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Introduction

This introduction is not part of IEEE Draft Standard P1788 for Interval Arithmetic.

This introduction explains some of the alternative interpretations, and sometimes competing
objectives, that influenced the design of this standard. For more information on interval computa-
tions, including history, applications and software, see e.g. [, [[1] and the references therein, and
also the interval computations web site [13].

Mathematical context. Interval computation is a collaboration between human program-
mer and machine infrastructure which, correctly done, produces mathematically proven numerical
results about continuous problems—for instance, rigorous bounds on the global minimum of a
function or the solution of a differential equation. It is part of the discipline of “constructive real
analysis”. In the long term, the results of such computations might become sufficiently trusted
to be accepted as contributing to legal decisions. The machine infrastructure acts as a body of
theorems on which the correctness of an interval algorithm relies, so it must be made as reliable
as is practical. In its logical chain are many links—hardware, underlying floating-point system,
etc.—over which this standard has no control. The standard aims to strengthen one specific link,
by defining interval objects and operations that are theoretically well-founded and practical to
implement.

This document uses the standard notation [a,b] for “the interval between numbers a and
b”, with various detailed meanings depending on the underlying theory. The “classical” interval
arithmetic (IA) of R.A. Moore [6] uses only bounded, closed, nonempty intervals in the real numbers
R—that is, [a,b] = {z € R| a <z < b} where a,b € R with a < b. So, for instance, division by an
interval containing 0 is not defined in it. It was agreed early on that this standard should strictly
extend classical IA in virtue of allowing an interval to be unbounded or empty.

Beyond this, various extensions of classical IA were considered. One choice that distinguishes
between theories is: Are arithmetic operations purely algebraic, or do they involve topology? An
example of the latter is containment set (cset) theory [10], which extends functions over the reals to
functions over the extended reals, e.g., sin(400) is the set of all possible limits of sinx as x — +o0,
which is [-1,1]. The complications of this were deemed to outweigh the advantages, and it was
agreed that operations should be purely algebraic.

Another choice is: Is an interval a set—a subset of the number line—or is it something different?
The most widely used forms of TA are set-based and define an interval to be a set of real numbers
[8]. They have established software to find validated solutions of linear and nonlinear algebraic
equations, optimization problems, differential equations, etc.

However, Kaucher IA and the nearly equivalent modal IA have significant applications. In
the former, an interval is formally a pair (a,b) of real numbers, which for a < b is “proper” and
identified with the normal interval {z € R | a < a < b}, and for a > b is “improper”. In the latter,
an interval is a pair (X, @), where X is a normal interval and @ is a quantifier, either 3 or V. At
the time of writing, it finds commercial use in the graphics rendering industry. Both forms are
referred to as Kaucher TA henceforth.

In view of their significance, it was decided to support both set-based and Kaucher TA. Because
of their different mathematical bases, this led to the concept of flavors (see Clause . A flavor is
a version of TA that extends classical IA in a precisely defined sense, such that when only classical
intervals and restricted operations are used (avoiding, e.g., division by an interval containing zero),
all flavors produce the same results at the mathematical level and also—up to roundoff—in finite
precision.
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Currently, the standard includes only the set-based flavor. Among other possible flavors are
Kaucher/modal intervals; containment-sets; and the interval system of Siegfried Rump, which
handles the relation between floating-point numbers and intervals, including overflow, in an elegant
way, as well as being able to support open and half-open intervals. All of these extend classical TA
in the defined sense.

Chapter [I] contains a common set of definitions and requirements that apply to all flavors; then
the standard for each flavor is presented as a separate chapter. The set-based flavor is presented
first, on the grounds that it is relatively easy to grasp, easy to teach, and easy to interpret in the
context of real-world applications. In this theory:

— Intervals are sets.

— They are subsets of the set R of real numbers. At the mathematical level (Level 1 in the structure
defined in Clause [5)) they are precisely all topologically closed and connected subsets of R. The
finite-precision level (Level 2) uses the notion of an interval type, which is a finite set of Level 1
intervals.

— The interval version of an elementary function such as sinx is essentially the natural algebraic
extension to sets of the corresponding pointwise function on real numbers.

Fuzzy sets, like intervals, are a way to handle uncertain knowledge, and the two topics are
related. However, to consider this relation was beyond the scope of this project.

Specification Levels. The 754-2008 standard describes itself as layered into four Specifica-
tion Levels. To manage complexity, the present standard uses a corresponding structure. It deals
mainly with Level 1, of mathematical interval theory, and Level 2, the finite set of interval datums
in terms of which finite-precision interval computation is defined. It has some concern with Level
3, of representations of intervals as data structures; and with Level 4, of interchange encoding in
bit strings.

There is another important player: the programming language. It was a recognized omission
of IEEE-754-1985 that it specified individual operations but not how they should be used in ex-
pressions. Optimizing compilers have, since well before that standard, used clever transformations
so that it is impossible to know the precisions used and the roundings performed while evaluating
an expression, or whether the compiler has even “optimized away” (1.0 + ) — 1.0 to become sim-
ply z. IEEE-754-2008 specifies this by placing requirements on how operations should be used in
expressions, though as of this writing, few programming languages have adopted that.

The lack of any restrictions is also a problem for intervals. Thus the standard makes re-
quirements and recommendations on language implementations, thereby defining the notion of a
standard-conforming implementation of intervals within a language.

The language does not constitute a fifth level in some linear sequence; from the user’s viewpoint,
most current languages sit above datum level 2, alongside theory level 1, as a practical means
to implement interval algorithms by manipulating Level 2 entities (though most languages have
influence on Levels 3 and 4 also). This standard extends them to provide an instantiation of level
2 entities.

The Fundamental Theorem. Moore’s [6] Fundamental Theorem of Interval Arithmetic
(FTIA) is central to interval computation. Roughly, it says as follows. Let f be an explicit
arithmetic expression—that is, it is built from finitely many elementary functions (arithmetic

operations) such as +, —, X, =, sin, exp, . . ., with no non-arithmetic operations such as intersection,
so that it defines a real function f(z1,...,z,). Then evaluating f “in interval mode” over any
interval inputs (x1,...,x,) is guaranteed to give an enclosure of the range of f over those inputs.

A version of the FTTA holds in all variants of interval theory, but with varying hypotheses
and conclusions. In the context of this standard, an expression should be evaluated entirely in one
flavor, and inferences made strictly from that flavor’s FTIA; otherwise, a user might believe an
FTTA holds in a case where it does not, with possibly serious effects in applications. As stated, the
FTIA is about the mathematical level. Moore’s achievements were to see that “outward rounding”
makes the FTTA hold also in finite precision and to follow through the consequences. An advantage
of the level structure used by the standard is that the mapping between levels 1 and 2 defines a
framework where it is easily proved that

The finite-precision FTIA holds in any conforming implementation.



Generally, during program execution it can only be determined after evaluating an expression
whether the conditions for any version of the FTIA hold; this is an important application of the
standard’s decoration system|[9].

For each flavor included in the standard, its subdocument must state the form of the FTIA it
obeys, both at the mathematical level 1 and at the finite-precision level 2.

Operations.

There are several interpretations of evaluation outside an operation’s domain and operations
as relations rather than functions. This includes classical alternative meanings of division by an
interval containing zero, or square root of an interval containing negative values. To illustrate the
different interpretations, consider y = /& where & = [—1,4].

(1) In optimization, when computing lower bounds on the objective function, it is generally appro-
priate to return the result y = [0, 2], and ignore the fact that /- has been applied to negative
elements of x.

(2) In applications (such as solving differential equations) where one must check the hypotheses
of a fized point theorem are satisfied:

(a) one might need to be sure that the function is defined and continuous on the input and,
hence, report an illegal argument when, as in the above case, this fails; or

(b) one might need the result y = [0,2], but must flag the fact that /- has been evaluated at
points where it is undefined or not continuous.

