
DR
AF
T
03
.2

5. Level 1 description

In this clause, subclauses 5.1 to 5.5 describe the theory of mathematical intervals and interval
functions that underlies this standard. The relation between expressions and the point or interval
functions that they define is specified, since it is is central to the Fundamental Theorem of Interval
Arithmetic. Subclauses §5.6, 5.7 list the required and recommended arithmetic operations (also
called elementary functions) with their mathematical specifications. Subclause 5.8 describes, at
a mathematical level, the system of decorations that is used among other things for exception
handling in P1788.

5.1. Numbers. Following the terminology of 754 (e.g., 754§2.1.25), any member of the set
R ∪ {−∞,+∞} of extended reals is called a number: it is a finite number if it belongs to R, else
an infinite number.

5.2. Intervals. The set of mathematical intervals in R, denoted IR, comprises1 all closed
intervals of real numbers

x = [x, x] := {x ∈ R | x ≤ x ≤ x },

where the bounds x, x are extended-real numbers satisfying −∞ ≤ x ≤ x ≤ +∞.
[Notes.

– In particular, the empty interval [−∞,−∞] = [+∞,+∞] = ∅ belongs to IR.
– The above definition implies −∞ and +∞ can be bounds of an interval, but are never members of it.
– The round bracket or outward bracket notations for closed intervals in R with an infinite end point

(e.g., [2,+∞) or [2,+∞[instead of [2,+∞]) are not used in this document but are not considered
wrong.

]

A box or interval vector is an element x ∈ IRn
; we write x ∈ x if xi ∈ xi for all i = 1, . . . , n.

Note that a box x is empty as soon as one of its components xi is empty.

5.3. Hull. The (interval) hull of an arbitrary subset s of Rn, written hull(s), is the tightest

member of IRn
that contains s. (The tightest set with a given property is the intersection of all

sets having that property, provided the intersection itself has this property.)

5.4. Functions.
5.4.1. Function terminology. In this standard, operations are written as named functions; in

a specific implementation they might be represented by operators (i.e., using some form of infix
notation), or by families of format-specific functions, or by operators or functions whose names
might differ from those in this standard.

The terms operation, function and mapping are broadly synonymous. The following summa-
rizes the usage in this standard, with references in parentheses to precise definitions of terms.

– A point function (§5.4.2) is a mathematical real function of real variables. Otherwise, function
is usually used with its general mathematical meaning.

– A (point) arithmetic operation (§5.4.2) is a mathematical real function for which an implemen-
tation provides versions in the implementation’s library (§5.4.2).

– A version of a point function f means a function derived from f , such as an interval extension
(§5.4.3) of it; usually applied to library functions.

– An interval arithmetic operation is an interval version of a point arithmetic operation (§5.4.3).
– An interval non-arithmetic operation is an interval-to-interval library function that is not an

interval arithmetic operation (§5.4.3).
– A constructor is a function that creates an interval from non-interval data (§6.4.1).

1The overline is for compatibility with older notation, which uses IR for the set of closed and bounded real

intervals.

10

DR
AF
T
03
.2

Draft 03.2
IEEE Std P1788

IEEE Standard For Interval Arithmetic §5.4

5.4.2. Point functions. A point function is a (possibly partial) multivariate real function:
that is, a mapping f from a subset D of Rn to Rm for some integers n ≥ 0,m > 0. The function is
called a scalar function if m = 1, otherwise a vector function. When not otherwise specified, scalar
is assumed. The set D where f is defined is its domain, also written Domain f . To specify n, call
f an n-variable point function, or denote values of f as

f(x1, . . . , xn). (1)

The range of f over an arbitrary subset s of Rn is the set

Range(f | s) := { f(x) | x ∈ s and x ∈ Domain f }. (2)

Thus mathematically, when evaluating a function over a set, points outside the domain are ignored
(e.g., Range(sqrt | [−1, 1]) = [0, 1]).

Equivalently, for the case where f takes separate arguments s1, . . . , sn, each being a subset
of R, the range is written as Range(f | s1, . . . , sn). This is an alternative notation when s is the
cartesian product of the si.

A (point) arithmetic operation is a function for which an implementation provides versions
in a collection of user-available operations called its library. This includes functions normally
written in operator form (e.g., +, ×) and those normally written in function form (e.g., exp,
arctan). It is not specified how an implementation provides library facilities.

5.4.3. Interval-valued functions. A box is an interval vector x = (x1, . . . ,xn) ∈ IRn
. It is

usually identified with the cartesian product x1 × . . . × xn ⊆ Rn; however, the correspondence is
one-to-one only when all the xj are nonempty.

Given an n-variable point function f , an interval extension of f is a (total) mapping f from

IRn
to IR, such that

f(x) ⊇ Range(f |x)

for any box x ∈ IRn
, regarded as a subset of Rn. The natural interval extension of f is defined

by

f(x) := hull(Range(f |x)).

Equivalently, using multiple-argument notation for f , an interval extension satisfies

f(x1, . . . ,xn) ⊇ Range(f |x1, . . . ,xn),

and the natural interval extension is defined by

f(x1, . . . ,xn) := hull(Range(f |x1, . . . ,xn))

for any intervals x1, . . . ,xn.
In some contexts it is useful for x to be a general subset of Rn, or the xi to be general subsets

of R; the definition is unchanged.
The natural extension is automatically defined for all interval or set arguments. The decoration

system introduced below in 5.8 gives a systematic way of diagnosing when the underlying point
function has been evaluated outside its domain.

