6.6), respectively:

βj = βj−1 − αj−1 +H (Yj−2H−1 + Yj) ; (6.5)

αj = αj−1 − Yj−2H−1 + Yj ; (6.6)

6.2 Variance Adjustment

When the time series contains uncertainty, the direct application of Formula (6.5) and
(6.6) will result in loss of precision, because both formulas use each input multiple
times and accumulate the variance of the input each time. Thus, the values for αj and
βj should be calculated progressively using Formula (6.6) and (6.5), while the variance
should be calculated using Formula (6.7) and (6.8), respectively. Formula (6.8) is no
longer progressive.

δ2αj =

H∑
X=−H+1

(δYj−H+X)2 = δ2αj−1 + (δYj)
2 − (δYj−2H)2; (6.7)

δ2βj =

H∑
X=−H+1

X2(δYj−H+X)2; (6.8)

Figure 24 shows that the input signal Yj is composed of:

1. An increasing slope for j = 0 . . . 9.

2. A decreasing slope for j = 1 . . . 39.

3. A sudden jump with an intensity of +10 at j = 40

4. A decreasing slope for j = 41 . . . 49.

For each increase of j, the increasing rate and the decreasing rate are +1 and −1,
respectively.

The specified input uncertainty is always 0.2. Normal noises of 0.2 deviation are
added to the slopes, except Normal noises of 2 deviation are added to the slope for
j = 10 . . . 19, during which the actual noises is 10-fold of the specified value.

Figure 24 also shows the result of moving window fitting of α+ β Y vs time index
j. The result values of α and β behave correctly with the expected delay in j. When
Formula (6.3) and (6.4) are used both for values and uncertainties for α and β, the
result uncertainties of α and β both increase exponentially with the index time j.
When Formula (6.3) and (6.4) are used only for values, while Formula (6.7) and (6.8)

are used for variance for α and β, the result uncertainty of α is
√

1
2H+1

δY , and the

result uncertainty of β is
√

3
H(H+1)(2H+1)

δY , both of which are less than the input

uncertainty δY , due to the averaging effect of the moving window.

6.3 Unspecified Input Error

To obtain the error deviation of α and β, the fitting is done on many time-series data,
each with independent generated noises. Figure 25 shows the corresponding error
deviation vs index time j, which are 1 except near 10 for j = 10 . . . 19 when the actual
noise is 10-fold of the specified one. It shows that a larger than 1 error deviation may
probably indicate unspecified additional input errors other than rounding errors, such
as the numerical errors from math libraries.
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7 Convergence and Statistical Bounding

7.1 Convergence Criteria

Variance arithmetic rejects a calculation result for the following numerical reasons:

� For Formula (2.20) to converge, the contribution from expansion order 2n should
decrease monotonically with increasing 2n when 2n is sufficiently large 15. Oth-
erwise, the result is invalidated as not monotonic.

� An uncertainty only needs to be correct on order of magnitude, such as with a
precision of 1/σ = 0.2 or finer. If the precision of the uncertainty becomes worse
than 1/σ, the result is invalidated as not reliable.

� Due to digital limitation of conventional floating-point representation, ζ(2n) can
only be calculated to 2n ≤ 252. If at the limit, the expansion is still not stable
according to stability truncation criterion, the result is invalidated as practical
unstable.

In reality, “practical unstable” happens very rarely if any.

7.2 Exponential

Because 2n! is much larger than 2n!!, Formula (2.33) for ex always converges. However,
due to digital limitation, ex±δx is limited before the result uncertainty becomes either
0 wrongly or ∞, such as e−392±0.1 = 1.005 e−392 ± 0 or e196±0.1 = 1.005 e196 ±∞.

7.3 Logarithm

Figure 26 shows that Formula (2.37) for ln(x) converges when P (x) < 1/σ, which is also
the theoretical upper bound for P (x) because 2n can be regarded as a constant when
compared with ζ(2n). ln(x) has a distributional pole at x = 0. Variance arithmetic
rejects this pole of ln(0) inside the range of [x − δx, x + δx] statistically due to the
divergence of Formula (2.37) mathematically, with ζ(2n) as the connection of these
two worlds.

7.4 Power

If c is a natural number, Formula (2.45) always converges because it only has limited
terms, such as Formula (2.48) for c = 2. Even though the normalized value errors for
(0 + δx)2 is χ2 distributed, its error deviation is 1.0015± 0.0059. This shows that the
variance arithmetic allows normalized error distributions to deviate from Normal to a
large degree, as what Formula (2.27) has suggested.

If c is not a natural number, at x = 0, xc has either a distributional pole when
c < 1 or a distributional zero when c > 1. Figure 27 shows that Formula (2.45) for
(1± δx)c also rejects 0c, but such rejection depends on details of Formula (2.45):

� When c < 1, according to Formula (2.50), (2.52), and (2.54), the coefficient for
P (x)2n increases quickly with both c and 2n, so that the upper bound for δx
has to decrease with c, which is confirmed by Figure 27.

15The lower limit for 2n is set empirically as 20.
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Figure 26: The largest measured δx for lnx± δx for different x as shown by
the x-axis, using the y-axis on the left. Also shown are the corresponding
uncertainty bias and uncertainty for different x as shown by the x-axis, using
the y-axis on the right.

Figure 27: The largest measured δx for ln(x ± δx) for different x as shown
by the x-axis, using the y-axis on the left. Also shown are the corresponding
uncertainty bias and uncertainty for different x as shown by the x-axis, using
the y-axis on the right.



arXiv.org, 2024 49

� When c > 1, Figure 27 shows that both result uncertainty and measure upper
bound for input uncertainty δx increase with increasing c. This can be explained
by the example difference between

√
x3 and

√
x5, as Formula (7.1) and (7.2),

respectively. Both formulas have the alternative + and − sign pattern when the
Taylor expansion order n > c+1, so the pattern is different by 1 between δ2

√
x3

and δ2
√
x5. This difference may cancel some terms in higher order expansion,

such as the P (x)6 expansion in Formula (7.4) for δ2
√
x5. The lowest expansion

for δ2
√
x5 in Formula (7.4) is still larger than that for δ2

√
x3 in Formula (7.3),

making δ2
√
x5 overall larger than δ2

√
x3 but converges for larger P (x).√

(x+ x̃)3√
x3

= 1 +
3

2
(
x̃

x
) +

3

8
(
x̃

x
)2 − 1

16
(
x̃

x
)3 +

3

128
(
x̃

x
)4 − 3

256
(
x̃

x
)5 + o((

x̃

x
)7); (7.1)√

(x+ x̃)5√
x5

= 1 +
5

2
(
x̃

x
) +

15

8
(
x̃

x
)2 +

5

16
(
x̃

x
)3 − 5

128
(
x̃

x
)4 +

3

256
(
x̃

x
)5 + o((

x̃

x
)7); (7.2)

δ2
√
x3

(
√
x3)2

=
9

4
P (x)2 +

27

32
P (x)4 +

13

16
P (x)6 + o(P (x)8); (7.3)

δ2
√
x5

(
√
x5)2

=
25

4
P (x)2 +

325

32
P (x)4 + 0P (x)6 + o(P (x)8); (7.4)

Figure 28 shows that the value converges faster than the variance, due to the
difference between Formula (2.19) and (2.20). It shows the individual variance term of
1/(1± δx) for the different Taylor expansion order 2n, and δx, in which 1/(1± 0.201)
clearly diverges, while 1/(1 ± 0.200) marginally diverges, so that variance arithmetic
invalidate both as not monotonic. Due to the limitation of maximal expansion order of
2n = 252, such determination of convergence is only practical, which may be different
from theoretical convergence threshold.