(3) In constraint propagation, the equation is often to be interpreted as: find an interval enclosing
all y such that y? = z for some x € [~1,4]. In this case the answer is [-2, 2].

The standard provides means to meet these diverse needs, while aiming to preserve clarity and
efficiency. A language might achieve this by binding one of the above three interpretations—usually
some variant of (2)—to its built-in operations, and providing the others as library procedures.

In the context of flavors, a key idea is that of common operation instances: those elementary
interval calculations that at the mathematical level are required to give the same result in all
flavors. For example [1,2]/[3,4] = [1/4,2/3] is common, while division by an interval containing
zero is not common.

Decorations.

Many interval algorithms are only valid if certain mathematical conditions are satisfied: for
instance, one might need to know that a function, defined by an expression, is everywhere contin-
uous on a box in R™ defined by n input intervals x1,...,x,. The IEEE 754 use of global flags to
record events such as division by zero was considered inadequate in an era of massively parallel
processing. In this standard, such events are recorded locally by decorations.

A decorated interval is an ordinary interval tagged with a few bits that encode the decoration,
and record while evaluating an expression, e.g., “each elementary function was defined and contin-
uous on its inputs”—which implies the same for the function defined by the whole expression. This
allows a rigorous check, for instance, that the conditions for applying a fixed-point theorem hold.
A small number of decorations is provided, designed for efficient propagation of such property in-
formation. Depending on need, a programmer may use bare (undecorated) intervals, or decorated
intervals, or (if provided) the optional compressed decorated interval arithmetic that offers less
decoration capability in exchange for faster execution.

The Basic Standard.

To make the standard more accessible and speed up production of implementations, a subset of
the set-based standard called the Basic Standard for Interval Arithmetic (BSIA) has been written.
It includes just one finite-precision interval type—intervals whose endpoints are IEEE754 double
precision numbers—and those operations that in the the editors’ view are most commonly used.
A minimal implementation of the BSIA is not a conforming implementation of the full standard
since some required operations of the latter are omitted or provided in a restricted form. However
a program that runs using such an implementation should run, and give identical output within
roundoff, using an implementation of the full standard. The BSIA, reproduced here in Annex [C]
is also available as a self-contained document.
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CHAPTER 1

General Requirements

1. Overview

1.1. Scope. This standard specifies basic interval arithmetic (IA) operations selecting and
following one of the commonly used mathematical interval models. This standard supports the
IEEE-754-2008 floating point formats of practical use in interval computations. Exception con-
ditions are defined, and standard handling of these conditions is specified. Consistency with the
interval model is tempered with practical considerations based on input from representatives of
vendors and owners of existing systems.

The standard provides a layer between the hardware and the programming language levels.
It does not mandate that any operations be implemented in hardware. It does not define any
realization of the basic operations as functions in a programming language.

1.2. Purpose. The aim of the standard is to improve the availability of reliable computing
in modern hardware and software environments by defining the basic building blocks needed for
performing interval arithmetic. There are presently many systems for interval arithmetic in use;
lack of a standard inhibits development, portability; ability to verify correctness of codes.

1.3. Inclusions. This standard specifies

— Types for interval data based on underlying numeric formats, with a special class of type derived
from IEEE 754 floating point formats.

— Constructors for intervals from numeric and character sequence data.

— Addition, subtraction, multiplication, division, fused multiply add, square root; other interval-
valued operations for intervals.

— Midpoint, radius and other numeric functions of intervals.

— Interval comparison relations.

— Required elementary functions.

— Conversions between different interval types.

— Conversions between interval types and external representations as text strings.

— Interval-related exceptional conditions and their handling.

1.4. Exclusions. This standard does not specify

— Which numeric formats supported by the underlying system shall have an associated interval
type.

— How (for implementations supporting IEEE 754 arithmetic) operations act on the IEEE 754
status flags.

— How an implementation represents intervals at the level of programming language data types or
bit patterns.

1.5. Word usage.
In this standard three words are used to differentiate between different levels of requirements
and optionality, as follows:

— may indicates a course of action permissible within the limits of the standard with no implied
preference (“may” means “is permitted to”);

— shall indicates mandatory requirements strictly to be followed to conform to the standard and
from which no deviation is permitted (“shall” means “is required to”);

— should indicates that among several possibilities, one is recommended as particularly suitable,
without mentioning or excluding others; or that a certain course of action is preferred but not
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necessarily required; or that (in the negative form) a certain course of action is deprecated but
not prohibited (“should” means “is recommended to”).

Further:

— optional indicates features that may be omitted, but if provided shall be provided exactly as
specified.

— might indicates the possibility of a situation that could occur, with no implication of the like-
lihood of that situation (“might” means “could possibly”);

— comprise indicates members of a set are exactly those objects having some property. An un-
qualified consist of merely asserts all members of a set have some property, e.g., “a binary
floating-point format consists of numbers with a terminating binary representation”. “Com-
prises” means “consists exactly of”.

— Note and Example introduce text that is informative (is not a requirement of this standard).

1.6. The meaning of conformance. Clause [3 lists the requirements on a conforming im-
plementation in summary form, with references to where these are stated in detail.

1.7. Programming environment considerations.

This standard does not define all aspects of a conforming programming environment. Such
behavior should be defined by a programming language definition supporting this standard, if
available; otherwise by a particular implementation. Some programming language specifications
might permit some behaviors to be defined by the implementation.

Language-defined behavior should be defined by a programming language standard sup-
porting this standard. Standards for languages intended to reproduce results exactly on all plat-
forms are expected to specify behavior more tightly than do standards for languages intended to
maximize performance on every platform.

Because this standard requires facilities that are not currently available in common program-
ming languages, the standards for such languages might not be able to conform fully to this
standard if they are no longer being revised. If the language can be extended by a function library
or class or package to provide a conforming environment, then that extension should define all the
language-defined behaviors that would normally be defined by a language standard.

Implementation-defined behavior is defined by a specific implementation of a specific
programming environment conforming to this standard. Implementations define behaviors not
specified by this standard nor by any relevant programming language standard or programming
language extension. Conformance to this standard is a property of a specific implementation of a
specific programming environment, rather than of a language specification. However, a language
standard could also be said to conform to this standard if it were constructed so that every
conforming implementation of that language also conformed automatically to this standard.

1.8. Language considerations. All relevant languages are based on the concepts of data
and transformations. In von Neumann languages, data are held in variables, which are transformed
by assignment. In functional languages, input data are supplied as arguments; the transformed
form is returned as results. Dataflow languages vary considerably, but use some form of the data
and transformation approach.

Similarly, all relevant languages are based on the concept of mapping the pseudo-mathematical
notation that is the program code to approximate real arithmetic, almost exclusively using some
form of floating-point. The unit of mapping and transformation can be individual operations
and built-in functions, expressions, statements, complete procedures, or other. This standard is
applicable to all of these.

In this standard, the units of transformation are called operations and written as named
functions; in a specific implementation they might be represented by operators (e.g., using an infix
notation), or by families of type-specific functions, or by operators or functions whose names might
differ from those used here.

The least requirement on a conforming language standard, compiler or interpreter is that it
shall:

(1) define bindings so that the programmer can specify level 2 data (in the sense of the levels
defined in Clause [5|) as described in this standard;

2 June 1, 2014
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(2) define bindings so that the programmer can specify the operations on such data as described
in this standard;

(3) define any properties of such data and operations that this standard requires to be defined;

(4) honor the rules of interval transformations on such data and operations as described in this
standard; such units of transformation that the language standard, compiler or interpreter
uses.