When f is a binary operator • written in infix notation, this gives the usual definition of its
natural interval extension as

x • y = hull({x • y | x ∈ x, y ∈ y, and x • y is defined }).

[Example. With these definitions, the relevant natural interval extensions satisfy
√

[−1, 4] = [0, 2] and√
[−2,−1] = ∅; also x× [0, 0] = [0, 0] for any nonempty x, and x/[0, 0] = ∅, for any x.]

When f is a vector point function, a vector interval function with the same number of inputs
and outputs as f is called an interval extension of f if each of its components is an interval extension
of the corresponding component of f .

An interval-valued function in the library is called an interval arithmetic operation if
it is an interval extension of a point arithmetic operation, and an interval non-arithmetic
operation otherwise. Examples of the latter are interval intersection and union, (x,y) 7→ x ∩ y
and (x,y) 7→ hull(x ∪ y).

11 July 18, 2011

DR
AF
T
03
.2

Draft 03.2
IEEE Std P1788

IEEE Standard For Interval Arithmetic §5.5

5.4.4. Constants. A real scalar function with no arguments—a mapping Rn → Rm with n = 0
and m = 1—is a real constant. Languages may distinguish between a literal constant (e.g., the
decimal value defined by the string 1.23e4) and a named constant (e.g., π) but the difference is
not relevant on Level 1 (and easily handled by outward rounding on Level 2).

From the definition, an interval extension of a constant is any zero-argument interval function
that returns an interval containing c. The natural extension returns the interval [c, c].

[Note. This specification of constants gives a Level 1 definition of NaN, “Not a Number”—not as a
value, but as a constant function. R0 is the zero-dimensional vector space {0}—it has one element,
conventionally named 0. The real numbers c are in one-to-one correspondence with the mappings
c() : 0 7→ c, so that R can be identified with the total functions R0 → R. There is one non-total c(),
the function NaN() with empty domain and, therefore, no value. Its natural interval extension is the
constant interval function whose value is the empty interval.]

5.5. Expressions and the functions they define.
5.5.1. Expressions. A variable is a symbolic name. A expression in zero or more (indepen-

dent) variables is a symbolic object defined to be either one of those variables or, recursively, of
the form φ(g1, . . . , gk) where φ is a symbolic operation taking k arguments (k ≥ 0), and the gi
are expressions. Other syntax may be used, such as traditional algebraic notation and/or pro-
gram pseudo-code. An arithmetic expression is one in which all the operations are arithmetic
operations.

[Examples.

– The object f where

f = (ex + e−x)/(2y)

is an arithmetic expression in two variables x, y that may be written in the above form as

div(plus(exp(x), exp(uminus(x))), times(2(), y)),

where uminus, plus, times, div and exp name the arithmetic operations “unary minus”, +, ×, ÷
and exponential function. The literal constant 2 is regarded as a zero-argument arithmetic operation
2(), see 5.4.4.

The expression may be broken (e.g., by a compiler) into elementary operations that may be
sequenced in several ways, one of which is

v1 = exp(x)
v2 = uminus(x)
v3 = exp(v2)
v4 = plus(v1, v3)
v5 = 2()
v6 = times(v5, y)
f = div(v4, v6).

All these forms are regarded as defining the same expression f.
– An expression that uses the interval intersection or union operation is not an arithmetic expression.

]

To define functions of variables, an expression must be made into a bound expression by
giving it a formal argument list with notation such as

f(z1, . . . , zn) = expression.

This defines f to be the indicated expression with the formal argument list z1, . . . , zn, which must
include at least the variables that actually occur in the right-hand side. An expression without
such an argument list is a free expression.

5.5.2. Generic functions. An arithmetic operation name such as +, or a bound arithmetic
expression such as f(x, y) = x + sin y, may be used to refer to different, related, functions: such
operations and expressions, or the resulting functions, are called generic (or polymorphic). Whether
generic function syntax can be used in program code is language-defined.

An implementation provides a number of arithmetic operation names φ, each representing
various functions as follows.

12 July 18, 2011

DR
AF
T
03
.2

Draft 03.2
IEEE Std P1788

IEEE Standard For Interval Arithmetic §5.5

(a) The point function of φ. This is unique, theoretical and generally non-computable in finite
precision.

(b) Various interval versions of φ, among them in particular
(b1) The natural interval extension of the point function. This also is unique, theoretical and

generally non-computable.
(b2) Computable interval extensions of the point function.

(c) Decorated interval versions of φ, see §5.8.

The implementation’s library contains all computable versions of all provided arithmetic opera-
tions: see §5.6 for those that are required, and §5.7 for those recommended.

An arithmetic operation or expression may also denote a floating point function; this is not
relevant to this standard.

5.5.3. Point functions and interval versions of expressions. A bound arithmetic expression
f = f(z1, . . . , zn) represents various functions in the categories (a), (b1), (b2), (c) above.