7.5 Sine

Because 2n! is much larger than 2n!!, Formula (2.41) for sin(x) always converges.
sin(x) has distributional zeros at x = nπ + π/2, in which n is an integer. Figure

29 shows the histogram of normalized errors for sin(x± 0.001) when Gaussian noises
are added. The distribution is Normal at x = 0, π/4, but it is a folded Normal at
x = π/2 when the 2nd derivative of sin(π/2) folds all added noises to one side only.
Because the 2nd derivative of sin(−π/2) has the opposite sign to that of sin(π/2), the
2nd derivative of sin(−π/2) folds the Normal distribution to the opposite side only.

In Figure 30, the noise δx is increased from 0.001 for sin(π/4± δx):

� When δx = 0.001, the distribution is Normal.

� When δx = 0.2, the distribution at x = π/4 starts to be affected by the closest
distributional zero at x = π/2, so that the distribution starts to deviate from
Normal distribution.

� When δx = 0.5, the distribution at x = π/4 is affected strongly by the closest
distributional zero at x = π/2, so that the distribution starts to resemble of the
distribution at x = π/2 in Figure 29.

� When δx = 1.41, the distribution at x = π/4 starts to be affected by the second
closest distributional zero at x = −π/2, which result in a small peak resembling
the distribution at x = −π/2 in Figure 29.
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Figure 28: The individual variance term of 1/(1 ± δx) vs the different Taylor
expansion order 2n, for different δx as shown in the legend. The x-axis is Taylor
expansion order 2n Formula (2.20). The y-axis is the value and variance con-
tribution to 1/(1± δx) at each Taylor expansion order 2n according to Formula
(2.44), and (2.45), respectively.

Figure 29: The histogram of the error deviation for sin(x ± δx), for x =
0,+π/2,+π/4 as shown in the legend. The x-axis is for normalized value error.
The y-axis is for normalized count. Each color represents a different x, while
each line pattern represents a different δx. Gaussian noises are used to produce
the input noise δx = 0.001.
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Figure 30: The histogram for sin(π/4 ± δx) for different δx as shown in the
legend. The x-axis is for normalized value error. The y-axis is for normalized
count.

Figure 31: The histogram for sin(0±δx) for different δx as shown in the legend.
The x-axis is for normalized value error. The y-axis is for normalized count.
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Figure 32: The histogram for sin(π/2 ± δx) for different δx as shown in the
legend. The x-axis is for normalized value error. The y-axis is for normalized
count.

Figure 33: The largest measured δx for sin(x ± δx) for different x as shown
by the x-axis, using the y-axis on the left. Also shown are the corresponding
uncertainty bias and uncertainty for different x as shown by the x-axis, using
the y-axis on the right.
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� When δx = 1.42, the result is invalidated as not reliable, which is a pleasant side
effect of the convergence criteria of variance arithmetic. In a periodic function
sin(x + δx), δx conceptually should not be larger than period 2π. Variance
arithmetic just provides a sensible upper bound for δx in this case.

In some sense, a distribution is like sticky fluid, to be bounced by two enclosing
distributional zero walls 16 of sin(x). Figure 30 shows the distributions for sin(π/4 +
δx) until reaching the maximal holding capacity of the enclosing distributional zeros.
Figure 31 shows how the distribution lava for sin(0+ δx) flows fill evenly between two
distributional zero walls with increasing δx. Figure 32 shows how a distributional zero
wall of sin(π/2 + δx) itself is broken with increasing δx by its enclosing distributional
zero wall. For an analytic function with multiple distributional zeros, the monotonic
criterion naturally limits the input uncertainty to the distance between two enclosing
distributional zeros.

Figure 33 shows the measured upper bound of δx in sin(x+ δx) for −π ≤ x ≤ π,
as well as the corresponding uncertainty and uncertainty bias. The measured upper
bound is also periodic with π, with the tightest bounds of δx at the distributional
zeros x = nπ+π/2. The mechanism for the upper bounding of δx in sin(x+δx) needs
further understanding to quantify the result shown in Figure 33.

16The relation between a distribution and its enclosing distributional zeros resembles the
relation between quantum waves and quantum walls.
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8 Math Library Functions

Formula (2.33), (2.37), (2.41), and (2.45) are tested by the corresponding math library
functions exp, log, sin, and pow, respectively.

At each point x for an input uncertainty δx, the result uncertainty is calculated
by variance arithmetic. The corresponding error deviation is obtained by sampling:

1. Take 10000 samples from either Gaussian noise or uniform distribution with δx
as the deviation, and construct x̃ which is x plus the sampled noise.

2. For each x̃, use the corresponding library function to calculate the value error
as the difference between using x̃ and using x as the input.

3. The value error is divided by the result uncertainty, as the normalized error.

4. The standard deviation of the 10000 normalized errors is the error deviation.

5. In addition, for each of these tests, all value errors follow the same underlying
distribution. The deviation of the value errors is defined as the value deviation,
which the uncertainty should match.

8.1 Exponential

Figure 34 shows that the calculated uncertainties using Formula (2.33) agree very well
with the measured value deviations for ex+δx. As a result, all error deviations are very
close to 1, as 1.0021± 0.0095, even though both the uncertainties and the value error
deviations increase exponentially with x and δx.

8.2 Logarithm

ln(x) has a distributional zero at x = 0 so that all log(x ± δx) are rejected when
1/5 < P (x). Figure 35 shows that the calculated uncertainties using Formula (2.37)
agree very well with the measured value deviations for ln(x+ δx), and the result error
deviations are very close to 1, as 0.985± 0.091.

8.3 Sine

Figure 36 shows that the calculated uncertainties using Formula (2.41) agree very well
with the measured value deviations for sin(x + δx). It also shows that δ2 sin(x) has
the same periodicity as sin(x):

� When x = 0, sin(x) ≃ x, so that δ2 sin(x) ≃ (δx)2.

� When x = π/2, sin(x) ≃ 1, so that δ2 sin(x) ≃ 0.