Specifically, if the data before and after the unit of transformation are regarded as sets of
mathematical intervals, the transformed form of all combinations of the elements (the real values)
represented by the prior set shall be a member of the posterior set.

If a conforming language standard supports reproducible interval arithmetic, it shall also:

(5) Use the data bindings as specified in point (1) above for reproducible operations;

(6) Define bindings to the reproducible operations as described in this standard;

(7) Define any modes and constraints that the programmer needs to specify or obey in order to
obtain reproducible results.

If a conforming language standard supports both non-reproducible and reproducible interval
arithmetic, it shall also:

(8) Permit a reproducible transformation unit to be used as a component in a non-reproducible
program, possibly via a suitable wrapping interface.

2. Normative references

1. IEEE Std 754, IEEE Standard for Floating-Point Arithmetic. References in this document are
to the 2008 revision.
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3. Conformance Clause

3.1. Conformance overview. The P1788 Standard for Interval Arithmetic defines confor-
mance for programming environments for interval arithmetic. A programming environment is a
collection of processes for developing and executing computer programs. An implementation, in
the following, is a programming environment that implements the Level 2 behavior of interval
arithmetic as specified in this standard. The implementation may comprise a programming lan-
guage as well as extensions in the form of libraries, classes, or packages that are necessary to satisfy
the requirements for conformance. Requirements are given for the whole implementation; whether
they are satisfied by the language itself or by an extension is irrelevant for conformance, see

Conformance requirements are specified in this standard after the guidelines developed by
OASIS, see [12]. In particular the OASIS concept of profiles is used to structure the requirements
for a conforming implementation of a flavor of interval arithmetic.

A conforming implementation shall provide at least one of the following profiles, defined in
Clause [7] called standard flavors of interval arithmetic in the context of this standard. A profile
in this sense is a specific subset of functionality and requirements of this standard that may be
provided by an implementation, but if it is provided shall be implemented exactly as specified in
the corresponding section. A sub-profile is a nested profile. If the main profile is provided, an
implementation may also support the sub-profile. If it does, it shall do so as specified.

An implementation may also provide additional flavors that shall conform to the core spec-
ification summarized in §7.1] and detailed in the following subclauses of Clause [7] as well as §§]
]

[Note. The procedure for submitting new flavors to be included into the standard is described in
Annex[A]]

In any flavor of interval arithmetic, a part of an implementation is specified by a subset of the
implementation’s interval types (and where necessary to remove ambiguity, of its number formats).
It comprises those types and formats, and associated operations of the implementation. It is a
conforming part if it forms a conforming implementation of that flavor in its own right. Note this
implies the full set of decorations of the flavor shall be supported.

The normative version of this standard is the English version. Translation to other languages
is permitted.

3.2. Set-based interval arithmetic. An implementation of the set-based flavor, described
in Chapter [2] shall satisfy the following requirements:

— provide the decorations specified in

— provide at least one supported bare interval type, see

— if multi-precision interval types are supported, define them as a parameterized sequence of in-
terval types, see §12.7}

— provide implementations of the required operations in required and recommended accu-
racies for these operations can be found in

— if any of the recommended operations referenced in are provided, provide them in a way
that satisfies the requirements specified in the same clause; and

— provide input and output functions to convert intervals from and to strings as well as a public
representation as specified in §13.2 §13.3] and §13.4} the string conversions shall satisfy contain-
ment in the general case and satisfy accuracy requirements for 754-conforming types as described

in (133, 133 133

In all these, the implementation shall follow the representation rules defined in §14.1] essentially
stating that booleans, strings, and decorations are represented as given in the references listed in
the preceding bullets and that there is a one-to-one correspondence between the abstract number
and interval formats in said references and the concrete formats used in the implementation.

As states, each level 2 datum shall be represented by at least one level 3 object, and each
level 3 object shall represent at most one level 2 datum.

3.2.1. 754-conformance. In addition to basic conformance of the set-based flavor, an imple-
mentation may claim 754-conformance for all or part of the set-based flavor if the requirements of
412.6| are satisfied.
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3.2.2. Compressed decorated interval arithmetic. An implementation may support the com-
pressed arithmetic sub-profile of the set-based flavor. If compressed arithmetic is supported, it
shall be as described in §11.10} in particular the implementation shall:

— provide an enquiry function to distinguish between intervals and decorations;

— provide a constructor for compressed intervals for each threshold value;

— provide a conversion function from compressed intervals to decorated intervals of the parent
type;

— follow a worst case semantic for all arithmetic operations on compressed intervals; and

— provide compressed arithmetic implementations of the required operations in

3.3. Conformance claim. An implementation may claim its conformance to this standard
in the following way

[Name of implementation and version] is conforming to the P1788 Standard for
Interval Arithmetic, version XX. It is conforming to the set-based flavor with
754-conformance for list of 754-conforming supported interval types and with
/ without compressed arithmetic. Additionally it provides list of non-standard
flavors.

Part of the conformance claim shall be the completion of the following questionnaire.

3.4. Implementation conformance questionnaire.

(1) Implementation-defined behavior
(a) What status flags or other means to signal the occurrence of certain decoration values
in computations does the implementation provide if any, see Clause [3.1]

Does the implementation provide the set-based flavor? If so answer the following set of questions.

(2) Documentation of behavior

(a) If the implementation supports implicit interval types, how is the interval hull oper-
ation realized? The answer may be given via an appropriate algorithm, see

(b) What accuracy is achieved (i.e., tightest, accurate, or valid) for each of the imple-
mentation’s interval operations, see

(¢) Under what conditions is a constructor unable to determine whether a Level 1 value
exists that corresponds to the supplied inputs, see

(d) How are cases for rounding a Level 1 value to an F-number handled that are not
covered by the rules given in This includes how the distance to an infinity
is calculated when rounding a number? How are ties broken in rounding numbers if
multiple numbers qualify as the rounded result?

(e) How are interval datums converted to their exact text representations, see

(3) Implementation-defined behavior

(a) Does the implementation include the interval overlapping function, see If
so, how is it made available to the user?

(b) Does the implementation store additional information in a NaI? What functions are
provided for the user to set and read this information, see §I1.3]?

(¢) What means if any does the implementation provide for an exception to be signaled
when a Nal is produced, see

(d) What interval types are supported besides the required ones, see

(e) What mechanisms of exception handling are used in exception handlers provided by
the implementation, see §12.1.3 What additional exception handling is provided by
the implementation?

(f) What is the tie-breaking method used in rounding of supported number formats F
that are not 754-conforming, see

(g) Does the implementation include different versions of the same operation for a given
type and how are these provided to the user, see

(h) What combinations of formats are supported in interval constructors, see

(i) What is the tightness of the result of constructor calls in cases where the standard

does not specify it, see §12.12.7]/
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(j) What methods are used to read or write strings from or to character streams, see
§13.1[? Does the implementation employ variations in locales (such as specific char-
acter case matching)? This includes the syntax used in the strings for reading and
writing.

(k) What is the tightness of the string to interval conversion for non-754-conforming
interval types and the tightness for the interval to string conversion for all interval
types, see

(1) What is the result of level 3 operations for invalid inputs, see

(m) What are the interchange representations of the fields of the standard Level 3 rep-
resentation listed in §T4.4?

(n) What decorations does the implementation provide and what is their mathematical
definition, see How are these decorations mapped when converting an interval
to the interchange format, see

(o) What interchange formats if any are provided for non-754 interval formats and on
non-754 systems, see §I4.4¢ How are these provided to the user?

Does the implementation support the compressed arithmetic sub-profile of the set-based
profile? If so answer the following set of questions.

(4) Implementation-defined behavior
(a) Which compressed interval types are provided, see §11.10]

Does the implementation provide non-standard flavors not defined in this standard, see
If so answer the following questions for each additional flavor.

