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Abstract

Dear Svetoslav, in this paper I sketch my thoughts and ideas about
how to create a P1788 standard for modal intervals.

1 DMotivation

For P1788 interval arithmetic we have IR as the set of all closed proper intervals
plus the empty set. In John’s Level 1 draft text he gives in section 5.4 the
following definitions.

For any real function f(z): R™ — R with natural domain Dy C R", and for
any X C IR"

Range(f,X)={ f(z):x e X Nz e Dy }. (1)
Then John defines the “natural interval extension” of f as
f(X) = Hull(Range(f, X)). (2)

Remark 1 Note that (2) is the exact interval range enclosure of f(x) over the
interval box X as defined by (1), which ignores the values of x outside the natural
domain of f.

For some digitally-rounded computational program F(X) € IR that John
calls the “interval extension” of f on X, we then have the well-known “Funda-
mental Theorem of Interval Arithmetic” (a.k.a. FTIA) that everyone in P1788
is so familiar with:

f(X) € F(X). ®3)

In my opinion, all of the above is so well-understood and firmly entrenched
it is certain no standard will be produced that does not obey or include these
definitions. In writing a standard for Kaucher arithmetic, our task (as I see it)
is to write a set of definitions that are extensions of those provided by John.
This means we must provide equivalent definitions for (1)—(3) that extend the
interval system to IR, the set of all closed proper and improper intervals plus
the empty set.

What follows is a sketch of my ideas of how it will be possible to do this.



2 Exact Form

To me, a very important observation is that definitions (1)—(2) deal exclusively
with exact forms. In other words, there is not any identification in these def-
initions between the inclusion relation of a digitally-rounded or overestimated
result and the mathematically exact value. That is entirely the subject of defi-
nition (3). Understanding the exact form is necessary even for classical interval
arithmetic because some mathematical properties that are valid in exact arith-
metic are not valid in a digitally-rounded finite arithmetic. This is also true for
Kaucher arithmetic. Therefore, by starting with the exact forms, we define what
is mathematically true under the circumstances of no digital rounding errors or
other kinds of overestimation.

To ease the progression of the task before us, let us first begin by assuming
that the real function f is continuous on the input box X and that we are
always dealing with an X that is non-empty and bounded. We will consider
what happens when these assumptions are dropped later in this paper. Under
this assumption a starting point that is familiar to me is the definition of f* by
Gardenes, et. al.,

(X) = i al ; al i ; 4
[IX)= | min max f(ep,3:), max min f(wp,zi)) (4)
where X, and X; are the proper and improper sub-components of X € mn,
respectively. To avoid tedious notation, I also write z € X as a shortcut for “x
is an element of the set represented by the proper or improper interval X.”
At this point, we should observe a few critical facts:

e For the arithmetic operations f* gives the same results as Edgar Kaucher’s
famous inf-sup formulas. In your SCAN 2006 paper you also presented
equivalent mid-rad formulas for Kaucher’s formulas. So we know that both
the inf-sup and mid-rad presentations of the quasivector-space structures
and Kaucher arithmetic are embedded into this generalized formulation
provided by f*.

e In the special case that all components of X are proper intervals, the
definition of f* reduces to

f1(X) = |min f(z), max f(z)] . (5)
This coincides exactly with John’s “natural interval extension.” In other
words both (2) and (5) are different notations for the definition of the
same result.

e John’s very generalized definition (2) is notably relevant for the extension
of any f onto m”, not just the arithmetic operations. Similarly, while
quasivector-space and Kaucher’s formulas are relevant to the arithmetic
operations, f* gives us the most generalized definition for the extension
of any f onto IR".



e Gardenes, et. al. also provide a complementary definition for f* called
f**, but since it is known that for the arithmetic operations and all of the
library functions currently to be included in the standard that

(X)) = (X)),

this makes unnecessary any consideration of including f** within the scope
of the standard.

These relevant facts inspire me to suggest that we should focus on f* as
the basis for including Kaucher intervals in the standard. We can present in an
appendix both the inf-sup and mid-rad formulations of the arithmetic operations
and show how they are special case of f*. We can also present in the appendix
the algebraic structure of the quasivector space, if you wish, and explain how it
too is embedded in the definition provided by f*.

Proposition 2 As mentioned, a few restrictive assumptions have thus far been
made, notably that i) [ is continuous on the input box X, and i) that X is a
non-empty and bounded element of R". If we can provide suitable definitions
that allow us to remove these assumptions when using (4) as the foundation of an
interval standard, then we will have successfully provided a complete extension
of (1)—(2) for a new interval standard that applies to any conceivably relevant f
on IR". Embedded within this new interval standard are the inf-sup and mid-rad
forms of Kaucher’s arithmetic and related quasivector spaces.

I believe that this proposition is true and can be accomplished by a combina-
tion of 1) necessary mathematical definitions and ii) decorations. I will elaborate
on this more in subsequent sections.