In Figure 37, Gaussian noises are used, while in Figure 38, the input noises are
uniformly distributed. The difference of Figure 37 and 38 shows that the Gaussian
noise is more desirable, because of its tail effect, e.g., the error deviation is much closer
to 1 for sin(±π/2 + δx). So only Gaussian noises will be used for other analysis by
default.

sin(x) has distributional zeros at x = ±π/2. Figure 37 shows that the error
deviation for sin(x+δx) is 1 except when x = ±π/2 and δx < 10−8, which agrees with
the expected Delta distribution at x = ±π/2. In other places, the error deviations are
very close to 1, as 0.999± 0.009.

In Figure 37, Gaussian noises are used, while in Figure 38, the input noises are
uniformly distributed. The difference of Figure 37 and 38 shows that the uniform noise
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Figure 34: The calculated uncertainties vs the measured value deviations as
well as the measured error deviations for ex±δx, for different x as shown by the
x-axis, and different δx as shown in the legend. The uncertainties and the value
deviations are drawn using the logarithmic y scales on the left side, while the
error deviations are drawn using the linear y scales on the right side. Each color
represents a δx. Gaussian noises are used to produce the input noise δx.

Figure 35: The calculated uncertainties vs the measured value deviations as
well as the measured error deviations for ln(x± δx), for different x as shown by
the x-axis, and different δx as shown in the legend. The uncertainties and the
value deviations are drawn using the logarithmic y scales on the left side, while
the error deviations are drawn using the linear y scales on the right side. Each
color represents a δx. Gaussian noises are used to produce the input noise δx.
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Figure 36: The calculated uncertainties vs the measured value deviations as
well as the measured error deviations for sin(x±δx), for different x as shown by
the x-axis, and different δx as shown in the legend. The uncertainties and the
value deviations are drawn using the logarithmic y scales on the left side, while
the error deviations are drawn using the linear y scales on the right side. Each
color represents a δx. Gaussian noises are used to produce the input noise δx.

Figure 37: The error deviation for sin(x ± δx) vs. x and δx. The x-axis is x
between −π and +π. The y-axis is δx between −10−16 and 1. The z-axis is the
error deviation. Gaussian noises are used to produce the input noise δx.
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Figure 38: The error deviation for sin(x ± δx) vs. x and δx. The x-axis is x
between −π and +π. The y-axis is δx between −10−16 and 1. The z-axis is the
error deviation. Uniform noises are used to produce the input noise δx.

Figure 39: The calculated uncertainties vs the measured value deviations as well
as the measured error deviations for (1 ± δx)c, for different c as shown by the
x-axis, and for different δx as shown in the legend. The uncertainties and the
value deviations are drawn using the logarithmic y scales on the left side, while
the error deviations are drawn using the linear y scales on the right side. Each
color represents a δx.
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Figure 40: The values and uncertainties of ln(ex) − x vs x, as VarDbl Error
and VarDbl Uncertainty in the legend. The result of the same calculation using
conventional floating-point library functions is shown as Lib Error in the legend.

Figure 41: The normalized errors of (xp)
1
p − x vs x and p.
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or white noise 17 is more local, while Gaussian noise has strong tail effect, so that the
error deviation is much closer to 1 for sin(±π/2+δx) when δx > 10−12. In both cases,
there is a clear transition at δx = 10−12, which is caused by numerical errors in library
sin(x), as demonstrated in Section 9. For consistency, only Gaussian noises will be
used for other analysis by default.

8.4 Power

Figure 39 shows that the calculated uncertainties of (1±δx)c using Formula (2.45) agree
very well with the measured value deviations for (1 + δx)c, with the error deviations
close to 1, as 0.975± 0.135.

8.5 Numerical Errors for Library Functions

The combined numerical error of the library function ex and ln(x) is calculated as
ln(ex)− x. Figure 40 shows that using either variance arithmetic or the conventional
floating-point library functions results in the same value errors. The uncertainties of
variance arithmetic bound the value errors effectively, resulting in an error deviation
about 0.409 when |x| ≤ 1. It looks suspicious when |x| > 1 the value error is always 0
in both calculations.

The numerical error of the library function xp is calculated as (xp)1/p − x. Figure
41 shows that the normalized errors are not specific to either x or p, resulting in an
error deviation 0.548± 0.8.

The numerical errors of the library functions sin(x), cos(x), and tan(x) will be
studied in detail later in Section 9.

8.6 Summary

Formula (2.33), (2.37), (2.41), and (2.45) give effective uncertainties for the corre-
sponding library functions. With added noise larger than 10−15, ideal coverage is
achievable unless near a distributional pole where the deviation is 0. In non-ideal
coverage cases, the error deviation is about 0.5 so that proper coverage is achieved.

17White noise is sampled from uniform distributed noise.
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9 Fast Fourier Transformation

9.1 Unfaithful Frequency Response of Discrete Fourier
Transformation [38]

Each testing algorithm needs to come under careful scrutiny. One important issue is
whether the digital implementation of the algorithm is faithful to the original analytic
algorithm. For example, the discrete Fourier transformation is only faithful for Fourier
transformation at certain frequencies, and it has a different degree of faithfulness
for other frequencies. This is called the unfaithful frequency response of the discrete
Fourier transformation.

For each signal sequence h[k], k = 0, 1 . . . N−1, in which N is a positive integer, the
discrete Fourier transformation H[n], n = 0, 1 . . . N − 1 and its reverse transformation
is given by Formula (9.1) and (9.2), respectively [12], in which j is the index time and
n is the index frequency for the discrete Fourier transformation 18

H[n] =

N−1∑
k=0

h[k] ei2πkn/N ; (9.1)

h[k] =
1

N

N−1∑
n=0

H[n] e−i2πnk/N ; (9.2)

Formula (9.3) is the discrete forward transformation H[n] of a pure sine signal
h[k] = sin(2πkf/N) in which f is the index frequency. The continuous forward trans-
formation of the h[k] is a delta function at n = ±f with phase π/2. H[n] is delta-like
function at n = ±f with phase π/2 only if f is an integer. In other cases, how much
the result of discrete Fourier transformation deviates from continuous Fourier trans-
formation depends on how much f deviates from an integer, e.g., when f is exactly
between two integers, the phase of the transformation is that of cosine instead of sine
according to Formula (9.3). Examples of unfaithful representations of fractional fre-
quency by the discrete Fourier transformation are shown in Figure 42. The data for
Figure 42 is generated using SciPy, which are very reproducible using any other math
libraries, including MathLab and Mathematica.