(5) Flavor definition
(a) What is the set § of intervals of the flavor? And what is the embedding map
describing the relation to the common intervals, see
(b) What decorations does the flavor provide, and what is their mathematical definition?
(¢) What operations besides the required operations does the implementation provide,
see How are the §-versions of all provided operations—required and flavor-
specific—defined, see
) What interval types are provided for the intervals of §, see
(e) What is the result of applying the flavor’s convertType operation to a non-interval
datum, see §7.5.2F
(f) For what interval types T of the flavor shall the implementation provide a T-version
of the flavor-specific operations, see For what interval types should the
implementation provide a T-version?
(g) If possible, give a recommendation or requirements on the relation between the Level
2 number format F and the interval type T when passing from a Level 1 operation

to a T-version, see §7.5.3

(h) How are exceptional cases in the evaluation of a T-version of an operation handled,

see §7.5.3[

(i) Does the flavor define accuracy modes in addition to valid and tightest? Where do
these accuracy modes apply, see
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4. Notation, abbreviations, definitions

4.1. Frequently used notation and abbreviations.

754 TEEE-Std-754-2008 “IEEE Standard for Floating-Point Arithmetic”.
IA Interval arithmetic.
R the set of real numbers.
R the set of extended real numbers, R U {—oo, +00}.
IR the set of closed real intervals, including unbounded intervals and the
empty set.
F  generic notation for a number format.
T generic notation for an interval type.
¢, Empty the empty set.
Entire the whole real line.
Nal Not an Interval.
NaN Not a Number.
gNaN, sNaN quiet and signaling NaN.
x,y,... [resp. f,g,...] typeface/notation for a numeric value [resp. numeric function].
x,y,... resp. f,g,...] typeface/notation for an interval value [resp. interval function].
f,g,... typeface/notation for an expression, producing a function by evalua-
tion.
Dom(f) the domain of a point-function f.
Rge(f|s) the range of a point-function f over a set s; the same as the image
of s under f.
Val map from member of concrete set to represented value in abstract set

(e.g., from number format F to R).

4.2. Definitions.

The labels (AF) and (s) mark definitions that apply to all flavors, or the set-based flavor only,
respectively.

4.2.1. 754 format. (AF) A floating-point format that together with its associated opera-
tions conforms to IEEE-Std-754-2008. A basic 754 format is one of the five formats binary32,
binary64, binary128, decimal64, decimal128.

4.2.2. 754-conforming implementation. (s) An implementation of this standard, or a part
thereof, that is built on a 754 system, uses only 754-conforming types, and satisfies the extra
requirements for 754-conformance. Details in

4.2.3. 754-conforming type. (s) An inf-sup interval type derived from a 754 format, with
its relevant operations; or the associated decorated type with its operations.

4.2.4. 754 system. (AF) A programming environment, made up of hardware or software or
both, that provides floating-point arithmetic conforming to IEEE-Std-754-2008.

4.2.5. accuracy mode. (AF) A way to describe the quality of an interval version of a function.
See tightness, details in (AF) §7.5.4 and (s) §12.10.1]

4.2.6. arithmetic operation. (AF) A version of a point operation. Details in

A basic arithmetic operation of IEEE-754 is one of the six functions +, —, x, =+, fused
multiply-add fma and square root sqrt.

4.2.7. arity. (AF) The number of arguments of a function. Details in

4.2.8. bare interval. (AF) Same as interval; used to emphasize it is not decorated.

4.2.9. bound. (AF) One of the (extended-real) numbers z, T for an interval that is, or has an
interpretation as being, the set of numbers between x and T, whether including or excluding the
bounds themselves. (s) Details in

4.2.10. box. (AF) A box or interval vector is an n-dimensional interval, i.e. a tuple
(x1,...,x,) where the x; are intervals. When an interval may be regarded as a set of points,
it may be identified with the cartesian product @1 X ... x @,. (s) Details in §10.2

4.2.11. common evaluation. (AF) Those evaluations of an operation (over common inter-
vals) that have the same value in all flavors. Details in Clause @

4.2.12. common interval. (AF) Those intervals that “modulo the embedding map” belong
to all flavors. Details in
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4.2.13. comparable. (AF) A set of interval types is comparable if for any two of them, one
is wider than the other, that is if, regarded as sets of mathematical intervals, they are linearly
ordered by set inclusion.

4.2.14. conforming part. (AF) A subset (possibly the whole) of an implementation’s types
and formats, with associated operations, that forms a conforming implementation in its own right.
In a multi-flavor implementation, it might be formed from a subset of the flavors. Details in §3.1]

4.2.15. constant. (AF) A real constant at Level 1 is defined to be a scalar point function
with no arguments; this includes the constant NaN. Details in

4.2.16. contain. (AF) A partial order relation between intervals that shall be defined in each
flavor, and for common intervals shall coincide with normal set containment. Synonym enclose.
Details in §7.2]

4.2.17. datum. (AF) One of the entities manipulated by finite precision (Level 2) operations
of this standard. It can be a boolean, a decoration, a (bare) interval, a decorated interval,
a number or a string datum. Number datums are organized into formats; bare and decorated
interval datums are organized into types. An F-datum or T-datum means a member of the number
format T, or of the bare or decorated interval type T. Details in Clause (s)

4.2.18. decoration. (AF) One of the flavor-defined sets of values used to record events, called
exceptional conditions, in interval operations: e.g., evaluating a function at points where it is
undefined. Details in Clause

(s) One of the five values com, dac, def, trv and ill. Details in Clause

4.2.19. decorated interval. (AF) A pair (interval, decoration). Details in

4.2.20. domain. (AF) For a function with arguments taken from some set, the domain com-
prises those points in the set at which the function has a value. The domain of a point operation is
part of its definition. E.g., the (point) operation of division z/y, in this standard, has arguments
(x,y) in R?, and its domain is { (z,y) € R? | y # 0}. See also natural domain.

4.2.21. elementary function. (AF) Synonymous with arithmetic operation.

4.2.22. enclose. (AF) Synonymous with contain.

4.2.23. exception, exceptional condition. (AF) An exception is an event that occurs, and
may be signaled, when an operation on some particular operands has no outcome suitable for every
reasonable application. A signaled exception is handled in a language- or implementation-defined
way. Details in

An exceptional condition is one of the events handled by the decoration system; it is not
an exception. Details in Clause

(s) In the set-based standard, exceptions may occur in interval constructors (details in §12.1.3
and in the intervalPart operation (details in .

4.2.24. expression. (AF) A symbolic form used to define a function. As used in this standard,
it is a mathematical construct extracted from a section of run-time dataflow of a program, from
which statements about enclosure of the range of a function may be deduced by using the FTIA. Tt
may be represented by a computational graph, a code list or a normal algebraic expression. Details
in Clause [f] An arithmetic expression is one whose operations are all arithmetic operations.

4.2.25. explicit type. (S) An interval type that has a uniquely defined interval hull operation.

4.2.26. floating-point format. (AF) A number format like those of 754, whose numbers have
the form x = s X dg.dy . ..d, x b° where integer b > 2 is the fixed radix, integer p > 0 is the fixed
precision, s = £1 is the sign, do.d; ...d, (a radix-b fraction) is the significand or mantissa, and e
is an integer in a fixed exponent range emin < e < emaz.

4.2.27. fma. (AF) Fused multiply-add operation, that computes 2 X y + z. One of the basic
arithmetic operations. Details in

4.2.28. format. (Or number format.) (AF) One of the sets into which number datums are
organized at Level 2, usually regarded as a finite set F of extended-reals with possibly also —0, +0.