The point function of (or defined by) f is a function f : Domain f ⊆ Rn → R. The natural
domain Domain f of f is the set of all x = (x1, . . . , xn) ∈ Rn where its value is defined according
to the following rules:

– If f is the variable zi, f(x) is the number xi. It is defined for all x ∈ Rn.
– Recursively, if f = φ(g1, . . . , gk), f(x) is the value of the point function of φ at u = (u1, . . . , uk)

where ui is the value of the point function of gi at x. It is defined for those x ∈ Rn such that
each of u1, . . . , uk is defined and the resulting u is in φ’s domain Domainφ, which is part of its
mathematical definition.

In the recursive clause of this definition, φ can be a constant (a function with k = 0 argu-
ments), so that f(x) = φ(). Then, see §5.4.4, there are two cases: (a) φ has a real value c; then
f(x) = c for all x ∈ Rn; (b) φ is the undefined function NaN, in which case f(x) is not defined
for any x ∈ Rn.

[Example. The specifications

f(x, y) = (ex + e−x)/(2y),

f(y, x) = (ex + e−x)/(2y),

f(w, x, y, z) = (ex + e−x)/(2y)

are all valid and different (they define different functions), while

f(y) = (ex + e−x)/(2y)

is invalid since the argument list does not include the variable x, which occurs in f.]

[Example. The natural domain of f(x, y) = 1/(
√
x− 1−y) is the set of (x, y) in the plane that do not

cause either square root of a negative number or division by zero, i.e., where x ≥ 1 and y 6=
√
x− 1.]

An interval version of f(z1, . . . , zn) is a (total) function f : IRn → IR. Its value at an actual

argument x = (x1, . . . ,xn) ∈ IRn
, a box, is defined as follows:

– If f is the variable zi, the value is some interval containing xi.
– Recursively, if f = φ(g1, . . . , gk), the value is some interval extension of φ evaluated at (u1, . . . ,uk)

where ui is the value of some interval version of gi at x.

The natural interval version of f is the unique interval version that uses the natural interval
extension of each φ.

Moore’s theorem states:

Theorem 5.1 (Fundamental Theorem of Interval Arithmetic, FTIA).
(i) Every interval version of a arithmetic expression f(z1, . . . , zn) is an interval extension of the
point function defined by the expression.
(ii) If every variable occurs at most once in f and, for some x ∈ IRn

, all elementary operations
occurring in f evaluate to their range then f(x) = Range(f |x).

[Note. To part (ii). Using exact arithmetic, that is, the natural interval version of f, it is known that
an elementary operation evaluates to its range if it is continuous on its input box. This can be checked
by the decoration system (§5.8), so the conditions of (ii) are computable. The result is that in finite
precision it is often verifiable at run time that f(x) equals Range(f |x) up to roundoff error.]

13 July 18, 2011

DR
AF
T
03
.2

Draft 03.2
IEEE Std P1788

IEEE Standard For Interval Arithmetic §5.8

5.8. The decoration system.
5.8.1. The purpose of decorated intervals. Decorations are properties of a function for which

an interval enclosure of its range over a box is being computed. There are two main objectives of
interval calculations:

(1) obtaining correct range enclosures for a real-valued function f of real variables;
(2) verifying the assumptions of existence, uniqueness, or nonexistence theorems.

While traditional interval analysis targets the first aim, decorations target the second aim.
A decoration primarily describes a property, not of the interval it is attached to, but of the

function defined by a section of code that produced that interval.
The decoration system is designed in a way that naive users of interval arithmetic do not

notice anything about decorations, unless they inquire explicitly about their values. They are only
required to

– call the domain operation, see §5.8.5, for the input vector of any function evaluation used to
invoke an existence theorem,

– explicitly convert all floating-point constants (but not integer constants) to intervals,

and have the full rigor of interval calculations available. A smart compiler may even relieve users
from these tasks. Expert users can inspect, set and modify decorations to improve code efficiency,
but are responsible for checking that computations done in this way remain rigorously valid.

Decorations are based on the desire that, from an interval evaluation of a real function f at
a box x, one should get not only a range enclosure f(x) but also a guarantee that the pair (f,x)
has certain important properties, such as f(x) being defined for all x ∈ x, f restricted to x being
continuous, etc. This goal is achieved, in parts of a program that require it, by adding to each
interval extra information in the form of a decoration, whose semantics is summarized as follows:

Each intermediate step of the original computation depends on some or all of
the inputs, so it can be viewed as an intermediate function of these inputs. The
result interval obtained on each intermediate step is an enclosure for the range
of the corresponding intermediate function. The decoration attached to this
intermediate interval reflects the available knowledge about whether this inter-
mediate function is guaranteed to be everywhere defined, continuous, bounded,
etc., on the given inputs.

This applies to arithmetic interval operations. Nonarithmetic operations, such as hull and
intersection of two intervals, occur in too varied contexts to allow a uniform decoration-handling
scheme. Hence they ignore decorations, and give undecorated output. Programmers are responsible
for the appropriate propagation of decorations by these operations.

The P1788 decoration model, in contrast with 754’s, has no global flags. A general aim, as
in 754’s use of NaN and flags, is not to interrupt the flow of computation: rather, to collate
information during evaluation for inspection afterwards. This enables a fully local handling of
exceptional conditions in interval calculations—important in a concurrent computing environment.