H[n] =

N−1∑
k=0

sin(2πnk/N) ei2πnk/N =
1

2i

(
N−1∑
k=0

ei2π(n+f) k
N −

N−1∑
k=0

ei2π(n−f) k
N

)

=


iN/2, f is integer

N/π, f is integer + 1/2

1
2

sin(2πf−2π f
N

)+sin(2π f
N

)−sin(2πf)e
−i2π n

N

cos(2π n
N

)−cos(2π f
N

)
otherwise

(9.3)

Due to its width, a frequency component in an unfaithful transformation may
interact with other frequency components of the Discrete Fourier spectrum, thus sab-
otaging the whole idea of using the Fourier Transformation to decompose a signal
into independent frequency components. This means that the common method of
signal processing in the Fourier space [12][15][17] may generate artifacts due to its uni-
form treatment of faithful and unfaithful signal components, which probably coexist

18The index frequency and index time are not necessarily related to time unit. The naming
is just a convenient way to distinguish the two opposite domains in the Fourier transformation:
the waveform domain vs the frequency domain.
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Figure 42: An unfaithful Discrete Fourier transformation is demonstrated by
the spectra of a few sine signals having amplitude of 1 and slightly different
frequencies as shown in legends. The x-axis is for index frequency. The y-axis is
for intensity, while the y-axis of the embedded picture is for phase. This figure
is a practical reproduction of a previous theoretical figure [38].

in reality. Unlike aliasing [5][12][17], unfaithful representation of the discrete Fourier
transformation has an equal presence in the whole frequency range so that it cannot
be avoided by sampling the original signal differently.

An unfaithful representation arises from the implied assumption of the discrete
Fourier transformation. The continuous Fourier transformation has an infinitive signal
range so that:

h(t) ⇔ H(s) : h(t− τ) ⇔ H(s)ei2πsτ ; (9.4)

As an analog, the discrete Fourier transformation G[n] of the signal h[k], k = 1 . . . N
can be calculated mathematically from the discrete Fourier transformation H[n] of
h[k], k = 0 . . . N − 1:

G[n] = (H[n] + h[N ]− h[0])ei2πn/N ; (9.5)

Applying Formula (9.4) to Formula (9.5) results in Formula (9.6).

h[N ] = h[0]; (9.6)

Thus, the discrete Fourier transformation has an implied assumption that the signal
h[k] repeats itself periodically outside its region of [0, N − 1]. For an unfaithful fre-
quency, h[N − 1] and h[N ] are discontinuous in regard to signal periodicity, resulting
in larger peak width, lower peak height, and wrong phase.

The unfaithfulness of the discrete Fourier transformation to the Fourier transfor-
mation is a very serious example of modeling errors, but this problem has not been
addressed seriously enough previously. Because the discrete Fourier transformation
has widest applications in science and engineering, this problem needs some serious
attention.
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9.2 FFT (Fast Fourier Transformation)

When N = 2L, in which L is a positive integer, the generalized Danielson-Lanczos
lemma [12] can be applied to the discrete Fourier transformation as FFT [12].

� For each output, each input is only used once, so there is no dependency problem
when using Formula (2.7) and (2.11) as arithmetic operations. This simplicity

avoids introducing numerical errors from Formula (2.20), because f
(j)
x may con-

tain numerical errors, while (δx)2n may contain rounding errors.

� When L is large, the large amount of input and output data enables high quality
statistical analysis.

� The amount of calculation is L, because for each output, increasing L by 1
results in one additional step of sum of multiplication.

� Each step in the forward transformation thus increases the variance by 2-fold,

so that the result uncertainty mean increases with the FFT order L as
√
2
L
.

Because the reverse transformation divides the result by 2L, the result uncer-

tainty mean decreases with the FFT order L as
√

1/2
L
. The result uncertainty

means for the roundtrip transformations is thus:
√
2
L ×

√
1/2

L
= 1.

� Forward and reverse transformations are identical except for a sign, so they are
essentially the same algorithm, and their difference is purely due to input data.

Forward and reverse FFT transforms have data difference:

� The forward transformation cancels real imprecise data of a Sin/Cos signal into
a spectrum of mostly 0 values, so that both its value errors and its result uncer-
tainties are expected to grow faster.

� In contrast, reverse FFT transformation spread the spectrum of precise 0 values
except at two peaks to data of a Sin/Cos signal, so that both its value errors
and its result uncertainties are expected to grow slower.

9.3 Testing Signals

Only Formula (9.1) and (9.2) with integer n and k will be used.
The following signals are used for testing:

� Sin: h[k] = sin(2πkf/N), f = 1, 2, ...N/2− 1.

� Cos: h[k] = cos(2πkf/N), f = 1, 2, ...N/2− 1.

� Linear : h[k] = k, whose discrete Fourier transformation is Formula (9.7).

y ≡ i2π
n

N
: G(y) =

N−1∑
k=0

eyk =
eNy − 1

ey − 1
=

{
y = 0 : N

y ̸= 0 : 0
;

H[n] =
dG

dy
=

{
n = 0 : N(N−1)

2

n ̸= 0 : −N
2
(1 + i/ tan(n π

N
))

; (9.7)

Empirically, using the indexed sine functions:

� The results from Sin and Cos signals are statistically indistinguishable from each
other.

� The results from Sin signals at different frequencies are statistically indistin-
guishable from each other.

Thus, the results for Sin and Cos signals at all frequencies are pooled together for the
statistical analysis, as the Sin/Cos signals.
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9.4 Library Errors

Formula (9.1) and (9.2) limit the use of sin(x) and cos(x) to x = 2πj/N . To minimize
the numerical errors of sin(x) and cos(x), indexed sine functions can be used instead
of the library sine functions 19

1. Instead of a floating-point value x for sin(x) and cos(x), the integer j is used to
specify the input to sin(x) and cos(x), as sin(2πj/N) and cos(2πj/N), to avoid
the floating-point rounding error of x.

2. The values of sin(2πj/N) and cos(2πj/N) are extended from j = 0, 1, . . . N/8
to j = 0, 1, . . . N using the symmetry of sin(2πj/N) and cos(2πj/N).

3. The values of sin(2πj/N) and cos(2πj/N) are extended from j = 0, 1, . . . N to
the whole integer region using the periodicity of sin(2πj/N) and cos(2πj/N).

Figure 43 shows that the value difference between the library sin(x) and the in-
dexed sin(x) increases with increasing x. However, checked by sin(x)2 + cos(x)2 − 1,
Figure 44 shows that the value errors are quite comparable between the indexed and
library sin(x) and cos(x) functions. In Figure 44, the deviations of the value errors for
the indexed sine function seem less stable statistically, because the deviations of the
index sine function are calculated from much less samples: For the FFT order N , the
deviations for the indexed sine function contain 2N−3 data covering x ∈ [0, π/4], while
the deviations for the library sine function contain 22N−1 data covering x ∈ [0, π2N ].
Figure 44 also shows that both sin(x) functions have proper coverage in variance arith-
metic. Thus, the difference is just caused by the rounding of x in sin(x) and cos(x)
library functions.

