
filib++ , Expression Templates and the Coming

Interval Standard

M. Nehmeier and J. Wolff v. Gudenberg

University of Würzburg

January 20, 2009

Abstract

Interval arithmetic is currently been standardized by the IEEE working
group P1788 [4]. In the near future implementations in hardware and
software are expected to be published. In this paper we investigate how a
C++ class library can be improved by the concept of expression templates.
Our first result is a saving of rounding mode switches which considerably
increases the performance.

Our second result deals with handling the discontinuity flag that will
probably be decided to be raised whenever a function is called outside its
domain (loose evaluation). We discuss several alternatives and propose
an expression related flag that can be used in a thread safe manner.

1 Introduction

Currently interval arithmetic is being standardized by the IEEE working group
P1788. The definition of interval arithmetic will be described in levels of ab-
straction [9]. Level 1 is the application level whereas level 2 defines the interval
operations. Level 3 is responsible for the representation of interval data, and
level 4 finally specifies the bit strings. Level 2 may be regarded as the interface
of the abstract data type interval specifying its constructors and operations.
It is still under discussion whether level 2 should be implemented in hardware
or software. In our opinion the whole standard is to be formulated independent
from such issues. We even think that at least level 4, the bit layout level should
not be specified completely.
Each implementation, however, in hardware or software has to provide all opera-
tions of level 2. Combined hardware and software solutions are possible. Figure
1 displays different levels of abstraction. Starting from the level 2 interface
of the P1788 standard, there is a choice of an implementation in a particu-
lar programming language using the instruction set of an existing processor or
a new interval processing unit. This level can be refined by choosing various
implementation options.
Current C++ interval libraries like Boost [1] or filib++ [6] suffer from low
speed of switching the rounding mode. In filib++ rounding strategies can be
instantiated by template parameters. Boost uses policy classes for different
rounding strategies. In this paper we suggest an optimized rounding strategy
based on expression templates.

1

Cell Processor

C++

P1788

Expression Templates ...

Figure 1: Levels of abstraction

2 Interval arithmetic using expression templates

Expression templates is a means for user-defined specification of the semantics
of expressions. The expression tree is explicitly visible and can be transformed
at compile time. The result is an optimized machine code. Optimization can
include loop fusion [10], adaptation to grids in finite element method [3] or in-
creasing accuracy in dot product expressions [7]. We apply expression templates
to minimize rounding mode switches.

2.1 Saving rounding mode switches

Operator overloading is used by the libraries Boost or filib++ to implement
interval arithmetic. For a single operation usually three rounding mode switches
are necessary, if the initial rounding mode is different from a directed rounding.
See the following pseudo code in Listing 1 for the addition of three intervals
a + b + c.

1 s t o r e round ing () ;
2 set rounding downward () ;
3 t1 = a1 + b1 ;
4 set rounding upward () ;
5 t2 = a2 + b2 ;
6 r e s e t r ound ing () ;
7 s t o r e round ing () ;
8 set rounding downward () ;
9 r1 = t1 + c1 ;

10 set rounding upward () ;
11 r2 = t2 + c2 ;
12 r e s e t r ound ing () ;

Listing 1: Addition of three intervals a + b + c

Three of the six rounding mode switches can be saved by a simple rearrange-
ment.

1 s t o r e round ing () ;
2 set rounding downward () ;
3 t1 = a1 + b1 ;

2

4 set rounding upward () ;
5 t2 = a2 + b2 ;
6 r2 = t2 + c2 ;
7 set rounding downward () ;
8 r1 = t1 + c1 ;
9 r e s e t r ound ing () ;

Listing 2: Rearranged addition of three intervals a + b + c

A further optimization by moving the computation of r1 after line 3 is not
possible for all operations. E.g., for multiplication both bounds of the first
product have to be known before the second product can be computed.
Another optimization is to apply the formula △x = −▽(−x).

1 s t o r e round ing () ;
2 set rounding downward () ;
3 t1 = a1 + b1 ;
4 t2 = −(−a2 − b2) ;
5 r1 = t1 + c1 ;
6 r2 = −(−t2 − c2) ;
7 r e s e t r ound ing () ;

Listing 3: Addition of three intervals a + b + c with one rounding mode

Many compilers optimize the computation of the upper bounds in line 4 and 6
to a simple addition now being performed with the wrong rounding mode. This
can be avoided by storing the upper bound negative [5].

2.2 Evaluation of expression trees

During compilation time the following expression tree is instantiated for the
addition of three intervals. The evaluation is delayed until assignment of the
complete expression.