If F is a format, an F-datum means a member of F, and an F-number means a non-NaN
member of F. The value map Val maps F-numbers to the extended-reals they denote: Val(-0) =
Val(+0) = 0 and Val(z) = z for other F-numbers.

(s) A format is provided if the implementation provides a representation of it, and supported
if also it has properties specified in §12.4}

4.2.29. FTIA. (AF) The Fundamental Theorem of Interval Arithmetic. Details in Refers
to both the original versions that apply to bare intervals, and any decorated interval version
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applying to a flavor of this standard. For emphasis, the latter is sometimes referred to as the
Fundamental Theorem of Decorated Interval Arithmetic (for that flavor).

4.2.30. function. Has the usual mathematical meaning of a partial function. Details in
Synonymous with map, mapping.

4.2.31. hull. (AF) (Or interval hull.) When not qualified by the name of an interval type,
the hull of a subset s of R is the Level 1 hull, namely the tightest interval containing s in a flavor’s
sense of “contain”. Details in

(s) When T is an explicit type, the T-hull of s is the unique tightest T-interval containing s.

When T is an implicit type, the T-hull of s is a minimal T-interval containing s as specified in
the definition of the type.

4.2.32. implementation. (AF) When used without qualification, means a realization of an
interval arithmetic conforming to the specification of this standard. Details in Clause

4.2.33. implicit type. (s) An interval type that does not have a uniquely defined interval
hull operation: the hull must be specified as part of the definition of the type.

4.2.34. inf-sup. (AF) Describes a representation of an interval based on its lower and upper
bounds.

4.2.35. interval. (AF) At Level 1 the entities of the abstract data type forming one part of
the interval model of an interval flavor. At Level 2 a T-interval is a member of the bare interval
type T, or a non-Nal member of the decorated interval type T. Details in

(s) A (bare) interval x, see is a closed connected subset of R.

The set of all intervals is denoted IR. It comprises the empty set # and the nonempty intervals
2,7 ={x € R|z<2<ZT} Herez = infa and T = supz, the bounds of the interval, are
extended-real numbers satisfying x < 7, z < 400 and T > —0o. Note +oo can be bounds of an
interval but never members of it.

4.2.36. interval extension. (s) At Level 1, an interval extension of a point function f is a
function f from intervals to intervals such that f(z) belongs to f(x) whenever z belongs to « and
f(z) is defined. It is the natural (or tightest) interval extension if f(x) is the interval hull of the
range of f over x, for all z. Details in For Level 2 interval extension, see

A decorated interval extension of f is a function from decorated intervals to decorated
intervals, whose interval part is an interval extension of f, and whose decoration part propagates
decorations as specified in

4.2.37. interval vector. (AF) See box.

4.2.38. library. (AF) In a given flavor, the set of Level 1 operations (Level 1 library) or those
provided by an implementation (Level 2 library). Further classification may be made into the
point library, bare interval library and decorated interval library. Details in §6.3] 9} see
also 6.2

4.2.39. map, mapping. See function.

4.2.40. mathematical interval of constructor. (AFr) The arguments of an interval con-
structor, if valid, define a mathematical interval . The actual interval returned by the constructor
is the tightest interval of the destination type that contains x, see

4.2.41. mid-rad. (AF) Describes a representation of an interval based on its midpoint and
radius.

4.2.42. Nal, NaN. (Ar) At Level 1 NaN is the function R® — R with empty domain. Nal is
the natural interval extension of NaN, the map from subsets of R® to subsets of R whose value is
always the empty set. Details in

(s) At Level 2 NaN is the Not a Number datum, which is a member of every supported number
format. Nal is the Not an Interval datum, which is a member of every decorated interval type.
Details in

(AF) Other flavors may provide NaN and Nal. Details in

4.2.43. narrower. See wider.

4.2.44. natural domain. (AF) For an arithmetic expression f(zy,...,z,), the natural domain
is the set of © = (x1,...,x,) € R™, where the expression defines a value for the associated point
function f(z), see Clause [6]

4.2.45. no value. (AF) A mathematical (Level 1) operation evaluated at a point outside its
domain is said to have no value. Used instead of “undefined”, which can be ambiguous. E.g., in
this standard, real number division z/y has no value when y = 0. Details in
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4.2.46. non-arithmetic operation. (AF) An operation on intervals that is not an interval
version of a point function; includes intersection and convex hull of two intervals. Details in

4.2.47. number. (AF) Any member of the set R U {—00, 400} of extended reals: a finite
number if it belongs to R, else an infinite number. Details in

4.2.48. number format. See format.

4.2.49. operation. In a given flavor, synonymous with supported function.

4.2.50. point function. (AF) A mathematical (Level 1) function of real variables. Details in

4.2.51. primary version. (AF) A Level 1 version of a generic function, from which all other
versions are derived. Details in §6.1]

4.2.52. provided operation. (AF) In a given implementation of a flavor, an operation for
which the implementation provides at least one Level 2 version; details in

4.2.53. range. (AF) The range, Rge(f|s) of a function f over a set S is the set of values f(x)
at those points of S where f is defined. Details in

4.2.54. roundoff unit. (AF) (Also called machine epsilon, machine precision.) In a
number format F, particularly a floating-point format, the smallest positive real number u such
that 1 + u belongs to F.

4.2.55. string, text. (AF) A text string, or just string, is a finite character sequence be-
longing to some alphabet, see The term text is also used to mean strings generally; e.g., an
operation having “numeric or text input” means each input is a number or a string.

4.2.56. supported function. In a given flavor, a function for which the flavor defines the
primary version. Details in §6.1]

4.2.57. tightest. (AF) Smallest in the partial order of set containment, or in the “contains”
relation of a flavor. The tightest set (unique, if it exists) with a given property is contained in
every other set with that property.

Also denotes ones of the accuracy modes, see tightness.

4.2.58. tightness. (AF) The strongest accuracy mode (in (S) these are tightest, accurate,
valid) that a given operation, in a given type, achieves for some input box, or uniformly over some
set of inputs. Details in

4.2.59. type. (AF) (Or interval type.) One of the sets into which bare and decorated interval
datums are organized at Level 2, usually regarded as a finite set T of Level 1 intervals, (a bare
type) in the bare case; and of Level 1 decorated intervals together with the value Nal, (a decorated
type) in the decorated case, see Each bare type has a corresponding decorated type, and
vice versa.

(s) A type is provided if the implementation provides a representation of it, and supported
if also it has the properties specified in

(AF) If T is a type, a T-datum means a member of T. A T-interval for bare interval types
means the same as a T-datum, and for decorated types means a non-Nal member of T.

4.2.60. version. (AF) A version of an operation is any of the actual operations denoted by a
generic operation name. Details in

4.2.61. wider, narrower. (AF) An interval type T’ is wider than a type T, and T is narrower
than T’, if T is a subset of T when they are regarded as sets of Level 1 intervals, ignoring the type
tags and possible decorations, see §12.5.1] Wider means having more precision, cf. 754 Definition
2.1.36.
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Relationships between specification levels for interval arithmetic
for a given flavor § and a given finite-precision bare interval type T of §.

Number system used by flavor §.
Level 1 Set of mathematical §-intervals. Mathematical
Principles of how +, —, x, =+ and other interval model
arithmetic operations are extended to §-intervals.
4 T-interval hull identity map T
total, many-to-one @ total, one-to-one @
A finite subset T of the §-intervals—the . .
Level 2 T-interval datums—and operations on them. Discretization
representst
partial, many-to-one, onto @
Level 3 Representations of. T—int(?rval datums, Representation
e.g., by two floating-point datums.
encodes?T
partial, many-to-one, onto @
Level 4 Bit strings 0111000. .. Encoding

TABLE 5.1. Specification levels for interval arithmetic

5. Structure of the standard in levels

For each flavor, the standard is structured into four levels, matching those defined in the 754
standard (754-2008 Table 3.1). They are summarized in Table

Level 1, mathematics, defines the flavor’s underlying theory. The entities at this level are
mathematical intervals and operations on them. An implementation of the flavor shall implement
this theory. In addition to an ordinary (bare) interval, this level defines a decorated interval,
comprising a bare interval and a decoration. In all flavors, decorations implement the standard’s
way of handling exceptional conditions in interval operations.