Figure 45 shows the value difference between the library cos(x)/ sin(x) and the
indexed cos(x)/ sin(x) for x ∈ (0, π). It covers all the integer inputs to the indexed
cotan functions used for the Linear signal of FFT order 6 and 7. The value errors near
x = π increase with the FFT order. It is likely that the rounding error of x causes
the numerical error when cos(x)/ sin(x) becomes very large near x = π. According to
Figure 46, the library cos(x)/ sin(x) function does not have proper coverage in variance
arithmetic.

Using indexed sin(x) as standard, Figure 46 compares the value errors of the library
sin(x), cos(x)/ sin(x), and 1/tan(x) for increasing FFT orders. It shows that the
numerical errors of all these library functions grow exponentially with increasing FFT
order. 1/tan(x) has the largest errors, and it will not be used for FFT transformations.
cos(x)/ sin(x) has larger errors than those of sin(x).

The difference between the indexed and library sine functions shows the incon-
sistency in the library sine functions, because the indexed sine functions is just the
library sine functions in the range of [0, π/4], and should be related to other ranges ac-
cording to precise mathematical relations. It is difficult to study the numerical errors
of library functions using conventional floating-point arithmetic which has no concept
of imprecise values. Having identified the nature and the strength of the numerical er-
rors of the library sin(x) and cos(x)/ sin(x), variance arithmetic can show their effects
using FFT transformations.
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Figure 43: The difference between the library sin(x) and the indexed sin(x), for
all integer input to the indexed sine functions used in the FFT transformations
of FFT order 4. The uncertainties of the sin(x) values are also displayed, to
mark the periodicity of π.

Figure 44: The value error deviation of sin(x) and cos(x) checked by sin(x)2 +
cos(x)2 − 1 for different FFT order as shown in the x-axis, and for the indexed
and library versions as shown in the legend. Also shown is the corresponding
normalized error deviation for the indexed and library sin(x). The y-axis on the
left is for value error deviation, while the y-axis on the right is for normalized
error deviation.
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Figure 45: The difference between the library cos(x)/ sin(x) and the indexed
cos(x)/ sin(x), for x ∈ (0, π), for different FFT order as shown in the legend. In
the legend, Uncertainty is the calculated uncertainty assuming that both cos(x)
and sin(x) are imprecise in their least significant values, and Value Error is the
difference between the library cos(x)/ sin(x) and the indexed cos(x)/ sin(x).

Figure 46: Comparing library sin(x) and cos(x)/ sin(x) for different FFT orders
as shown by x-axis, and for either value error deviations or normalized error
deviations, as shown in the legend. The y-axis on the left is for value error
deviations, while the y-axis on the right is for normalized error deviations.
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Figure 47: The FFT spectrum of sin(j3/26π) using the indexed sine functions
after the forward transformation calculated by variance arithmetic, with the
uncertainty and the value errors shown in the legend. The x-axis is for index
frequency. The y-axis is for uncertainty and absolute value error.

Figure 48: The FFT waveform of sin(j3/26π) using the indexed sine functions
after the reverse transformation calculated by variance arithmetic, with the
uncertainty and the value errors shown in the legend. The x-axis is for index
time. The y-axis is for uncertainty and absolute value error.
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Figure 49: The result error deviation and uncertainty mean of Sin/Cos sig-
nals vs. FFT order using the indexed sine functions for forward, reverse and
roundtrip FFT transformations, as shown in the legend. The y-axis on the left
is for error deviation, while the y-axis on the right is for uncertainty mean.

Figure 50: The histograms of the normalized errors of Sin/Cos signals using the
indexed sine functions for forward, reverse and roundtrip FFT transformations,
as shown in the legend. The FFT order is 18.
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9.5 Using the Indexed Sine Functions for Sin/Cos Signals

Using the indexed sine functions, for the waveform of sin(2πk3/26) in which k is the
index time:

� Figure 47 shows that for the forward transformation, the result value errors are
comparable to the result uncertainties, with an error deviation of 0.37 for the
real part, and 0.93 for the imaginary part. Both real and imaginary uncertainties
peak at the expected index of ±3, but only real value error peak at the frequency.
Both real and imaginary uncertainties peak at the unexpected index of ±29, ±13
and ±18, as well as the value errors. The reason for the unexpected peaks is
not clear. Overall, the uncertainty seems a smoothed version of the value error,
and they are comparable in strength.

� Figure 48 shows that for the reverse transformation, the result value errors are
comparable to the result uncertainties, with an error deviation of 0.54 for the real
part, and 0.52 for the imaginary part. The uncertainty captures the periodicity
of the value error, as well as bigger strength of the real value error than that of
the imaginary value error.

Figure 49 shows both the result uncertainty means and the error deviations vs.
FFT order of FFT transformations of Sin/Cos signals using the indexed sine functions.
Figure 50 shows the corresponding histograms at FFT order 18.

� As expected, the uncertainties grow much faster with increasing FFT order for
the forward transformation than those for the reverse transformation. Both are
faster enough to achieve proper coverage about 0.65.

� The faster growth of the uncertainties of the forward transformation in Figure
49 results in almost Gaussian distribution of the normalized errors in Figure 50.
Thus, the forward transformation is expected to reach ideal coverage quicker
with any added noise, and it is less sensitive to numerical calculation errors.

� The slower growth of the uncertainties of the reverse transformation in Figure
49 results in structured distribution on top of a Gaussian distribution of the
normalized errors in Figure 50. Thus, the reverse transformation is expected to
reach ideal coverage slower with added input noises, and it is more sensitive to
numerical calculation errors.

� With increasing FFT order, all histograms become more Gaussian like, and the
error deviations for the real and the imaginary parts become more equal in value.
The error deviations for the forward transformation are relatively stable. The
error deviations for the reverse transformation increase with increasing FFT
orders until become stable when FFT orders is 12 or more. When the FFT
order is about 12, statistical stability is reached.

Thus, proper coverage is achieved using the indexed sine functions for Sin/Cos
signals.

9.6 Using the Library Sine Functions for Sin/Cos Signals

Because the least significant values are the only source of input uncertainties for vari-
ance arithmetic, the result uncertainties using either sine functions are almost identi-
cal. The library sine functions have numerical calculation errors which is not specified

19The sin and cos library functions in Python, C++, Java all behave in the same way. The
indexed sine functions are similar to sinpi and cospi functions proposed in C++23 standard
but not readily available excepted in few selected platforms such as for Apple.
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Figure 51: The FFT spectrum of sin(j3/26π) using the library sine functions
after the forward transformation calculated by variance arithmetic, with the
uncertainties and the value errors shown in the legend. Also included are the
corresponding result value errors using SciPy. The x-axis is for index frequency.
The y-axis is for uncertainties or absolute value errors.

