THE EXACT DOT PRODUCT AS BASIC TOOL FOR LONG
INTERVAL ARITHMETIC

ULRICH KULISCH AND VAN SNYDER

ABSTRACT. Computing with guarantees is based on two arithmetical features.
One is fixed (double) precision interval arithmetic (see Motion 5). The other
one is dynamic precision interval arithmetic, here also called long interval arith-
metic. The basic tool to achieve high speed dynamic precision arithmetic for
real and interval data is an exact multiply and accumulate operation and with
it an exact dot product. Pipelining allows to compute it at the same high
speed as vector operations on conventional vector processors. Long interval
arithmetic fully benefits from such high speed. Exactitude brings very high
accuracy, and thereby stability into computation. This document specifies the
implementation of an exact multiply and accumulate operation.

1. INTRODUCTION

If z;, i = 1(1)n, n > 0, are floating-point numbers and X = [Ziow, ZThign| is an

interval with floating-point bounds iy and Zpign, then an element of the form
z=>) . 5+X

is called a long interval of length n. The x; are called the components of © and
X is called the interval component.

In this definition n is permitted to be zero. Then the sum is empty and = =
X is just an interval with standard floating-point bounds. In the representation
of a long interval it is desirable that the components do not overlap, i.e., the
exponents of two successive summands differ at least by the number of mantissa
digits. The operations for long intervals are written so that they produce results
with this property. With an exact dot product the operations +, —, , /, and the
square root for long reals and long intervals are easily programmed, see [6-9].
The width of the interval x is a direct measure of its accuracy. With increasing
width of a long interval the length n may decrease.

It is well known that evaluation of an arithmetic expression for an interval
x leads to a superset of the range of the expression. The distance between this
superset and the range decreases with the width of the interval « and it tends to

Part of this work supported by Institut fiir Angewandte und Numerische Mathematik, Uni-
versitdt Karlsruhe.

Part of this work supported by NASA at Jet Propulsion Laboratory, California Institute of
Technology.
© 2009. All rights reserved.

zero with the width of . This simple observation is the basis for many successful
and simple applications of long interval arithmetic.

In a letter to IEEE 754R [3] (Sept. 4, 2007) the IFIP Working Group on Nu-
merical Software requested that a future arithmetic standard should consider and
specify the basic ingredients of variable precision real and interval arithmetic. A
paragraph in that letter reads: The basic tool to achieve high speed dynamic pre-
cision arithmetic for real and interval data is an exact multiply and accumulate
(i.e., continued addition) operation for the data format double precision. Pipelin-
ing gives it high speed and exactitude brings very high accuracy into computation.

A paragraph in another letter of the IFIP Working Group to IEEE P1788
[4] (Sept. 9, 2009) reads: The IFIP WG strongly supports inclusion of an exact
dot product in the IEEE standard P1788. The exact dot product is essential for
fast long real and long interval arithmetic, as well as for assessing and managing
uncertainty in computer arithmetic. It is a fundamental tool for computing with
guarantees and can be implemented with very high speed.!

The floating-point arithmetic standard IEEE 754 [1] provides functions sum(p,
n) and dot(p, q, n) for accumulation? of the components of a vector p and for the
dot product® of two vectors p and q of length n with no accuracy requirement.
Vector processors use such functions to gain high speed. The Vienna proposal [2]
also provides functions for these operations and it requires computation of the
tightest interval enclosure of the sum and the dot product of vectors with real
and interval components.

In contrast to this the IFIP WG - IEEE 754R and the IFIP WG - IEEE
P1788 letters [3,4] require exact accumulation of the sum and the dot product
for vectors with real and interval components. An exact dot product for the
double precision format is the base for long real and long interval arithmetic. The

n Numerical Analysis the dot product is ubiquitous. It is not merely a fundamental op-
eration in matrix and vector arithmetic. The process of residual or defect correction, or of
iterative refinement, is composed of scalar products. With the exact scalar product the defect
can always be computed to full accuracy. It is the exact scalar product which makes residual
correction effective. It has a direct and positive influence on all iterative solvers of systems of
equations. But also direct solvers of systems of equations profit from computing the defect to
full accuracy. The step of verifying the correctness of an approximate solution is based on ac-
curate computation of the defect and on the exact dot product in critical situations, see [10, 11]
and [9]. Computational geometry is another area where the exact dot product turns out to be
extremely useful.