Level 2, discretization, is the central part of the standard, approximating the mathematical
theory by an implementation-defined finite set of entities and operations. A level 2 entity is called
a datu

Interval datums are organized into finite sets called interval types. An interval datum is a
mathematical interval tagged by a symbol that indicates its type: an interval that “knows its
type”. The type abstracts a particular way of representing intervals (e.g., by storing their lower
and upper bounds as IEEE binary64 numbers). Most Level 2 arithmetic operations act on intervals
of a given type to produce an interval of the same type.

Level 3 is about representation of interval datums—usually but not necessarily in terms of
floating-point values. A level 3 entity is an interval object. Representations of decorations, hence
of decorated intervals, are also defined at this level.

Level 4 is about encoding of interval objects into bit strings.

The Level 3 and 4 requirements in this standard are few, and mainly concern mappings from
internal representations to external ones, such as interchange types.

The arrows in Table denote mappings between levels. The phrases in italics name these
mappings. Each phrase “total, many-to-one”, etc., labeled with a letter (a) to (d), is descriptive
of the mapping and is equivalent to the corresponding labeled fact below.

(a) Ignoring the type-tag, an interval datum is a mathematical interval.

(b) For each type T, each mathematical interval has a unique interval datum as its T-hull—a
minimal enclosing interval of that type. This is with respect to a meaning of “contain”. For
the set-based flavor this is normal set inclusion, but in other flavors,; e.g., Kaucher, might not
always mean the same as set inclusion.

(¢) Not every interval object necessarily represents an interval datum, but when it does, that
datum is unique. Each interval datum has at least one representation and might have more
than one.

IPlural “datums” in this standard, since “data” is often misleading.
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(d) Not every interval encoding necessarily encodes an interval object, but when it does, that
object is unique. Each interval object has at least one encoding and might have more than
one.

[Note. Iltems @ and @ are standard and necessary properties of representations. By contrast, the

properties (@) and @ of the maps from Level 1 to Level 2, and back, are fundamental design decisions

of the standard.]

6. Functions and expressions

6.1. Function definitions. In this document the terms function, map and mapping are
synonymous and have the usual mathematical meaning (see for general considerations) while
operation has a specialized meaning. The following summarizes usage.

1. A (partial) function from a set X to a set Y associates to each point x in some subset of X,
called the domain D = Dom f of f, a unique point f(z) in Y called the value of f at x. At
points outside D the function has no value. The notation f : X — Y means that f is a function
from X to Y. A total function is one for which D = X.

2. The range of f over a subset S of X is the set Rge(f|S) = { f(z) | z € SN Dom f }. Points
outside the domain are ignored—e.g., the range of the real square root function over [—4, 4] is
[0, 2].

Vector notation f(x) = f(x1,...,2,) may be used when X is a cartesian product X =
X1 x---x X, with elements = (21, ...,z,). The range may then be written Rge(f | S1,...,Sn)
when S =5 x--- xS, with §; C X for each j.

3. A point function is a mathematical (Level 1) real function of real variables, f : R™ — R™ for
some integers n > 0, m > 0.

It is a scalar function when m = 1, otherwise a vector-valued function. When not
otherwise specified, scalar is assumed. A function with n = 0 and m = 1—i.e.,, R® = R—is
a real constant. The unique such function with empty domain is by definition the Not a
Number constant, NaN.

4. A generic function (more precisely, a “generic name” for functions) is a name that denotes any
of several related functions called versions of the generic name. In each flavor a generic function
has a Level 1 primary version—which may be the same in all flavors, or flavor-defined—from
which all other versions are derived.

E.g., add or “+” denotes mathematical addition of reals (the primary version), or Level 1
interval addition in some flavor, or finite precision (Level 2) addition in some interval type.

5. For a given flavor, a generic function is supported, and is an operation, if the flavor specifies
its primary version; see The operations in Clause[Jare so called because they are supported
in all flavors.

6. For a given implementation of a flavor, an operation is provided if the implementation provides
one or more Level 2 versions of it; see §7.5.3] Since such a version must be derived from a primary
version, a function can only be provided if it is supported, i.e., if it is an operation.

7. An arithmetic operation is an operation whose primary version is a point function. This
point function shall have nonempty domain (so Level 1 NaN cannot be a arithmetic operation).
Any other operation is a non-arithmetic operation.

8. A constructor is a function that creates an interval from non-interval data (§9.4)).

6.2. Expression definitions. An expression is some symbolic form that can be used to
define a function—in general not a static object within program code, but derived dynamically
from a particular program execution. Expressions are central to interval computation, because
the Fundamental Theorem of Interval Arithmetic (FTIA) is about interpreting an expression in
different ways:

(i) as defining a Level 1 point function f;
(ii) as defining various (depending on the finite precision interval types used) interval functions
that give proven enclosures for the range of f over an input box x;
(iii) as defining corresponding decorated interval functions that can give a stronger conclusion:
e.g., in the set-based flavor, that f is everywhere defined, or everywhere continuous, on x—
enabling, say, an automatic check of the hypotheses of the Brouwer Fixed Point Theorem.
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input v_1 =1, Vo = T2
2

add Y1 = "o
vy =v1 +1 5 1

sart | vs = /2 v=vntls e
va = v_1/03 x5+ 1

div Us = U3 — U4

output y=wus

sub

Computational graph Code list Algebraic expression

(a) (b) ()

FIGURE 6.1. Essentially equivalent notations for an expression. Notes:

In (a), structure is shown by labeling nodes with operations only; the order of
arguments is shown by reading incoming edges left to right, e.g., the inputs to sub
are the results of the preceding sqrt and div, in that order. Similarly the input
nodes are x; and zo left to right.

Form (c) has redundancy in the sense of repeated subexpressions.

Constant 1 denotes the zero-argument constant function 1() wherever it occurs.

The meaning of (i) is flavor-independent; that of (ii) and (iii) is flavor-defined. The standard
specifies behavior, at the individual operation level, that enables such conclusions, whether or not
the notion “expression” exists in a programming language.

A formal expression defines a relation between certain mathematical variables—the inputs—
and others—the outputs—via the application of named operations. It is by definition an acyclic
(having an acyclic computational graph, see below) finite set of dependences between mathematical
variables, defined by equations

v=p(u,...,u), (1)

where v and the u; come from a set X of wvariable-symbols; ¢ comes from a set F of generic
operations called the library; and distinct equations have distinct v’s—the single assignment
property.

An arithmetic expression is a formal expression, all of whose operations are arithmetic
operations. Evaluating it using in turn the point version, an interval version and a decorated
interval version of each of its operations, with appropriate inputs, gives the interpretations (i) to
(iii) above, to which an FTIA appropriate to the flavor can be applied.

Non-arithmetic expressions (containing non-arithmetic operations) do not allow these three
interpretations, e.g., the expression mid(intersection(x,y)) in this standard can only be inter-
preted as a function with two interval inputs and a numeric output.

Three descriptions of an expression are outlined here. To apply the FTTA, it suffices to consider
expressions that are scalar, with a single output.

(a) Drawing an edge from each u; to v for each dependence-equation defines the computational
graph G—Figure a)—a directed graph over the node set X'. The dependences define an
expression if and only if G is acyclic. There is then a nonempty set of output nodes having no
outgoing edge, and a possibly empty set of input nodes having no incoming edge.