3 Semantic Theorem

For classic intervals, John gives (3). We need a similar FTTA for the case of f*.
If we define ( )
JyeY) ifY is proper
Q. Y) = { (VyeY) ifY isimproper (6)

for a modal interval Y € IR, then we have the “Semantic Theorem for f*” by
Gardenes, et. al.:

f1(X) € F(X) & (Vap € Xp)Qy, F(X))(Bwi € Xi) 1y = flap, i) (7)

This is the “Fundamental Theorem of Interval Arithmetic” for Kaucher intervals
that we need, because it gives us an identification between the inclusion rela-
tion of an overestimated result F'(X) of some digitally-rounded computational
program and the mathematically exact form f*(X). Without such a theorem,
we cannot know how to correctly implement Kaucher arithmetic in a computer
based on a finite approximation of the reals.
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Figure 1: Graphical depiction of the modal interval values of Y in (10) and (11)
which cause the Semantic Theorem for f* to be true. All of the points in the
plane above the Inf = Sup line are proper intervals and points below this line in
the shaded region are improper intervals. The point f* is the exact result and
any point in the hatched region is a modal interval value of Y that will satisfy
the theorem. Solutions for (10) are depicted on the left in (a) and solutions for
(11) are depicted on the right in (b). Note that if f* is a proper interval then
Y will always be a proper interval. If f* is an improper interval then Y may be
a proper or improper interval.

Remark 3 As noted by Viadik K. in the P1788 forum, the universal and ex-
istential quantifiers are generally not commutative. However this is precisely
the reason (7) takes care to always order the universal quantifiers before the
existential quantifiers.

Example 4 Lets consider sqrt(x) on non-negative x. For the proper and im-
proper intervals [1,4] and [4,1] we have

fH(L4]) = [1,2] (8)
f*([471]) = [271]' (9)

Semantic Theorem for f* then introduces quantifiers to define the inclusion
relation between these exact results and some computed result Y, 1. e.,

(L4 CY & (Ve X)Qy,Y):y=sqrt(z) (10
ff(4,1)CY & Q,Y)3xze X):y=sqrit(z) (11

)

)
where again the notation Q(y,Y) means (Jy € Y) if Y is proper and (Vy € Y)
if Y is improper. Now, in each case (10) and (11), to visualize the values of



Y which cause the Semantic Theorem to be true, you can plot f* as a point on
the inf-sup plane. This point divides the plane into four quadrants as depicted
in Figure 1. Any point in the upper-left quadrant is a modal interval value of
Y that will satisfy the theorem. Since (8) is a proper interval, Y in (10) will
always be a proper interval so we could simply expand the notation Q(y,Y) and
write

[ (L4) CY e (Ve e X)FyeY) :y=sqri(x). (12)

On the other hand, since (9) is an improper interval, Y in (11) may be a proper
or improper interval, hence we can expand the notation Q(y,Y) only after know-
ing the value of Y. For example, if Y = [1.9,1.2] then we have

P CY & (Vg e V)@ € X) iy = sqri(a),
but if Y = [—1,4] then we have

ff(4,1)CY < (FyeY)3Fr e X):y=sqri(x).
In all cases, the predictions made by the Semantic Theorem are true.

As the example illustrates, Semantic Theorem for f* tells us how we may
correctly round the exact results. For example, a computer program could
implement the sqrt operation in finite floating-point arithmetic with the formula

sqrt([a,b]) = [roundDown(sqrt(a)), roundUp(sqrt(b))]. (13)

Because of the Semantic Theorem, we know this formula is mathematically
correct for any proper or improper interval input.

Remark 5 The critical fact to notice is that John’s definition (3) is simply the
special-case of (7) when all the components of X are proper and X is in the
natural domain of f. Even the digitally-rounded formula (13) given to us by the
Semantic Theorem for f* is the same computer implementation required by (3)!
The only difference is that John’s definition (8) arbitrarily prohibits the input to
be an improper interval, even though (13) is valid for both proper and improper
interval inputs.

4 Issues to be Addressed

The previous sketch shows that the significant issues to be addressed are:

¢ Following John’s definition (2) of the “natural interval extension” of a real
function, how can the definition (4) of f* be similarly defined to ignore
values outside the natural domain of f?

e How must Semantic Theorem for f* be extended to properly handle empty
and unbounded intervals?



My belief is that unbounded intervals are not going to be a problem. In
Motion 12, the P1788 committee already accepted the idea that undefined values
such as co — oo which may arise in the modal arithmetic can be handled with
decorations. I think it will be wise to follow in this direction.

Empty intervals pose a unique problem to the Semantic Theorem since any
existentially-quantified proposition on the empty set is always false. I believe
in this case we should be careful to follow P1788’s progress on decorations and
provide definitions that will be consistent.

Finally I would note that for users who wish to perform “pure” Kaucher
arithmetic on intervals that are non-empty and bounded, decorations provide
a mechanism to accomplish this. For example, decorations can prove that a
lengthy computation performed in a computer involved only operations that
were performed on a continuous domain. This is another point that can be
elaborated on.