If one runs out of precision using double precision in a certain problem class, one often runs
out of quadruple precision very soon as well. It is preferable, therefore, to provide a high speed
basis for enlarging the precision rather than to provide any fixed higher precision. With the
exact scalar product high speed multiple precision arithmetic can easily be provided for real and
for interval data. Long interval arithmetic has been successfully applied to the computation of
very ill conditioned problems. Validated numerics requires additional arithmetical features. The
exact dot product is the fundamental tool for this purpose. For implementation see [8, 9,12, 13].

2 Accumulation means continued addition.

3Also called scalar or inner product.

exact dot product can be implemented with the same high speed as dot products
on conventional vector processors. Long real and long interval arithmetic fully
benefit from such high speed.

Experience has shown that computing the dot product by function calls leads
to clumsy and awkward programming. It is reasonable, therefore, that the exact
dot product be computed by use of a new data format which is called complete
associated with each floating-point format together with a few simple operations.
A complete format is a signed fixed-point format which has enough digit positions
such that multiplication of pairs of non-exceptional floating-point numbers and
accumulation of such summands have exact results. They are complete in that
all possible information from non-exceptional floating-point operands of multipli-
cation and accumulation operations is represented. Not a single bit is lost. The
result contains the exact sum in its entirety. [8,9,12,13].

A complete expression is composed of operands and operations. Only three
kinds of operands are permitted: floating-point numbers, exact products of two
such numbers, and data of the format complete. Such operands can be added or
subtracted in an arbitrary order. All operations (multiplication, addition, and
subtraction) are to be exact. The result is a datum of type complete. For non-
exceptional floating-point operands it is always exact. No truncation or rounding
is performed during execution of a complete expression. The result of complete
arithmetic reflects the complete information as given by the input data and the
operations in the expression.

2. COMPLETE ARITHMETIC

2.1. Complete format. A floating-point format F is characterized by four pa-
rameters, the radix or base b of the number system in use, the number [of digits
in the mantissa, and the least and the greatest exponents emin and emax; thus
F =F(b,1,emaz, emin).

The product of two floating-point numbers with [digits has 2[digits. In
order to represent all products of floating-point numbers with negative exponents
exactly another |2emin| digits are required after the point for the fractional part of
the complete format. In order to represent all products of floating-point numbers
with positive exponents exactly 2emax digits before the point are required for the
integer part of the complete format. Thus all products of floating-point numbers
are representable in a fixed-point register of length 2emax + 21+ 2|emin| without
loss of information. Products of floating-point numbers can be added into a
register of this size. Each accumulation can result in an (intermediate) overflow
of the integer part by one bit. To accommodate possible overflows another k
bits before the point allows b* accumulations to be computed without loss of
information due to overflow. The final result of the accumulation if rounded into
a floating-point number is assumed to have an exponent between emax and emin;

otherwise the problem needs to be scaled.
3

Complete format is characterized by two numbers m = k + 2emax, which is
the number of digits before the point, and d = 2] + 2|emin|, which is the number
of digits after the point. In detail, it is composed of four parts, viz. a three-bit
status, a one-bit sign, an m-bit integer part, and a d-bit fractional part, where k
is chosen such that L = m + d + 4 is a multiple of eight. For IEEE 754 binary64
format with [= 53, emin = —1022, and emax = 1023 the recommended value
for L = m + d + 4 is 4288 bits (536 bytes or 67 words of 64 bits) allowing 23
accumulations before overflow could occur. The status field has one of the values
exact, inexact, —oo, 400, overflow, sNaN, or gNaN.

3 bits 1bit MSB m bits LSB MSB d bits LSB
Q S I F
(status) | (sign) (integer part) (fractional part)

Figure 1—Binary interchange, binary complete format

For IEEE 754 decimal64 format with 20 bits of overflow, m > 789 and d = 798.
Using the encoding specified in IEEE 754 (ten bits representing three decimal
digits), and again assuming the total number of bits to be a multiple of eight,
5312 bits (664 bytes) are recommended.