(b) Since G is acyclic, the equations can be ordered so that each one only depends on already
known (input, or previously computed) values, thus representing the expression as a code
list—Figure [6.1(b). In the notation of A. Griewank [3], the inputs are written vi_p,...,vg
where n > 0, conventionally given the aliases xi,...,x,, so x; is the same as v;_,. The
operations are

O = @r(Up1yee s Ung,), (r=1,...,m),
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where ¢, € F with arity (number of arguments) k,, and each u,; is a known v;, that is
j =j(r,i) < r. (Constants, which are operations of arity 0, may be referred to directly instead
of assigned to a v;.) Without loss, the outputs can be placed last so if there are p of them they
are Um—pt1, - - - , U, aliased to y1, . . ., yp, so that the code list defines a (vector) formal function
(Y1,---,yp) = f(z1,...,zp); in case p = 1, it is written as a scalar function y = f(z1,...,2z,).
Either m or n, but not both, can be zero. The case n = 0 and m > 1 gives a constant
expression. For the scalar case p =1, if m = 0 and n = 1 there are no operations, and y is the
same as 1, defining the identity function y = f(x1) = x1; whileforp=1, m=0and n > 1
there are n possibilities, the coordinate projections y = mj(x1,...,zn) =2; (j =1,...,n).

(¢) By allowing redundancy, an expression always can be converted to a normal (scalar) algebraic
expression—Figure c)—over the variable-set X’ and library F, defined recursively as follows:
— if x € X is a variable symbol, then x is an algebraic expression;

— if p € F is a function symbol of arity k and if e; is an expression for i = 1,...,k, then the
function symbol application @(eq, ..., ex) is an algebraic expression.

Multiple outputs may be represented by tuples of separate algebraic expressions, e.g., the vector

function f(0) = (cos(),sin(d)). Redundancy may occur because this form cannot refer to a

subexpression by name and must repeat it in full at each use, as with \/z3 + 1 in Figure c).

The three forms are semantically equivalent, both at Level 1 and at Level 2. Because of its simple
recursive definition, (c) is the form used in the FTIA proof in Annex [B]

When an expression is evaluated in interval mode, multiple instances of the same variable
can lead to excessive widening of the final result: e.g., evaluating x — x with an interval input =
gives, not [0, 0], but an interval twice the width of . The question, when it is valid to manipulate
expressions (e.g., to replace z—x by 0) is important for interval computation because of its potential
to tighten enclosures, but is outside the scope of this standard.

6.3. Function libraries. An implementation’s library for a flavor includes the following.

— The Level 1 library comprises the Level 1 operations, including those specified in Clause [9]
and possible flavor-defined operations. These are the primary versions defined in §7.4] and, for
arithmetic operations, their flavor-defined Level 1 bare and decorated interval versions.

— The Level 2 library comprises all Level 2 versions of the Level 1 operations using, e.g., different
bare or decorated interval types or different number formats as the implementation may provide.

For arithmetic operations there is a further conceptual grouping of operations into the point
library of primary versions at Level 1, and at Level 2 the bare interval library and the decorated
interval library, to reflect different ways in which an arithmetic expression can be evaluated.

In this standard each generic operation p(ug,...,ux), see eqn , is presented as having a
fixed number k of arguments, termed its arity. Also for each version of ¢ at both Level 1 and
Level 2, the datatype of each argument u;, namely the set from which values of this argument
are taken, is fixed.

At Level 1 the following datatypes are used by operations required in all flavors:

— interval, a generic term that maps to a Level 1 interval of a given flavor;

— decoration, a generic term that maps to a decoration of a given flavor;

— number, denoting a member of the reals R or extended reals R depending on the flavor;
— string, a character sequence on a language- or implementation-defined alphabet;

— boolean, one of false, true.

Integeris used to describe parameterized sets of operations (e.g., pown() or array length of reduction
operations), but is not considered a datatype in this standard. Other flavor-defined operations may
use other datatypes, e.g., the 16-valued state of the Allen extended interval comparisons in §10.6.4]
of the set-based flavor.

At Level 2, the decoration, string and boolean datatypes shall have the same meaning as a
Level 1; each instance of the interval and number datatypes maps to one of various implementation-
defined interval types and number formats, respectively.

Just as the standard is not concerned with the actual names or invocation methods, this con-
ceptual view of libraries is independent of how the operations are presented in an actual computing
environment: it could be via programming libraries, language primitives, infix operators, or other
means. Also an implementation might permit the arity of an operation, or the datatype of any of its
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arguments, to be variable—possibly determined at run time. An implementation shall document
how the formal operations are mapped to language entities.

6.4. The FTIA. The required arithmetic operations of Clause [g] are flavor-independent in
the sense that the point version is the same in all flavors. Hence the point function f(x) =
f(z1,...,x,), defined by an arithmetic expression made up of required operations, is the same
in all flavors; in particular f has a flavor-independent natural domain Dom(f) determined by its
constituent operations: the set of points z € R™ where f has a value in the sense that the whole
expression can be evaluated to give a real result.

[Example. Knowing the definitions of division x/y, addition x + y and square root \/z, including that
their domains are { (z,y) € R? | y # 0}, all of R?, and the interval 0 < x < 400, respectively, one may
deduce the natural domain of \/1 + 1/x is the union of intervals —oo < x < —1 and 0 < z < +00.]

Each flavor has a version of Moore’s fundamental theorem of interval arithmetic, FTIA: under
suitable conditions, the range of such an f over a box is contained in the result of interval-evaluating
the expression over the box. The details depend on the flavor’s underlying theory, including its
meaning of “contains”. The standard is constructed so that for any conforming implementation of
a conforming flavor, the flavor’s FTIA holds in finite precision, not just at Level 1.

In the set-based flavor, Moore’s theorem is as follows. The decoration system gives tools for
checking the conditions for the “defined” and “continuous” forms during evaluation of a function.

THEOREM 6.1 (Fundamental Theorem of Interval Arithmetic in set-based flavor). Let y =
f(x) be the result of interval-evaluation of f over a box x = (x1, ..., T, ) using any interval versions
of its component library functions. Then

(i) (“Basic” form of FTIA.) In all cases, y contains the range of f over x, that is, the set of
f(z) at points of T where it is defined:

y 2 Rge(f |z) ={ f(z) | © € 2 N Dom(f) }. (2)
(ii) (“Defined” form of FTIA.) If also each library operation in f is everywhere defined on its
inputs, while evaluating y, then f is everywhere defined on x, that is Dom(f) D .
(#ii) (“Continuous” form of FTIA.) If in addition to (i), each library operation in f is everywhere
continuous on its inputs, while evaluating y, then f is everywhere continuous on x.
() (“Undefined” form of FTIA.) If some library operation in f is nowhere defined on its inputs,
while evaluating y, then f is nowhere defined on x, that is Dom(f) Nz = (.

6.5. Related issues. When program code contains conditionals (including loops), the run
time data flow and hence the computed expression generally depends on the input data—for
instance, Example in where a function is defined piecewise. The user is responsible for
checking that a property such as global continuity holds as intended in such cases. The standard
provides no way to check this automatically.

Though the set operations intersection and convexHull are not point-operations and cannot
appear directly in an arithmetic expression, they are useful for efficiently implementing interval
extensions of functions defined piecewise, see the example mentioned in the last paragraph.

The standard requires that at Level 2, for all interval types, all operations and all inputs other
than Nal (if Nal is provided by the flavor), the interval part of a decorated interval operation equal
the corresponding bare interval operation. This ensures that converting bare interval program code
to use decorated intervals leaves the data flow entirely unchanged (provided no conditionals depend
on decoration values, and Nal does not occur)—hence the computed expression and the interval
part of its result are unchanged. If this were not so, there might in principle be an arbitrarily
large discrepancy between the bare and the decorated versions of a computation that contains
conditionals.

