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Abstract
Dear Svetoslav, in this paper I sketch my thoughts and ideas about

how to create a P1788 standard for modal intervals.

1 Motivation

For P1788 interval arithmetic we have IR as the set of all closed proper intervals
plus the empty set. In John�s Level 1 draft text he gives in section 5.4 the
following de�nitions.
For any real function f(x) : Rn ! R with natural domain Df � Rn, and for

any X � IRn

Range(f;X) �
�
f(x) : x 2 X ^ x 2 Df

	
. (1)

Then John de�nes the �natural interval extension�of f as

f(X) � Hull(Range(f;X)). (2)

Remark 1 Note that (2) is the exact interval range enclosure of f(x) over the
interval box X as de�ned by (1), which ignores the values of x outside the natural
domain of f .

For some digitally-rounded computational program F (X) 2 IR that John
calls the �interval extension�of f on X, we then have the well-known �Funda-
mental Theorem of Interval Arithmetic�(a.k.a. FTIA) that everyone in P1788
is so familiar with:

f(X) � F (X). (3)

In my opinion, all of the above is so well-understood and �rmly entrenched
it is certain no standard will be produced that does not obey or include these
de�nitions. In writing a standard for Kaucher arithmetic, our task (as I see it)
is to write a set of de�nitions that are extensions of those provided by John.
This means we must provide equivalent de�nitions for (1)�(3) that extend the
interval system to IR, the set of all closed proper and improper intervals plus
the empty set.
What follows is a sketch of my ideas of how it will be possible to do this.
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2 Exact Form

To me, a very important observation is that de�nitions (1)�(2) deal exclusively
with exact forms. In other words, there is not any identi�cation in these def-
initions between the inclusion relation of a digitally-rounded or overestimated
result and the mathematically exact value. That is entirely the subject of de�-
nition (3). Understanding the exact form is necessary even for classical interval
arithmetic because some mathematical properties that are valid in exact arith-
metic are not valid in a digitally-rounded �nite arithmetic. This is also true for
Kaucher arithmetic. Therefore, by starting with the exact forms, we de�ne what
is mathematically true under the circumstances of no digital rounding errors or
other kinds of overestimation.
To ease the progression of the task before us, let us �rst begin by assuming

that the real function f is continuous on the input box X and that we are
always dealing with an X that is non-empty and bounded. We will consider
what happens when these assumptions are dropped later in this paper. Under
this assumption a starting point that is familiar to me is the de�nition of f� by
Gardenes, et. al.,

f�(X) �
�
min
xp2Xp

max
xi2Xi

f(xp; xi); max
xp2Xp

min
xi2Xi

f(xp; xi)

�
, (4)

where Xp and Xi are the proper and improper sub-components of X 2 IRn,
respectively. To avoid tedious notation, I also write x 2 X as a shortcut for �x
is an element of the set represented by the proper or improper interval X.�
At this point, we should observe a few critical facts:

� For the arithmetic operations f� gives the same results as Edgar Kaucher�s
famous inf-sup formulas. In your SCAN 2006 paper you also presented
equivalent mid-rad formulas for Kaucher�s formulas. So we know that both
the inf-sup and mid-rad presentations of the quasivector-space structures
and Kaucher arithmetic are embedded into this generalized formulation
provided by f�.

� In the special case that all components of X are proper intervals, the
de�nition of f� reduces to

f�(X) �
�
min
x2X

f(x);max
x2X

f(x)

�
. (5)

This coincides exactly with John�s �natural interval extension.� In other
words both (2) and (5) are di¤erent notations for the de�nition of the
same result.

� John�s very generalized de�nition (2) is notably relevant for the extension
of any f onto IRn, not just the arithmetic operations. Similarly, while
quasivector-space and Kaucher�s formulas are relevant to the arithmetic
operations, f� gives us the most generalized de�nition for the extension
of any f onto IRn.
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� Gardenes, et. al. also provide a complementary de�nition for f� called
f��, but since it is known that for the arithmetic operations and all of the
library functions currently to be included in the standard that

f�(X) = f��(X),

this makes unnecessary any consideration of including f�� within the scope
of the standard.

These relevant facts inspire me to suggest that we should focus on f� as
the basis for including Kaucher intervals in the standard. We can present in an
appendix both the inf-sup and mid-rad formulations of the arithmetic operations
and show how they are special case of f�. We can also present in the appendix
the algebraic structure of the quasivector space, if you wish, and explain how it
too is embedded in the de�nition provided by f�.

Proposition 2 As mentioned, a few restrictive assumptions have thus far been
made, notably that i) f is continuous on the input box X, and ii) that X is a
non-empty and bounded element of IRn. If we can provide suitable de�nitions
that allow us to remove these assumptions when using (4) as the foundation of an
interval standard, then we will have successfully provided a complete extension
of (1)�(2) for a new interval standard that applies to any conceivably relevant f
on IRn. Embedded within this new interval standard are the inf-sup and mid-rad
forms of Kaucher�s arithmetic and related quasivector spaces.

I believe that this proposition is true and can be accomplished by a combina-
tion of i) necessary mathematical de�nitions and ii) decorations. I will elaborate
on this more in subsequent sections.