The system is outlined here at a mathematical level, with the finite-precision aspects in §6.5.
§5.8.2 to §5.8.5 give the basic concepts. §5.8.6 gives examples. §5.8.7, 5.8.8 discuss the decoration
of library arithmetic operations, and of user-defined arithmetic operations. §5.8.9 is about type
conversion in mixed operations. §5.8.10 defines a restricted arithmetic that is sufficient for some
important uses of decorations and allows especially efficient implementation on current computer
architectures. Though its rationale is an issue for Levels 2 onward, its description is appropriate
to put in Level 1. Finally, correctness proofs are in Annex C.

5.8.2. Definitions. The set D of decorations has seven elements:

4! Note from AN+JDP. Please don’t criticise on the grounds of the number of decorations. We
don’t necessarily favour this but want to ensure the theory works for the ‘most complicated’ case. It
works equally well for simpler schemes where some of these categories are merged.

19 July 18, 2011

DR
AF
T
03
.2

Draft 03.2
IEEE Std P1788

IEEE Standard For Interval Arithmetic §5.8

Value Short description
ein empty input
bnd bounded
dac defined & continuous
def defined
con containing
emp empty
ill ill-formed

Formally, each d ∈ D is the set of pairs (f,x) consisting of a real-valued function f with domain

Domain f ⊆ Rn for some n and a box x ∈ IRn
for which the property pd(f,x) is true, where

pein(f,x) : x is empty (i.e., has some empty component);
pbnd(f,x) : x is a subset of Domain f , and the restriction of f to x is

continuous and bounded;
pdac(f,x) : x is a subset of Domain f , and the restriction of f to x is

continuous;
pdef(f,x) : x is a subset of Domain f ;
pcon(f,x) : always true;
pemp(f,x) : x is nonempty and disjoint from Domain f ;
pill(f,x) : x is nonempty and Domain f is empty.

(8)

A decorated interval is a pair, written interchangeably as (f , d) or fd, where f ∈ IR is a
real interval and d ∈ D is a decoration, such that the following invariance property holds:

d is in { bnd, dac, def, con } if f is nonempty, and in { emp, ill, ein } if f is empty. (9)

(The other combinations would not make sense.) An interval or decoration may be referred to as
a bare interval or decoration, to emphasize that it is not a decorated interval.

xd may also be a decorated box
(
(x1, d1), . . . , (xn, dn)

)
, where x and d are the vectors of

interval parts xi and decoration parts di respectively. The set of decorated intervals is denoted
by DIR, and the set of decorated boxes of length n is denoted by DIRn

. In program format, e.g.
pseudocode, the interval and decoration parts of a decorated interval or box named x may be
written x.int and x.dec respectively.

The decoration system provides an extension of Moore’s Theorem 5.1, as follows. The precise
definition of a decorated interval version of an expression is given in §5.8.4.

Theorem 5.2 (Fundamental Theorem of Decorated Interval Arithmetic, FTDIA). Let fd = f(x)
be the result of evaluating an arithmetic expression f(z1, . . . , zn) over a bare box x = (x1, . . . ,xn) ∈
IRn

using any decorated interval version of f. Then

pd(f,x) holds. (10)

This is in addition to the enclosure f ⊇ Range(f |x) given by Moore’s Theorem 5.1.

The rigor necessary to make interval arithmetic a reliable tool for verified computing warrants
a detailed proof, given in Annex C.

If all arithmetic operations are implemented with inclusion isotone interval extensions then
the decorations are also inclusion isotone. 4! A precise statement will be provided and proved at
a later stage.

5.8.3. Basic properties. By design, the decorations are partially ordered by set containment
giving the containment order, which is immediate from the definitions (8):

ein ⊆ bnd ⊆ dac ⊆ def ⊆ con ⊇ emp ⊇ ill. (11)

E.g., dac ⊆ def is equivalent to pdac(f,x) =⇒ pdef(f,x), which is clearly true. Note the reversal
of the containment signs after con. Also by design, any d, e ∈ D satisfy the exclusivity rule:

If neither d ⊆ e nor e ⊆ d then pd(f,x) and pe(f,x) cannot both hold, i.e. d ∩ e = ∅. (12)

[Note. con is the loosest decoration, where nothing is claimed; ein and ill claim the most and are
tightest. The containment order reflects the fact that computed information is often suboptimal owing
to the “dependence problem”: e.g., one may compute con when in fact dac is true.]

20 July 18, 2011

DR
AF
T
03
.2

Draft 03.2
IEEE Std P1788

IEEE Standard For Interval Arithmetic §5.8

Correct propagation of decoration information requires the (total) propagation order:

ein > bnd > dac > def > con > emp > ill. (13)

This order is implied whenever taking the minimum or maximum of decorations. Excepting ein—
which may be considered anomalous—this order reflects increasing “quality” of the decoration:
ill is the “worst”, and the decorations get “better” as one proceeds up the list.

The two orderings are closely related: for any two decorations c, d, we have c ⊆ d iff c ≤ d ≤ con

or c ≥ d ≥ con. As shown in Annex C, this property is essential for a correct flow of the information
contained in the decorations.

For a pair (f,x) as in §5.8.2, the decoration of f over x, written dec(f,x), is defined by

dec(f,x) = d iff pd(f,x) holds and pe(f,x) fails for all e with d 6= e ⊆ d, (14)

that is, dec(f,x) is the unique tightest decoration d for which pd(f,x) is true; its role for decorations
is similar to that of the (exact) range for enclosures. It is well-defined because of property (12).
More explicitly,

dec(f,x) =



ein if pein(f,x) holds;
bnd if pein(f,x) fails and pbnd(f,x) holds;
dac if pbnd(f,x) fails and pdac(f,x) holds;
def if pdac(f,x) fails and pdef(f,x) holds;
ill if pill(f,x) holds;
emp if pill(f,x) fails and pemp(f,x) holds;
con otherwise.