IntervalExpr<BinaryIntervalExpr<IntervalAdd, ⋄, ⋄>>

IntervalBinaryIntervalExpr<IntervalAdd, ⋄, ⋄>

Interval Interval

Figure 2: Expression tree for the addition of 3 intervals

The class diagram in Figure 3 displays the behavior of the expression template
class for a binary operation. The two expression operands as well as the operator
are used to instantiate the template, see Figure 2. This class represents the
expression with the evaluation function which is called with the actual rounding
control. The rounding control visits the whole tree1. Depending on the current
state a decision whether to switch the rounding mode can be taken. Note that
the classes IntervalExpr and BinaryIntervalExpr are transparent to the user.

1That is called the visitor pattern [2] in software engineering.

3

return OP::eval(rnd, expr1.eval(rnd), expr2.eval(rnd));

IntervalExpr

expr: E

+ eval(): Interval

E

RndControl rnd;
return expr.eval(rnd);

+ eval(RndControl rnd): Interval

expr2: E2
expr1: E1

BinaryIntervalExpr OP, E1, E2

Figure 3: Class diagram for IntervalExpr

The expressions are not restricted to elementary operations but can contain
interval function calls. These are evaluated before the rest of the tree. Mixed
mode arithmetic with floating point operations may be supported whatever the
standard will decide.
The reduction of rounding mode switches for n operations is displayed in table
1.

rounding strategy operator overloading expression templates

switched 3n n + 2
onesided 2n 2

Table 1: Number of rounding mode switches

2.3 Performance tests

For performance tests the concept of expression templates was implemented
with the two rounding strategies ”switched” and ”onesided”, see Listing 2 and
3, respectively. The implementation uses plain C++ code in contrast to the
current filib++ implementation that uses assembler subroutines. Therefore the
existing filib++ implementation is the fastest for short expressions. For longer
expressions with three or more operations our test implementation with expres-
sion templates results in a measurable increase of performance. If we apply the
same ”tricks” as filib++, we can further reduce the runtime.
We recomend not to keep intermediate results in temporary variables, since the
gain of performance is higher for longer expressions.

3 Flag Handling

For loose evaluation of functions or division by an interval containing zero flags
will have to be set according to the standard. These flags indicate that a function
has been called with an argument outside the domain of definition. In either
case continuity is not valid anymore. Hence, assertions needing continuity like
Brouwer’s fixed point theorem can not be applied.

4

0

10

20

30

40

1 2 3 4 5

b b b b b

r

r

r

r

r

u

u

u

u

u

q

q

q

q

q

l

l

l

l

l

operations

ti
m

e
b

ET onesided

r
ET switched

u
filib++

q
filib++ native directed

l
Boost

Figure 4: Performance

The flags have to be checked by the user. There are several ways to implement
these flags.

3.1 Global flags

Intervals in filib++ can be called with different modes. The standard or interval
mode does not allow loose evaluation and terminates the program, if a call
outside the domain occurs. No flags are provided. In the extended mode filib++
returns the containment set, i.e. an element of IR

∗. Again no flags occur. In
the third mode, extended with flag, a global flag is maintained. It has to be
reset by the user and is set, if an operation or function is called outside its
domain. A global flag, however, has several disadvantages. It is not possible to
mark the expression that was responsible for setting the flag and, more crucial,
thread safety can not be guaranteed in modern multi-scalar, multi-core computer
architectures.

3.2 User managed flags

For the proposed interval arithmetic part of the C++ standard library[8] an
explicitly managed flag – completely under user control – had do be provided,
since it was required that the compiler does not need to know anything about
the flag. In other words the flag handling has to be transparent for the compiler.
This concept overcomes the first disadvantage of global flag handling.
The user has to call extended functions and ”operators” that receive and deliver
the flag as an explicit boolean variable. The code completely looses readability:

1 I n t e r v a l x (1) , y (−1 ,1) ;
2

3 bool f = f a l s e ;

5

4 I n t e r v a l r = d iv id e (x , s q r t (y , f) , f) ;
5 i f (! f)
6 . . .

Listing 4: r = x/
√

y user defined flag

Furthermore, since the user can reset the flags, it is difficult to retain thread
safe code.

3.3 Expression related flags

Our proposal is to use local flags for each interval expression. That can be
applied in the same manner as the C++ library flag without having to be
managed by the user. This is achieved by the introduction of the new data type
ExpressionResult that keeps an expression local flag.
ExpressionResult is a data type that contains an interval and several flags,
therefore an alternative name would be FlaggedInterval. It can be passed
as an operand to expressions, then the flag is also included. If, however, the
ExpressionResult is converted to an interval the flag is disregarded.
Since one or even more flags per interval would not only boost the representation
of an interval to 2 doubles plus some bits and, hence, do not fit in any reasonable
ports and buses but also slow down the operations, we suggest to provide the
new data type for exception handling during evaluation and use plain intervals
as storage format.
This has the following advantages. If the information that is indicated by the
flag is important for the application, the user just assigns the return value of an
expression to a variable of the type ExpressionResult. That is possible, since
ExpressionResult is assignment compatible with Interval. For a user who
doesn ’t care about flag and therefore doesn’t use the type ExpressionResult

the evaluation corresponds to the extended mode in filib++.