An implementation shall at least provide complete formats corresponding to
binary64 if it provides binary floating-point and decimal64 if it provides decimal
floating-point. Complete formats corresponding to other floating-point formats
may be provided. Table 1 shows values of m and d for other formats.

Table 1: Complete format parameters for floating-point operands

Complete formats associated with:
Parameter | binary32 | binary64 | binary128 | decimal64 | decimal128
k bits > 65 > 65 > 65 > 20 > 20
m digits > 319 > 2111 | > 32831 > 789 > 12308
d digits 300 2150 16608 798 12354
m+d > 619 > 4261 | > 49439 > 1587 > 24663
kI bits 640 4288 49536 5312 82304

1 ke is the recommended width in bits of the exact interchange format
encoding. See sub clause 3.6 of IEEE 754.

2.2. Complete operations.

2.2.1. Conwvert. An implementation shall provide the following operation, pro-
ducing a result of complete or floating-point format, as specified by the operation.
The source operand may be of complete format, floating-point format, or integer

format. The radix of the operand shall be the same as the radix of the result.
4

o formatOf-convert(source)

Conversion of an exceptional floating-point operand (sNaN, ¢NaN, —oo,
+00) to complete format shall cause the corresponding status of the re-
sult to be set, and the mantissa of the operand shall be copied to the
high-order [bits of the fraction part of the result. Conversion of an ex-
ceptional complete-format operand (overflow, sNaN, gNaN, —oo, +00) to
another complete format shall preserve the status; if the value of m or
d of the result is less than the corresponding value for the operand, the
low-order bits of the integer part and the high-order bits of the fraction
part shall be preserved. Conversion of a complete operand with overflow
status to floating-point format shall produce floating-point infinity with
the same sign. Otherwise conversion of an exceptional complete-format
operand (sNaN, gNaN, —oco, +00) to floating-point format shall produce
a corresponding exceptional floating-point result, with the mantissa equal
to the high-order [bits of the fraction part. Conversion of a normal
floating-point datum to complete format, or of a complete-format datum
to a complete format with values of m and d not less than those of the
operand, shall be exact. Conversion of a normal (ezact, ineract) com-
plete format datum to a floating-point format shall round as specified in
clause 4 of IEEE 754. Floating-point overflow might signal; if floating-
point overflow signals, the result shall be a floating-point infinity of the
same sign as the operand. The result of conversion of a normal (ezact,
inexact) complete format datum to a complete format with a value of m
less than that of the operand might have overflow status. Conversion of
a normal (ezact, inezact) complete format datum to a complete format
with a value of d less than that of the operand shall round as specified in
Clause 4 of IEEE 754, and the result shall have inexact status, unless the
result has overflow status. If the operand has inezact status the result
shall have inezact status, unless the result has overflow status. Bits of
the integer and fraction parts that are not derived from the operand shall
be zero.

2.2.2. Addition and Subtraction. In addition to the indicators of operand and
result formats specified in subclause 5.1 of IEEE 754, this document specifies

o completeFormatOf indicates that the name of the operation specifies a
complete destination format.

An implementation shall provide the following operations, producing a com-
plete-format result. The operands shall be of complete, floating-point, or integer
format, and of the same radix as the result. The result shall be computed using
complete arithmetic, as if any operand that is not of complete format, or of
a complete format different from the result, were first converted to the same

complete format as the result using the convert operation.
5

e completeFormatOf-completeAddition(sourcel, source2)
The operation completeAddition(z,) computes x + y.

o completeFormatOf-completeSubtraction(sourcel, source2)
The operation completeSubtraction(z, y) computes z — y.

2.2.3. Multiply and Add. An implementation shall provide the following op-
eration, producing a complete-format result. The sourcel and source?2 operands
shall be of floating-point format, and of the same radix as the result. The source3
operand shall be a complete-format operand of the same radix as the result. The
multiplication shall be computed without loss of any digits, the addition shall
be computed using complete arithmetic in the complete format corresponding to
the floating-point operands, and the result converted if necessary to the specified
result format as if by application of the convert operation.

e completeFormatOf-completeMultiplyAdd(sourcel, source?, source3)
The operation completeMultiplyAdd(z, y, z) computes (z X y) + z.

If any of the operands in this operation is an exceptional floating-point datum
(sNaN,qNaN, —oo,+00) the status field is set appropriately.