(15)

[Note. Though con is trivial in itself, to have dec(f,x) = con is not trivial: it asserts pemp and pdef are
both false, which implies in particular that x contains infinitely many points.]

5.8.4. Decorated interval extensions and versions.
Similarly to the bare interval case in §5.5.3, a decorated interval version f of a user-defined

arithmetic expression is constructed from library functions φ that are decorated interval extensions
of arithmetic operations. Both f and φ output a decorated interval; but f in effect acts on
bare intervals, while φ acts on decorated intervals, combining their decorations with its “local”
decoration, to propagate a decoration to the output.

Namely, a decorated interval extension of a real k ary point function φ is a (total) function,

also called φ, from decorated boxes gc = ((g1, c1), . . . , (gk, ck)) ∈ DIRk
to decorated intervals, such

that φd := φ(gc) satisfies

φ ⊇ Range(φ | g) (enclosure) (16)

together with

d = min{e, c1, . . . , ck} (propagation rule) (17)

for some e such that

pe(φ, g) holds (local decoration). (18)

The natural decorated interval extension is the unique one for which φ = hull(Range(φ | g))—i.e.,
the interval part is the natural bare interval extension of φ—and e equals dec(φ, g), the decoration
of φ over g.

A decorated interval version of an expression f(z1, . . . , zn) is a (total) function f from bare

boxes x ∈ IRn
to decorated intervals whose value fd at an actual argument x = (x1, . . . ,xn) is

defined as follows.

(Eval1) If x is empty (i.e., has an empty component) then f = ∅ and d = ein.
(Eval2) Otherwise, if f is the variable zi, the value is

fd = (xi,dec(id,xi))

where id is the real identity map id(x) = x.
That is, d equals dac if xi is unbounded, and bnd if xi is bounded.

(Eval3) Otherwise, recursively, if f = φ(g1, . . . , gk), the value is some decorated interval extension
of φ evaluated at gc = ((g1, c1), . . . , (gk, ck)) where (gi, ci) is the value of some decorated
interval version of gi at x.

21 July 18, 2011

DR
AF
T
03
.2

Draft 03.2
IEEE Std P1788

IEEE Standard For Interval Arithmetic §5.8

Decorated interval evaluation means evaluating a decorated interval version of an expression in
this way. The natural decorated interval version is the unique one that uses the natural decorated
interval extension of each φ in (Eval3).

[Notes.

– The specification in the “empty” case (Eval1) is needed in order to cover correctly the case when
some input variable is not present in the expression—e.g., where f(x) = f(x1, x2, x3) = x1x3, and
the actual argument x2 is empty.

– In the recursion base case (Eval2) it suffices to have fd such that f ⊇ xi and pd(id,xi) holds. In
some finite-precision situations such looser values may be necessary.

– Properties (17, 18) ensure a correct flow of decoration information and justify the recursive step
(Eval3). Namely—as shown in Annex C—if x is nonempty, and f = φ(g1, . . . , gk), and pci(gi,x)
holds for i = 1, . . . , k, then pd(f,x) holds.

]

5.8.5. Using decorated interval functions.
The domain () function converts a bare box x = (x1, . . . ,xn) into a decorated box domain(x) :=

x′c = ((x′1, c1), . . . , (x′n, cn)) that is suitable initial data for decorated interval evaluation, as follows.

If some component of x is empty, (x′i, ci) = (∅, emp) for all i = 1, . . . , n,

else (x′i, ci) = (xi,dec(id,xi)) for all i = 1, . . . , n.

The second part of this definition performs step (Eval2) of decorated interval evaluation; the first
part is equivalent to (Eval1) in the sense that it ensures any empty component of x produces an
empty result. Thus decorated interval evaluation of a function f defined by an expression may be
done by these steps:

1. Replace x by domain(x);
2. Perform step (Eval3) by applying (decorated interval versions of) arithmetic operations in a

suitable sequence, giving a decorated interval result fd.

Then by Theorem 5.2, f contains Range(f |x) and pd(f,x) holds. From the definition (14), the
latter is equivalent to: d contains the true decoration D := dec(f,x). These are the possible cases:

(i) d = ein iff D = ein iff the input box is empty.
(ii) Otherwise the input box is guaranteed to be nonempty, and one of the following holds:

– If d = bnd then D must also be bnd, so f is guaranteed to be everywhere defined, continuous
and bounded on the nonempty box x.

– If d = dac then D must be dac or bnd, so f is guaranteed to be everywhere defined and
continuous on the nonempty box x. It might be bounded there as well, but this is not
known.

– If d = def, then D must be def or dac or bnd, so f is guaranteed to be everywhere defined
on the nonempty box x. It might be continuous and/or bounded there as well, but this is
not known.

– If d = ill, then D must be ill: Domain f is empty, that is, f is nowhere defined, although
the box x is nonempty. This occurs if and only if some intermediate constant operation was
ill-formed. This has a special significance of Not an Interval at the computational level:
see §C.2. In particular, ill-formedness is sticky in expressions evaluated on a box generated
by the domain function.