Figure 52: The FFT waveform of sin(j3/26π) using the indexed sine functions
after the reverse transformation calculated by variance arithmetic, with the
uncertainties and the value errors shown in the legend. Also included are the
corresponding result value errors using SciPy. The x-axis is for index time. The
y-axis is for uncertainties or absolute value errors.
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Figure 53: The result error deviation and uncertainty mean of Sin/Cos signals
vs. FFT order using the library sine functions for forward, reverse and roundtrip
FFT transformations, as shown in the legend. The y-axis on the left is for error
deviation, while the y-axis on the right is for uncertainty mean.

Figure 54: The result error deviation and uncertainty mean of Sin/Cos signals
vs. FFT order using the library sine functions for forward, reverse and roundtrip
FFT transformations, as shown in the legend. The y-axis on the left is for error
deviation, while the y-axis on the right is for uncertainty mean. 10−16 input
noises are added to the Sin/Cos signals.
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Figure 55: The waveform of sin(j4/26π) using the indexed sine functions after
the reverse transformation calculated by variance arithmetic, with the uncer-
tainties and the value errors shown in the legend. Also included are the cor-
responding result value errors using SciPy. The x-axis is for index time. The
y-axis is for uncertainties or absolute value errors.

Figure 56: The waveform of sin(j1/26π) using the indexed sine functions after
the reverse transformation calculated by variance arithmetic, with the uncer-
tainties and the value errors shown in the legend. Also included are the cor-
responding result value errors using SciPy. The x-axis is for index time. The
y-axis is for uncertainties or absolute value errors.
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by the input uncertainties of variance arithmetic. The question is whether variance
arithmetic can track these numerical errors effectively or not.

Using the library sine functions, for the waveform of sin(2πk3/26) in which k is
the index time:

� Figure 51 shows that for the forward transformation, the result value errors are
noticeably larger than the result uncertainties, with an error deviation of 7.0 for
the real part, and 5.6 for the imaginary part. As expected, the error deviations
are noticeably larger than their counterparts in Figure 47.

� Figure 52 shows that for the reverse transformation, the result value errors are
noticeably larger than the result uncertainties, with an error deviation of 5.7
for the real part, and 0.83 1015 for the imaginary part. The surprisingly large
imaginary error deviation is caused by the small uncertainty at the index time
of 8 where the value error is at a local maximum.

� As the result of the huge error deviation, Figure 53 shows that the result of
the reverse transformation no longer has proper coverage for all FFT orders.
When a small noise with deviation of 10−16 is added to the input, the result
uncertainty of the reverse transformation at the index time of 8 is no longer near
0, so that the result error deviations achieve proper coverage again, as show in
Figure 54.

� Figure 49 and Figure 53 confirm that the result uncertainties are identical to all
FFT transformations, respectively.

Variance arithmetic reveals the reason why to add small noises to the numerically
generated input data, which is already a common practice [12]. It further reveals that
the amount of noise needed is to achieve proper coverage.

In Figure 52, the value errors tend to increase with the index time, which is due
to the periodic increase of the numerical errors of sin(x) with x as shown in Figure 43.
When the signal frequency increases, the increase of the value errors with the index
frequency in the reverse transformation becomes stronger, as shown in Figure 52, 55,
and 56. In fact, Figure 55 suggests that the periodic numerical errors in Figure 43
resonate with the periodicity of the input Sin signal. In contrast, Figure 48 shows no
such increase. It shows that the library numerical errors may have surprisingly large
effect on the numerical results.

To validate the FFT implementation in variance arithmetic, the results are com-
pared with the corresponding calculations using the python numerical library SciPy
in Figure 51 and 52. The results are quite comparable, except that in SciPy, the
data waveform is always real rather than complex. In Figure 51, the SciPy results
have been made identical for the frequency indexes f and −f , and the matching to
the corresponding results of variance arithmetic is moderate. In Figure 52, the SciPy
results match the corresponding results of variance arithmetic quite well. It shows
that the effects of library numerical errors revealed by variance arithmetic exist in real
applications.

9.7 Linear Signal

As shown in Figure 46, linear signals may introduce more numerical errors to the result
through library cos(x)/sin(x). The question is whether variance arithmetic can track
these additional numerical errors or not.

Using the indexed sine functions:
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Figure 57: The result error deviation and uncertainty mean of Linear signal vs.
FFT order using the indexed sine functions for forward, reverse and roundtrip
FFT transformations, as shown in the legend. The y-axis on the left is for error
deviation, while the y-axis on the right is for uncertainty mean.

Figure 58: The histograms of the normalized errors of Linear signal using the
indexed sine functions for forward, reverse and roundtrip FFT transformations,
as shown in the legend.
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Figure 59: The result error deviation and uncertainty mean of Linear signal vs.
FFT order using the library sine functions for forward, reverse and roundtrip
FFT transformations, as shown in the legend. The y-axis on the left is for error
deviation, while the y-axis on the right is for uncertainty mean.

Figure 60: The histograms of the normalized errors of Linear signal using the
library sine functions for forward, reverse and roundtrip FFT transformations,
as shown in the legend.
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� Figure 57 shows that the result uncertainty for each FFT transformation has
much larger increase with the increasing FFT order than its counter part in
Figure 49. It shows that proper coverage can be achieved for all FFT transfor-
mations for all FFT orders.

� Figure 58 shows that for each transformation, the histogram of the Linear signal
is similar to the counterpart of the Sin/Cos signals in Figure 50.

Using the library sine functions:

� Figure 59 shows that proper coverage cannot be achieved for all FFT transfor-
mations for all FFT orders, because the value errors outpace the uncertainties
with increasing FFT order, to result in worse error deviations for increasing
FFT order.

� Figure 60 shows that the reverse histogram contains additional peaks to its
counterpart in Figure 58. The additional peaks extend quite beyond the range
of [−3,+3], revealing the reason why variance arithmetic can not cover these
value errors.

The result difference using variance arithmetic for library Sin/Cos signal vs library
Linear signal suggests that variance arithmetic can break down when the input contains
too much unspecified errors. The only solution seems to create a new sin library using
variance arithmetic so that all numerical calculation errors are accounted for.

9.8 Ideal Coverage

Adding enough noise to the input can overpower unspecified input errors, to achieve
ideal coverage. For Linear signal with 10−3 input noise, using the library sine functions,
Figure 61 and Figure 62 show characteristics for ideal coverage:

� As expected, the result uncertainty means for the forward transformations in-

crease with the FFT order L as
√
2
L
.

� As expected, the result uncertainty means for the reverse transformations de-

crease with the FFT order L as
√

1/2
L
.

� As expected, the result uncertainty means for the roundtrip transformations
always equal the corresponding input uncertainties.

� As expected, the result uncertainty means for both the forward and the re-
verse transformations are linear to the input uncertainties, respectively, because
FFT transformations are linear. As expected, the result uncertainty means
for the roundtrip transformation recover the corresponding input uncertainties
perfectly.