1 I n t e r v a l x (1) , y (−1 ,1) ;
2

3 Express ionResu l t er = x/ sq r t (y) ;
4 i f (! e r . getExtendedErrorFlag ())
5 I n t e r v a l r = er ;
6 . . .

Listing 5: r = x/
√

y expression related flag

Implementation of this data type can be done by operator overloading or by
expression templates. In the latter case the eval() method can use traits for
the evaluation of different types.

1 template<typename OP, typename E1 , typename E2>
2 class BinaryInterva lExpr {
3 private :
4 typedef EvalTraits<E1> et1 ;
5 typedef EvalTraits<E2> et2 ;
6

7 E1 expr1 ;
8 E2 expr2 ;
9

6

10 public :
11 BinaryInterva lExpr (E1 expr1 , E2 expr2)
12 : expr1 (expr1) , expr2 (expr2) {}
13

14 I n t e r v a l eva l (RndControl& rnd ,
15 FlagControl& f l a g) const {
16 return OP: : eva l (rnd ,
17 f l a g ,
18 et1 : : eva l (rnd , f l ag , expr1) ,
19 et2 : : eva l (rnd , f l ag , expr2)) ;
20 }
21 } ;

Listing 6: Traits Implementation of the class BinaryIntervalExpr

Walking through the tree for evaluation the flag is passed as a visitor object.
The different eval() methods can set the flag if necessary.

1 template<typename E>
2 class Interva lExpr {
3 private :
4 E expr ;
5

6 public :
7 . . .
8 ExprResult eva l () const {
9 RndControl rnd ;

10 FlagControl f l a g ;
11 return ExprResult (expr . eva l (rnd , f l a g) , f l a g) ;
12 }
13 } ;

Listing 7: Evaluation of an expression tree

Using the expression template implementation an evaluation of an expression
is delayed until all information is available as a tree. The flag of the whole
expression is computed by or-ing the flags of the subexpressions. Hence, it does
not matter in which order the computations of the subexpressions arrive.
For the implementation with operator overloading the flags only occur as result
parameters and again the order of evaluation does not change the final value of
the flag. So we have the following proposition.

Proposition: The handling of expression local flags is thread safe.

4 Summary

We have used expression templates to compute interval expressions. On the
one hand we could save rounding mode switches and thus accelerate the per-
formance. On the other hand we discussed thread safe flag handling for loose
evaluation. It can be established for expression related flags. This is achieved
by the introduction of the new data type ExpressionResult that contains an

7

interval and several flags. The flag handling can be applied to expressions com-
puted by several statements, if we use the data type ExpressionResult for
intermediate values.

References

[1] Boost Interval Arithmetic Library, January 2009.
http://www.boost.org/doc/libs/1 37 0/libs/numeric/interval/

doc/interval.htm.

[2] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design

patterns: elements of reusable object-oriented software. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1995.

[3] Jochen Härdtlein. Moderne Expression Templates Programmierung. PhD
thesis, Universität Erlangen-Nürnberg, 2007. in German.

[4] IEEE Interval Standard Working Group - P1788, January 2009.
http://grouper.ieee.org/groups/1788/.

[5] Branimir Lambov. Interval arithmetic using SSE-2. Lecture Notes in Com-

puter Science, 5045:102–113, 2008.

[6] Michael Lerch, German Tischler, Jürgen Wolff von Gudenberg, Werner
Hofschuster, and Walter Krämer. Filib++, a fast interval library support-
ing containment computations. ACM Trans. Math. Softw., 32(2):299–324,
2006.

[7] Michael Lerch and Jürgen Wolff von Gudenberg. Expression templates for
dot product expressions. Reliable Computing, 5(1):69–80, 1999.

[8] Sylvain Pion, Hervé Brönnimann, and Guillaume Melquiond. A proposal
to add interval arithmetic to the c++ standard library. In P. Hertling,
C. M. Hoffmann, W. Luther, and N. Revol, editors, Reliable Imple-

mentation of Real Number Algorithms: Theory and Practice, number
06021 in Dagstuhl Seminar Proceedings. Schloss Dagstuhl, Germany, 2006.
http://drops.dagstuhl.de/opus/volltexte/2006/718.

[9] John Pryce and David Lester. A proposed structure for the process of
constructing the P1788 standard, December 2008. in [4].

[10] Todd L. Veldhuizen. Expression templates. C++ Report, 7(5):26–31, June
1995. Reprinted in C++ Gems, ed. Stanley Lippman.

8

	Introduction
	Interval arithmetic using expression templates
	Saving rounding mode switches
	Evaluation of expression trees
	Performance tests

	Flag Handling
	Global flags
	User managed flags
	Expression related flags

	Summary