3 Semantic Theorem

For classic intervals, John gives (3). We need a similar FTIA for the case of f�.
If we de�ne

Q(y; Y ) �
�
(9y 2 Y ) if Y is proper
(8y 2 Y ) if Y is improper

(6)

for a modal interval Y 2 IR, then we have the �Semantic Theorem for f��by
Gardenes, et. al.:

f�(X) � F (X), (8xp 2 Xp)Q(y; F (X))(9xi 2 Xi) : y = f(xp; xi) (7)

This is the �Fundamental Theorem of Interval Arithmetic�for Kaucher intervals
that we need, because it gives us an identi�cation between the inclusion rela-
tion of an overestimated result F (X) of some digitally-rounded computational
program and the mathematically exact form f�(X). Without such a theorem,
we cannot know how to correctly implement Kaucher arithmetic in a computer
based on a �nite approximation of the reals.
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Figure 1: Graphical depiction of the modal interval values of Y in (10) and (11)
which cause the Semantic Theorem for f� to be true. All of the points in the
plane above the Inf = Sup line are proper intervals and points below this line in
the shaded region are improper intervals. The point f� is the exact result and
any point in the hatched region is a modal interval value of Y that will satisfy
the theorem. Solutions for (10) are depicted on the left in (a) and solutions for
(11) are depicted on the right in (b). Note that if f� is a proper interval then
Y will always be a proper interval. If f� is an improper interval then Y may be
a proper or improper interval.

Remark 3 As noted by Vladik K. in the P1788 forum, the universal and ex-
istential quanti�ers are generally not commutative. However this is precisely
the reason (7) takes care to always order the universal quanti�ers before the
existential quanti�ers.

Example 4 Lets consider sqrt(x) on non-negative x. For the proper and im-
proper intervals [1; 4] and [4; 1] we have

f�([1; 4]) = [1; 2] (8)

f�([4; 1]) = [2; 1]. (9)

Semantic Theorem for f� then introduces quanti�ers to de�ne the inclusion
relation between these exact results and some computed result Y , i. e.,

f�([1; 4]) � Y , (8x 2 X)Q(y; Y ) : y = sqrt(x) (10)

f�([4; 1]) � Y , Q(y; Y )(9x 2 X) : y = sqrt(x) (11)

where again the notation Q(y; Y ) means (9y 2 Y ) if Y is proper and (8y 2 Y )
if Y is improper. Now, in each case (10) and (11), to visualize the values of
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Y which cause the Semantic Theorem to be true, you can plot f� as a point on
the inf-sup plane. This point divides the plane into four quadrants as depicted
in Figure 1. Any point in the upper-left quadrant is a modal interval value of
Y that will satisfy the theorem. Since (8) is a proper interval, Y in (10) will
always be a proper interval so we could simply expand the notation Q(y; Y ) and
write

f�([1; 4]) � Y , (8x 2 X)(9y 2 Y ) : y = sqrt(x). (12)

On the other hand, since (9) is an improper interval, Y in (11) may be a proper
or improper interval, hence we can expand the notation Q(y; Y ) only after know-
ing the value of Y . For example, if Y = [1:9; 1:2] then we have

f�([4; 1]) � Y , (8y 2 Y )(9x 2 X) : y = sqrt(x),

but if Y = [�1; 4] then we have

f�([4; 1]) � Y , (9y 2 Y )(9x 2 X) : y = sqrt(x).

In all cases, the predictions made by the Semantic Theorem are true.

As the example illustrates, Semantic Theorem for f� tells us how we may
correctly round the exact results. For example, a computer program could
implement the sqrt operation in �nite �oating-point arithmetic with the formula

sqrt([a; b]) � [roundDown(sqrt(a)); roundUp(sqrt(b))]. (13)

Because of the Semantic Theorem, we know this formula is mathematically
correct for any proper or improper interval input.

Remark 5 The critical fact to notice is that John�s de�nition (3) is simply the
special-case of (7) when all the components of X are proper and X is in the
natural domain of f . Even the digitally-rounded formula (13) given to us by the
Semantic Theorem for f� is the same computer implementation required by (3)!
The only di¤erence is that John�s de�nition (3) arbitrarily prohibits the input to
be an improper interval, even though (13) is valid for both proper and improper
interval inputs.

4 Issues to be Addressed

The previous sketch shows that the signi�cant issues to be addressed are:

� Following John�s de�nition (2) of the �natural interval extension�of a real
function, how can the de�nition (4) of f� be similarly de�ned to ignore
values outside the natural domain of f?

� How must Semantic Theorem for f� be extended to properly handle empty
and unbounded intervals?
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My belief is that unbounded intervals are not going to be a problem. In
Motion 12, the P1788 committee already accepted the idea that unde�ned values
such as 1�1 which may arise in the modal arithmetic can be handled with
decorations. I think it will be wise to follow in this direction.
Empty intervals pose a unique problem to the Semantic Theorem since any

existentially-quanti�ed proposition on the empty set is always false. I believe
in this case we should be careful to follow P1788�s progress on decorations and
provide de�nitions that will be consistent.
Finally I would note that for users who wish to perform �pure� Kaucher

arithmetic on intervals that are non-empty and bounded, decorations provide
a mechanism to accomplish this. For example, decorations can prove that a
lengthy computation performed in a computer involved only operations that
were performed on a continuous domain. This is another point that can be
elaborated on.
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