� As expected, the normalized errors for the forward and the reverse transforma-
tions are Normal distributed, even when the input noise is not Gaussian. The
normalized errors for the roundtrip transformations are Delta distributed at 0,
meaning the input uncertainties are perfectly recovered.

� As expected, the result error deviations for the forward and reverse transforma-
tions are constant 1, while the result error deviations for the roundtrip trans-
formation approaches 0 exponentially with increasing FFT order.

The range of ideal coverage depends on how well the input uncertainty specifies
the input noise. For Linear signals using library sine functions, Figure 63 and 64 show
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Figure 61: The histograms of the normalized errors of Linear signal with 10−3

input noise using the library sine functions for forward, reverse and roundtrip
FFT transformations, as shown in the legend.

Figure 62: The result error deviation and uncertainty mean of Linear signal with
10−3 input noise using the library sine functions vs. FFT order for forward,
reverse and roundtrip FFT transformations. The y-axis on the left is for error
deviation, while the y-axis on the right is for uncertainty mean.
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Figure 63: The result error deviations for Linear signals using library sine func-
tions vs. input uncertainties and FFT orders for the forward transformations.
The input uncertainties run from 10−16 to 10−1, while the FFT Order runs from
6 to 18.

Figure 64: The result error deviations for Linear signals using library sine func-
tions vs. input uncertainties and FFT orders for the reverse transformations.
The input uncertainties run from 10−16 to 10−1, while the FFT Order runs from
6 to 18.
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Figure 65: The result error deviations for Linear signals using indexed sine func-
tions vs. input uncertainties and FFT orders for the forward transformations.
The input uncertainties run from 10−16 to 10−1, while the FFT Order runs from
6 to 18.

Figure 66: The result error deviations for Linear signals using indexed sine func-
tions vs. input uncertainties and FFT orders for the reverse transformations.
The input uncertainties run from 10−16 to 10−1, while the FFT Order runs from
6 to 18.
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the error deviation vs. the added noise vs. FFT order for the forward and reverse
transformations, respectively. The ideal coverage is shown as the regions where the
error deviations are 1. In other regions, proper coverage is not achievable. Because
the uncertainties grow slower in the reverse transformation than in the forward trans-
formation, the reverse transformations have smaller ideal coverage region than that of
the forward transformation. Because numerical errors increase with the amount of cal-
culation, the input noise range reduces with increasing FFT order. It is possible that
ideal coverage is not achievable at all, e.g., visually, when the FFT order is larger than
25 for the reverse transformation. As one of the most robust numerical algorithms
that is very insensitive to input errors, FFT can breaks down due to the numerical
errors in the library sine functions, and such deterioration of the calculation result is
not easily detectable using the conventional floating-point calculation.

In contrast, for Linear signals using indexed sine functions, as shown by Figure
65 and 66 for the forward and reverse transformations, respectively, the ideal re-
gion is much larger, and proper coverage is achieved in other regions. Forward FFT
transformation still shows larger region of ideal coverage than that of Reverse FFT
transformation.

For Sin/Cos using either indexed sine functions or library sine functions, the ideal
region is achieved when the added noise is large enough to cover the effect of rounding
errors, almost independent of FFT orders. In both cases, forward transformation
needs 10−15 added noise, while reverse transformation needs 10−12 added noise. The
difference is that using indexed sine functions, in the proper coverage region, error
deviations deviate from 1 only slightly.

9.9 Summary

Compared to its counterpart continuous Fourier Transformation (FT), the discrete
Fourier transformation (DFT) has large modeling error due to its implied assumption.
This modeling error has not been addressed seriously.

The library sine functions using conventional floating-point arithmetic have been
shown to contain numerical errors as large as equivalently 10−3 of input precision for
FFT transformations. The library sin(x) errors increase periodically with x, causing
noticeable increase of the result errors with increasing index frequency in the reverse
transformation, even in resonant fashion. The dependency of the result numerical
errors on the amount of calculation and input data means that a small-scale test
cannot properly qualify the result of a large-scale calculation. The effect of numerical
errors inside math library has not been addressed seriously.

Variance arithmetic should be used, whose values largely reproduce the correspond-
ing results using conventional floating-point arithmetic, whose uncertainties trace all
input errors, and whose result error deviations qualify the calculation quality as either
ideal, or proper, or suspicious. If the library functions also have proper coverage, the
calculation result will probably have proper coverage as well.
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Figure 67: The error deviation and mean for sin(x)2 + cos(x)2 − 1, x ∈ [0, π/4],
for different regression order as shown by the x-axis. In the legend, Value Error
means the values of sin(x)2 + cos(x)2 − 1, Normalized Error means the value
errors normalized by the calculated uncertainty, Regression means the sin(x)
and cos(x) generated by regression, and Library means library sin(x) and cos(x).
The y-axis on the left is for normalized error, while the y-axis on the right is
for value error.

10 Regressive Generation of Sin and Cos

Starting from Formula (10.1), Formula (10.2) and Formula (10.3) can be used recur-
sively to calculate the sin library function.

sin(0) = cos(
π

2
) = 0; sin(

π

2
) = cos(0) = 1; (10.1)

sin

(
α+ β

2

)
=

√
1− cos (α+ β)

2
=

√
1− cos(α) cos (β) + sin(α) sin(β)

2
; (10.2)

cos

(
α+ β

2

)
=

√
1 + cos (α+ β)

2
=

√
1 + cos(α) cos(β)− sin(α) sin(β)

2
; (10.3)

When α + β → 0, the nominator in Formula (10.2) is the difference of two values
both are very close to 1, to result in very coarse precision. Also, both value errors
and uncertainties are accumulated in the regression. This regression is not suitable
for calculating library sin and cos functions. It can be used to check the trigonometric
relation for library sin and cos functions.

The number of regressions is defined as the order. For each order n, 2n sin(π
2

i
2n

)
and cos(π

2
i
2n

) values are obtained, so that the result is more statistically stable with
increasing n.

The value errors of sin(x) and cos(x) are checked by sin(x)2+cos(x)2−1. Figure 67
shows that the value errors of the generated sin(x) and cos(x) is comparable to those
of library sin(x) and cos(x). It shows that the result error deviations are close to 0.5.
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Because floating-point rounding errors are the only source of errors in the regression,
as expected, variance arithmetic provides proper coverage for this regression.
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11 Conclusion and Discussion

11.1 Summary of Variance Arithmetic

The starting point of variance arithmetic is the uncorrelated uncertainty assumption,
which requires input data to have fine enough precision as shown in Figure 2. In
addition, it requires that systematic errors are not the major source of uncertainty.