3. THE INTERVAL DoT PrODUCT

Let a=(a,) and b=(b,) be vectors with floating-point interval components
a,=la,1, a,s] and b,=[b,1,b,2], a1, ay2,b,1,b,0 € F. Computing the dot product
requires evaluation of the formulas

CL<> b= ([aulaau2]) <> ([bljl7b1/2])

= |V ;ignilrb(ambyj), YAN ;i?jﬁ(ambyj)

Here the products of the bounds of the vector components a,;b,; are to be
computed without loss of any digits. Then the minima and maxima have to
be selected. These selections can be done by distinguishing the nine cases as
usual for interval multiplication. The selected products are then accumulated
in complete arithmetic each one as an exact scalar product. Finally the sum of
products is rounded only once by V (resp. A) from the complete format onto
F as specified in clause 4 of IEEE 754.

If any of the components of the interval vectors a and b is the empty set, the

result of the dot product a < b shall be the empty set.

REFERENCES

[1] IEEE Floating-Point Arithmetic Standard 754, 2008.

[2] A. Neumaier: Vienna Proposal for Interval Standardization.

[3] The IFIP WG - IEEFE 75/R letter, dated September 4, 2007.
6

[4] The IFIP WG - IEEE P1788 letter, dated September 9, 2009.

[5] V. Snyder: P1788, draft standard, dated July 20, 2008.

[6] R. Lohner: Interval Arithmetic in Staggered Correction Format. In: E. Adams and U.
Kulisch (eds.): Scientific Computing with Automatic Result Verification, pp. 301-321. Aca-
demic Press, (1993).

[7] F. Blomquist, W. Hofschuster, W. Krémer: A Modified Staggered Correction Arithmetic
with Enhanced Accuracy and Very Wide Exponent Range. In: A. Cuyt et al. (eds.): Nu-
merical Validation in Current Hardware Architectures, Lecture Notes in Computer Science
LNCS, vol. 5492, Springer-Verlag Berlin Heidelberg, 41-67, 2009.

[8] R. Klatte, U. Kulisch, C. Lawo, M. Rauch, A. Wiethoff,: C-XSC, A C++ Class Library
for Extended Scientific Computing. Springer-Verlag, Berlin/Heidelberg/New York, 1993.
See also: http://www.math.uni-wuppertal.de/ xsc/ resp. http://www.xsc.de/.

[9] U. Kulisch: Computer Arithmetic and Validity — Theory, Implementation, and Applica-
tions, de Gruyter, Berlin, New York, 2008.

[10] S. M. Rump: Kleine Fehlerschranken bei Matrizproblemen. Dissertation, Universitéit Karl-
sruhe, 1980.

[11] Oishi, S.; Tanabe, K; Ogita, T; Rump, S.M.: Convergence of Rump’s method for inverting
arbitrarily ill-conditioned matrices. Journal of Computational and Applied Mathematics
205, 533-544, 2007.

[12] IBM System/370 RPQ. High Accuracy Arithmetic. SA 22-7093-0, IBM Deutschland GmbH
(Department 3282, Schonaicher Strasse 220, D-71032 Béblingen), 1984.

[13] ACRITH-XSC: IBM High Accuracy Arithmetic, Extended Scientific Computation. Version
1, Release 1. IBM Deutschland GmbH (Schonaicher Strasse 220, D-71032 Boblingen),
1990.

1. General Information, GC33-6461-01.
2. Reference, SC33-6462-00.

3. Sample Programs, SC33-6463-00.

4. How To Use, SC33-6464-00.

5. Syntax Diagrams, SC33-6466-00.

INSTITUT FUR ANGEWANDTE UND NUMERISCHE MATHEMATIK, UNIVERSITAT KARL-
SRUHE, ENGLERSTRASSE 2, D-76128 KARLSRUHE GERMANY
E-mail address: Ulrich.Kulisch@math.uka.de

CALIFORNIA INSTITUTE OF TECHNOLOGY, JET PROPULSION LABORATORY, 4800 OAK
GROVE DRIVE, MAIL STopP 183-701, PASADENA, CA 91109-8099 USA
E-mail address: Van.Snyder@jpl.nasa.gov