– If d = emp, then D must be emp or ill: Domain f is guaranteed to be disjoint from the
nonempty box x.

– If d = con, then D might be any decoration 6= ein; no further conclusion can be drawn.

The domain () function also acts on decorated boxes xb. In effect this discards b and acts on
x only, except that if some component of xb is ill-formed it makes every component of the result
ill-formed. Namely domain(xb) := x′c where

If some component of b equals ill, (x′i, ci) = (∅, ill) for all i = 1, . . . , n,

else x′c = domain(x).

This feature reduces the risk of data about ill-formedness being lost when initializing input to
decorated interval evaluation.

22 July 18, 2011

DR
AF
T
03
.2

Draft 03.2
IEEE Std P1788

IEEE Standard For Interval Arithmetic §5.8

5.8.6. Examples.
Consider decorated interval evaluation of f(x, y) =

√
x(y − x)− 1 with various input intervals

x, y. The natural domain Domain(f) is easily seen to be the union of the regions x > 0, y ≥ x+1/x
and x < 0, y ≤ x + 1/x. We use exact arithmetic, i.e., the natural decorated interval extension
of each arithmetic operation. Finite precision would produce valid but usually slightly different
results.

For manageable notation, let an interval named x be given a decoration dx, and so on.

[Examples.

(i) Let x = [1, 2], y = [3, 4], defining a box (x,y) contained in Domain f . Applying the domain
function gives initial decorated intervals xdx = [1, 2]bnd, ydy = [3, 4]bnd. The first operation is

udu = ydy − xdx = [1, 3]bnd.

Namely, subtraction is defined and continuous on all of R2, and bounded on bounded rectangles
(call this property “nice” for short), so the bare result decoration is du′ = dec(−, (y,x)) = bnd,
whence by (D1) the (best possible) decoration on u is du = min{du′, dy, dx} = min{bnd, bnd, bnd} =
bnd. Multiplication is also “nice”, so the second operation similarly gives

vdv = xdx × udu = [1, 6]bnd.

The constant 1, following §5.4.4, becomes a decorated interval function returning the constant
value [1, 1]bnd. The next operation is again “nice”, and gives

wdw = vdv − 1 = [0, 5]bnd

Finally
√
· is defined, continuous and bounded on w = [0, 5], so, arguing similarly, one has the

final result

fdf =
√
wdw = [0,

√
5]bnd.

By Theorem 5.2 this provides a rigorous proof that for the box z = (x,y) = ([1, 2], [3, 4]),

[0,
√

5] ⊇ Range(f | z),

pbnd(f, z)holds.

That is, f is defined, continuous and bounded on 1 ≤ x ≤ 2, 3 ≤ y ≤ 4, and its range over this
box is a subset of [0,

√
5].

(ii) Let x = [1, 2] as before, but y = [52 , 4]. The box z is still contained in Domain f so the true value
of dec(f, z) is still bnd. However the evaluation fails to detect this because of interval widening due
to the dependence problem of interval arithmetic. Namely after udu = [52 , 3]bnd, vdv = [52 , 6]bnd,

wdw = [− 1
2 , 5]bnd, the final result has interval part f =

√
[− 1

2 , 5] = [0,
√

5] as before, but
√
·

is not everywhere defined on w, so that dw′ = dec(
√
·,w) = dec(

√
·, [− 1

2 , 5]) = con giving

dec(
√
·,wdw) = min{dw′, dv} = con, so finally fdf = [0,

√
5]con. This is a valid enclosure of the

decorated range [0,
√

5]bnd, but we have been unable to verify the bnd property.
(iii) If x = [1, 2], y = [1, 1], the box z is now wholly outside Domain f , and evaluation detects this,

giving the exact result fdf = ∅emp. However, if x = [1, 2], y = [1, 32], the box is still wholly outside
Domain f , but owing to widening, evaluation fails to detect this, giving fdf = [0, 0]con—a valid
enclosure but of little use.

]

5.8.7. Decoration of library functions.
Subclause C.1 gives tables of dec(φ,x) for all required and recommended arithmetic operations

φ and an arbitrary input box x. They are generally straightforward to compute exactly in finite
precision, except for a few functions like tanx, where it may be expensive to determine for certain
whether a singularity lies inside or outside an interval with a very large endpoint. In such cases,
an implementation may return a less precise decoration.

The function case(b, g, h) deserves mention.
[*** This seems to need updating for the 7-decoration scheme. And I feel there are some errors.
***]
Subclause 5.6.2 defines it and its behavior on bare intervals. The decorated interval version

23 July 18, 2011

DR
AF
T
03
.2

Draft 03.2
IEEE Std P1788

IEEE Standard For Interval Arithmetic §5.8

case(bdb, gdg,hdh) is defined according to the standard worst case semantics, and returns fdf

where df = min{df ′, db, dg, dh} and

df ′ =



emp if b contains neither 0 nor 1
(in normal use this only occurs when b is empty)

bnd elseif b contains 0 and h is bounded
or b contains 1 and g is bounded

dac elseif b contains 0 and h is unbounded
or b contains 1 and g is unbounded

con otherwise.

Note that this correctly handles empty input: In this case, one of db, dg, dh is ein, resulting in
df = ein. However, in most cases, functions defined using case give very suboptimal enclosures,
and it is preferable to use methods illustrated in §5.8.8.