Once the uncorrelated uncertainty assumption is satisfied, variance arithmetic
quantifies uncertainty as the deviation of the value errors. It can trace the variable
dependency in the intermediate steps using standard statistics. The statistical nature
of variance arithmetic is reflected by the bounding leakage ϵ = 5.73 10−7 and the
required value precision τ = 7.18 10−7, which determine the convergence and trunca-
tion when Taylor expansion is used to obtain the result mean and uncertainty of an
analytic function. In variance arithmetic, ill-formed problems can be invalidated as
result divergence, unreliable result variance, or being practically unstable.

The presence of ideal coverage is the necessary condition for a numerical algorithm
in variance arithmetic to be correct. The ideal coverage also defines the ideal applicable
range for the algorithm. In ideal coverage, the calculated uncertainty equals the error
deviation, and the result normalized errors is either Normal distributed or Delta dis-
tributed depending on the context. In variance arithmetic, the best-possible precision
to achieve ideal coverage is 10−15, which is good enough for most applications.

Variance arithmetic can only provide proper coverage for floating-point rounding
errors, with the empirical error deviations in the approximate range of [1/2, 2].

Variance arithmetic has been showcased to be widely applicable, so as for analytic
calculations, progressive calculation, regressive generalization, polynomial expansion,
statistical sampling, and transformations.

The code and analysis for variance arithmetic are published as an open source
project at https://github.com/Chengpu0707/VarianceArithmetic.

11.2 Improvement Needed

Context Error Deviation
Polynomial Taylor Expansion 2

Adjugate Matrix 4
p
√
xp − x 0.55

Forward FFT of Sin/Cos signal with indexed sine 0.65
Reverse FFT of Sin/Cos signal with indexed sine 0.85

Roundtrip FFT of Sin/Cos signal with indexed sine 0.87
Forward FFT of Linear signal with indexed sine 0.8
Reverse FFT of Linear signal with indexed sine 1.0

Roundtrip FFT of Linear signal with indexed sine 1.25
Regressive Calculation of sin and cos 0.55

Table 3: The error deviations for floating-point rounding errors in different
contexts.

This paper just showcases variance arithmetic which is still in its infancy. Theoreti-
cally, some important questions remain:
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� What is the error deviation for floating-point rounding errors? Table 3 shows
the measured error deviations in different contexts.

� Is there a way for variance arithmetic to provide ideal coverage to floating-point
rounding errors? Many theoretical calculations have no input uncertainties, so
that a special version of variance arithmetic for ideal coverage to floating-point
rounding errors may be desirable.

� What is the uncertainty upper bounds for each problem? Specifically, how to
explain quantitatively the measured upper bounds in Figure 27 and 33.

� How to apply variance arithmetic when analytic solution is not available such
as solving differential equation?

11.3 New Numerical Approaches

Traditional numerical approaches focus primarily on the result values, and they need
to be reexamined or even reinvented in variance arithmetic. Most traditional numer-
ical algorithms try to choose one of the best paths, while variance arithmetic rejects
conceptually all path-dependent calculations.

Variance arithmetic generally reveals worse results than those of conventional
floating-point arithmetic, such as very quick loss of precision in matrix inversion, es-
pecially for matrix of large size. How to reconcile variance arithmetic and traditional
numerical approaches could be a big challenge.

Variance arithmetic no longer has dependency problem, and it can reject ill-formed
problems. By using stability truncation, variance arithmetic no longer needs theo-
retical reminder estimator so that it is simpler for truncation problems. Variance
arithmetic seems conceptually easier than traditional numerical approaches.

The calculation of the result uncertainty bias and uncertainty contains a lot of
sums of constant terms such as Formula (2.20) and (2.23), so that it is a excellent
candidate for parallel processing. Because variance arithmetic has neither execution
freedoms nor the associated dependency problems, it can be implemented either in
software using GPU or directly in hardware.

In variance arithmetic, it is generally an order-of-magnitude more complicated
to calculate the result uncertainties than the result values, such as Formula (5.19)
for Taylor expansion of matrix inversion. However, modern software programs for
analytic calculation can be a great help. Perhaps it is time to move from numerical
programming to analytic programming.

11.4 Recalculating Library Math Functions

The library math functions need to be calculated using variance arithmetic, so that
each output value has its corresponding uncertainty. Otherwise, the effect of the
existing value errors in the library function can have unpredictable and large effects.
For example, this paper shows that the periodic numerical errors in the sine library
functions cause resonant-like large result value errors in a FFT reverse transformation.

11.5 Different Floating-Point Representation for Variance

In variance representation x ± δx, δx is comparable in value with x, but (δx)2 is
calculated and stored. This limits the effective range for x ± δx to be much smaller
than the full range of the standard 64-bit floating-point representation. Ideally, (δx)2
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should be calculated and stored in a different 64-bit floating-point representation with
the sign bit reused for the exponent, so that δx has exactly the same range as the
standard 64-bit floating-point representation.

11.6 Uncertainty of Variance

In Formula (2.20) and (2.23), the result variance is calculated using variance arith-
metic:

� If the uncertainty of the variance is more than 1/σ-fold of the value of the
variance, the result is deemed to be unreliable;

� Otherwise, the uncertainty of the variance is ignored.

However, the above approach is invalid if the accumulation of the uncertainty of vari-
ance cannot be ignored.

11.7 First Order Approximation

Most practical calculations are neither pure analytic nor pure numerical, in which
the analytic knowledge guides the numerical approaches, such as solving differential
equations. In these cases, when input precision is fine enough, first order approxima-
tion of variance arithmetic may be a viable solution because these calculations may
only have low-order derivatives for the result. This paper provides an example of first
order approximation of variance arithmetic, as Formula (5.21) for δ2|M|. The differ-
ence between Formula (2.60) and (2.61) shows that the first order approximation of
f(g(x)) does not have dependency problem. When normalized error is not symmetric
distributed, such as for (0± δx)2 or sin(π/2± δx), the corresponding error deviations
is still 1, which shows that Formula (2.18) can be violated without significant conse-
quence, or equivalently the first order terms in the corresponding variance calculation
dominates. However, Section 4 shows that the result uncertainty needs higher order
than first order to stabilize. How to effectively apply variance arithmetic to practical
calculations remains an open question.

11.8 Source Tracing

As an enhancement for dependency tracing, source tracing points out the contribution
to the result uncertainty bias and uncertainty from each input. This gives clues to
engineers on how to improve a measurement effectively.

11.9 Variable σ Variance Arithmetic

Variance arithmetic rejects a calculation if its distributional pole or distributional zero
is within the input ranges. But there are many use cases in which such intrusion
cannot be avoided, so variance arithmetic of smaller σ may be needed. It is even
possible in another implementation of variance arithmetic, σ is part of a variance
representation, so that a calculation closer to a distributional zero or a distributional
pole can proceed but at the expense of reducing σ. The result σ for a calculation of
imprecise inputs each with different σ is found statistically through the corresponding
ϵ. Such approaches need theoretical foundation in both mathematics and statistics.
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