5.8.8. User-supplied functions. A user program may define a decorated interval version of a
point function, to be used within expressions as if it were a library function. This does not
invalidate Theorem 5.2, subject to the one requirement that the decorated interval version be a
decorated interval extension of the point function.

[Examples.

(1) In some applications, an interval extension of the function defined by

ψ(x) = x+ 1/x

is required. The expression as it stands can give poor enclosures: e.g., with x = [12 , 2], one
obtains

ψ(x) = [12 , 2] + 1/[12 , 2] = [12 , 2] + [12 , 2] = [1, 4],

which is much wider than Range(ψ |x) = [2, 2 1
2].

Thus it is useful to code a tight enclosure by special methods, e.g. monotonicity arguments,
and provide this as a new library function. Suppose this has been done. To implement a
decorated interval extension for the above function just entails adding code to compute an
enclosure of the decoration d = dec(ψ,xc) over an input decorated interval xc, along the
lines of the following:

// compute decoration c0 over bare interval x:
1. if x is empty then c0 = ein;
2. if x is the singleton [0, 0] then c0 = emp;
3. elseif 0 ∈ x then c0 = con;
4. elseif x is unbounded then c0 = dac;
5. else c0 = bnd;

// combine with input decoration by equation (D1):
6. d = min{c0, c}.

(2) The next example shows how an expert may manipulate decorations explicitly to give a
function, defined piecewise by different formulas in different regions of its domain, the best
possible decoration. Suppose that

f(x) =

{
f1(x) :=

√
x2 − 4 if |x| > 2,

f2(x) := −
√

4− x2 otherwise.

The standard gives no way to determine if the pieces join continuously at region boundaries:
e.g., if f is implemented by the case function, the continuity information is lost when eval-
uating it on, say, x = [1, 3], where both branches contribute for different values of x ∈ x.
However, a user-defined decorated interval operation along the following lines provides this
function with best possible decorations.

function yd = f(xc)
u = f1(x ∩ [−∞,−2])
v = f2(x ∩ [−2, 2])
w = f1(x ∩ [2,+∞])
y = union(u,v,w)
d = c

24 July 18, 2011

DR
AF
T
03
.2

Draft 03.2
IEEE Std P1788

IEEE Standard For Interval Arithmetic §5.8

Here “union” forms the hull of the set-union of its arguments. The user’s knowledge that f is
continuous is expressed by the statement d = c, propagating the input decoration unchanged.

]

5.8.9. Type conversion in mixed operations.

4! This needs checking by language and compiler experts and should be the subject of a separate
motion. Also, does it all belong in the decorations section? Indeed should it be in Level 1 at all?

Decorated interval arithmetic is designed for maximal safety, while being simple to handle by
inexperienced users. Safety requirements can be enforced only by restrictions on the kinds of type
conversions permitted.

Operations between integers and decorated intervals are well-defined and hence permitted,
with integers treated as constant functions.

Operations between floats and decorated intervals are error-prone and hence forbidden, since,
e.g., (2/3) ∗ x in program text would generate uncovered roundoff, and 0.2 ∗ x would generate
uncovered conversion errors. This ensures that the user must call explicitly a conversion function
iconst that performs the outward rounding, see §6.6, to convey the precise semantics of such mixed
expressions. This avoids a loss of containment because of rounding errors or conversion errors.

In particular, there is no implicit type casting for real times decorated interval. Therefore,
2/3∗x with reals or integers 2 and 3 and a decorated interval x results in a type error when trying
to evaluate the multiplication.

However, implicit type casting for text constants times interval is harmless, as text constants
have no arithmetic operations defined on them, hence they can be unambiguously type cast to
decorated intervals when occurring in an interval expression if the implementation language allows
that. Therefore, 2/3 ∗ x is allowed if the compiler translates 2 and 3 into constant functions.

Mixed operations between bare intervals and decorated intervals are also forbidden, to avoid
loss of rigor through non-arithmetic operations; again, explicit conversion using the function do-
main must be used. However, explicit, constant bare intervals in program code may be treated by
the compiler as constant functions with uncertain value when the bare interval is nonempty, and
as the ill-formed constant when the bare interval is empty or ill-formed.

5.8.10. Bare object arithmetic with a threshold. Bare intervals and bare decorations are called
bare objects. Bare object arithmetic, described here, lets experienced users obtain more efficient
execution (see §7.6) in applications where the use of decorations is limited to the following situation.

Namely, frequently the use that is made of a function evaluation yd = f(xc) at a decorated
interval xc depends on a check of the resulting decoration d against an application-dependent
exception threshold T , which is one of {con, def, dac, bnd}.
d ≥ T represents normal computation. The decoration is not used, but one exploits the range

enclosure given by the interval part.
d < T declares an exception to have occurred. The interval part is not used, but one exploits

the information given by the decoration.

In this case, one can implement the decoration scheme without storing explicit decorations. The
behavior depends on the exception threshold, which the programmer or a compiler can choose
appropriately to the final use made of the interval evaluation.

The storage of bare object data, whether interval or decoration, can be done within two
floating-point numbers. Thus in the kind of applications mentioned above, bare objects usually
give equivalent results to full decorated intervals at less cost in storage and communication.

The arithmetic operations, and intersection and union, are defined on bare objects, extending
the standard arithmetic on bare intervals. The results are determined according to the following
worst case semantics rules for promoting bare objects to decorated intervals. These follow
necessarily if the fundamental theorem is to cover computations involving bare and/or decorated
arguments. They ensure that an enclosing decoration compatible with the input is returned, so that
in an extended calculation, the claim about the result of a function evaluation using bare object
arithmetic is never tighter than the result of the same evaluation using full decorated interval
arithmetic. Hence, Theorem 5.2 continues to hold.

– Each nonempty bare interval is treated as decorated with decoration T , and each empty bare
interval as decorated with decoration emp. Operations on bare intervals are performed in this
mode as if they were decorated in the way described, resulting in a decorated interval zd that

25 July 18, 2011

DR
AF
T
03
.2

Draft 03.2
IEEE Std P1788

IEEE Standard For Interval Arithmetic §5.8

Table 5. Bare object operations for +,−,×,÷ and
√
· with threshold T ∈ {con, def, dac, bnd}.

Here c, d are bare decorations < T , and x,y are bare intervals. Independently of T , if
any input is ill the result is ill, else if any input is emp or the empty interval the result
is emp. The tables below give the remaining cases where

con ≤ c < T , con ≤ d < T , and x, y are nonempty. (19)

Binary operations, where x or c is the left operand and y or d is the right operand.
+,−,× y d

x
Normal bare

interval result
d

c c min(c, d)

÷ y = [0, 0] 0 ∈ y 6= [0, 0] 0 /∈ y d

x emp
If T>con then con, else

normal bare interval result
Normal bare

interval result
con

c emp con c con

Square root, where x = [x, x].

case
√
x x < 0 emp

x < 0 ≤ x If T>con then con, else normal bare interval result

x ≥ 0 Normal bare interval result
√
c con

is then converted back into a bare object. When d < T , the result is recorded as the bare
decoration d; otherwise as the bare interval z.

– For arithmetic operations with at least one bare decoration input, the result is always a bare
decoration. A bare decoration d in {emp, ill, ein} is promoted to ∅d, and a bare decoration d
in {con, def, dac, bnd} is promoted (conceptually, not algorithmically) to an arbitrary xd with
nonempty x. In the latter case, after performing the operation leading to the result zd, the
tightest decoration (in the containment order (11)) enclosing all compatible z is returned.

This analysis is done conceptually; since there are only a few decorations, one can prepare
complete operation tables for the decorations according to these promotion rules, and only these
tables need to be implemented. They are simplified by the fact that a bare decoration input to an
operation must necessarily be < T .

Table 5 gives these tables for the four basic operations. 4! These belong in an Annex, but
temporarily here for inspection. I believe they are correct for all the schemes P1788 has considered.

[Examples. In items (b) onwards, conditions (19) are assumed.

(a) Justification for emp + x = emp, independent of T .
This promotes to (∅, emp) + (x, T) =

(
∅,min(emp, T, emp)

)
. Since emp < T this equals (∅, emp)

which gives an exception (again because emp < T) so is recorded as the bare decoration emp. The
same holds if + is replaced by −,× or ÷.

(b) Justification for x× d = d independent of T .
Since x is nonempty and d ≥ con, this promotes to (x, T) × (y, d) with arbitrary nonempty y,
giving

(
x× y,min(T, d, e)

)
where e is dac if x× y is bounded, otherwise def. Now d < T so d

cannot exceed def, hence d ≤ e, so min(T, d, e) = d.
(c) Justification for c/d = con independent of T .

Since c, d ≥ con, c/d promotes to (x, c)/(y, d) with arbitrary nonempty x,y, giving
(
x/y,min(c, d, e)

)
where e = emp if y = [0, 0], else e = con if 0 ∈ y, else e = dac. So min(c, d, e) ≥ con and can
equal con, so the tightest enclosing decoration is con.

26 July 18, 2011

DR
AF
T
03
.2

Draft 03.2
IEEE Std P1788

IEEE Standard For Interval Arithmetic §5.8

(d) Justification for x/y when 0 ∈ y 6= [0, 0].
x/y promotes to (x, T)/(y, T) giving

(
x/y,min(T, T, con)

)
= (x/y, con). If T > con this gives

an exception so the decoration con is returned; if T = con it is not an exception, so the interval
x/y is returned.

(e) Justification for
√
x with x = [x, x] and x < 0 ≤ x.√

x promotes to
√

(x, T), giving (
√
x, con) which in the given case equals ([0,

√
x], con). As with

the previous item, if T > con then con is returned; if T = con then
√
x is returned.

]

27 July 18, 2011

	5. Level 1 description
	5.1. Numbers
	5.2. Intervals
	5.3. Hull
	5.4. Functions
	5.4.1. Function terminology
	5.4.2. Point functions
	5.4.3. Interval-valued functions
	5.4.4. Constants

	5.5. Expressions and the functions they define
	5.5.1. Expressions
	5.5.2. Generic functions
	5.5.3. Point functions and interval versions of expressions

	5.8. The decoration system
	5.8.1. The purpose of decorated intervals
	5.8.2. Definitions
	5.8.3. Basic properties
	5.8.4. Decorated interval extensions and versions
	5.8.5. Using decorated interval functions
	5.8.6. Examples
	5.8.7. Decoration of library functions
	5.8.8. User-supplied functions
	5.8.9. Type conversion in mixed operations
	5.8.10. Bare object arithmetic with a threshold