If a reproducible mode is supported, it should be supported in the same spirit as that of IEEE
754-2008: provided that certain programming restrictions (see item (7)) are adhered to, the
order of operations and the resulting values should be predictable based on the given input values.
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7. Flavors

7.1. Flavors overview. The standard permits different interval behaviors via the flavor con-
cept described in this clause. An interval model means a particular foundational approach to
interval arithmetic, in the sense of a Level 1 abstract datatype of entities called intervals and of
operations on them. A flavor is an interval model that conforms to the core specification described
below.

A provided flavor is a flavor that the implementation provides in finite precision, see

A standard flavor is one that has a specification in this standard, which extends the core
specification. The set-based flavor is currently the only standard flavor. The procedure for sub-
mitting a new flavor for inclusion is described in Annex [A]

An implementation shall provide at least one standard flavor. The implementation as a whole
is conforming if each standard flavor conforms to the specification of that flavor, and each non-
standard flavor conforms to the core specification.

Flavor is a property of program execution context, not of an individual interval. Therefore,
just one flavor shall be in force at any point of execution. It is recommended that at the language
level, the flavor should be constant over a procedure/function or a compilation unit.

An implementation with more than one flavor should provide means for conversion between
suitably chosen pairs of interval types of different flavors. How this is provided—e.g., whether it is
an import operation to, or an export operation from, the current flavor—is implementation-defined.

For brevity, phrases such as “A flavor shall provide, or document, a feature” mean that an
implementation of that flavor shall provide the feature, or its documentation describe it.

The core specification of a flavor is summarized in the list below, and detailed in the following
subclauses. The entities in the list are part of the Level 1 mathematical theory unless said otherwise.

(i) There is a flavor-independent set of common intervals, defined in

(ii) There is a flavor-independent set of named common operations, defined in Clause @

(iii) There is a flavor-independent set of common evaluations of common operations, defined in
They have common intervals as input and, in the sense of give the same result in
any flavor.

(iv) There is a flavor-defined set of intervals of the flavor that, in the sense defined in §7.2)
contains the common intervals as a subset. There is a flavor-defined finite set of decorations
as described in Clause [8} in particular it includes the com decoration. A decorated interval is
a pair (interval, decoration).

(v) There is a flavor-defined partial order called contains for the intervals, see which for
common intervals coincides with normal set containment.

(vi) A flavor shall define the Level 1 bare and decorated interval version of each of its arithmetic
operations, and the Level 1 version (primary version) of each other operation, see

(vil) At Level 2, intervals are organized into flavor-defined types. An (interval) type is essentially
a finite set of Level 1 intervals; see

(viii) The relation between a Level 1 operation and a version of it at Level 2, see is sum-
marized as follows. The latter evaluates the Level 1 operation on the Level 1 values denoted
by its inputs. If (at those inputs) the operation has no value, an exception is signaled, or
some default value returned, or both, in a flavor-defined way. Otherwise the returned value
is converted to a Level 2 result of an appropriate Level 2 datatype. If the result is of interval
type, overflow may occur in some flavors, causing an exception to be signaled.

7.2. Flavor basic properties. A flavor is described at Level 1 by a set § of entities, the
intervals of the flavor, a set of decorations, and a set of generic operations that includes the
required operations of Clause [0} The symbol § is also used to refer to the flavor as a whole.

The (flavor-independent) common intervals are defined to be the set IR of nonempty closed
bounded real intervals used in classical Moore arithmetic [6].

The relation of § to the common intervals is described by a one-to-one embedding map
f: IR — §F. Usually, f(x) is abbreviated to fa. The set of all fx for & € IR forms the common
intervals of §. Usually x is identified with fz and IR is treated as a subset of §, for every flavor.
To emphasize that this has been done, a statement may be said to hold modulo the embedding
map.

The set of decorations of § is finite, and includes the com decoration; see Clause
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[Examples.

— A Kaucher interval is defined to be a pair (a,b) of real numbers—equivalently, a point in the plane
R2—which for a < b is “proper” and identified with the normal real interval [a,b], and for a > b is
“improper”. Thus the embedding map is  — (inf x,sup x) for x € IR.

— For the set-based flavor, every common interval is actually an interval of that flavor (IR is a subset
of IR ), so the embedding is the identity map = + x for x € IR.

]

For each flavor §, a relation O, called contains or encloses, shall be defined between intervals.
It shall be a partial order: * 2 y and y O z imply * O 2z, and = y if and only if both DO y
and y O « hold. For common intervals it shall have the normal meaning modulo the embedding
map: if z,y € IR C § then « O y in § if and only if O y in the sense of set containment.
[Example. In the Kaucher flavor, (a,b) is defined to contain (a’,b") if and only if a < a’ and b > V';
e.g., [1,2) 2 [2,1] is true. For common (proper) intervals, this coincides with normal containment.

7.3. Common evaluations.

For each Level 1 version of an operation ¢ for which at least one input or output is of bare
interval datatype, a set of k-tuples @ = (@1, ..., x) is specified for which p(x1,...,xx) shall have
the same Level 1 value y in all flavors. Then x is a common input, and y is the common value
of ¢ at . The (k + 1)-tuple (x1,...,x; y) is a common evaluation of ¢, alternatively written
y = p(x1,...,2). It may be called a common evaluation instance to emphasize that a specific
input tuple is involved.

A tuple = (x1,...,x;) whose components x; are common intervals—mnonempty closed
bounded intervals in R—can be regarded as a nonempty closed bounded box in R*. A tuple
whose x; are common intervals of some flavor § can be identified with such a box, modulo the
embedding map.

There are two cases:

(a) If ¢ is one of the arithmetic operations in §9.1] its point version is a real function y =

o(x1,...,xx) of k> 0 real Variablesﬂ The common inputs are those boxes = (@1, ..., k)
such that each «; is common and the point version of ¢ is defined and continuous at each point
of . The common value y is the range

y =Rge(p|x) ={po(x1,...;2,) | x; € @; for each i},  (here ¢ is the point version).  (3)

By theorems of real analysis, y is nonempty, closed, bounded and connected, so it is a common

interval.

(b) If ¢ is one of the non-arithmetic operations in §9.2| to it has a direct definition unrelated
to a point function. Its common inputs comprise those (1, ...,x) such that each x; that is
of interval datatype is a common interval, and y = ¢(x1,...,xy) is defined and, if of interval

datatype, is a common interval. The common value is y.

7.4. Primary versions and Level 1 interval versions.

Let § be a flavor. With terms as defined in §6.1} a primary version shall be fully specified,
which means that the following are defined, whether in Clause [9] or by the flavor: the arity & of
the function ¢, namely the the number of arguments; the Level 1 datatype of each argument;
the domain, namely the set of input tuples (x1,...,xx), with z; of the specified datatypes, at
which the operation has a value; and its value y = ¢(z1,...,zx) at each such point. Equivalently,
the flavor defines the primary version’s function-graph: the set of all (x1,...,x,y) such that
Yy= Sﬁ(xlw-- 51:16)'

Full specification makes it possible to test objectively whether, in a flavor §, an implemented
Level 2 version of an operation encloses the Level 1 result (if an interval), approximates it (if
numeric) or equals it (if boolean), whenever the Level 1 result is defined in §.

The possible cases for a generic operation ¢ are listed in the following subclauses.

2pown(az,p) = P is treated as a family of functions ¢, (x) of real x, parameterized by the integer p. Similarly
for any function having some non-real arguments.
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7.4.1. Arithmetic operations. Here the primary version is a point function, whether flavor-
defined, or required in all flavors according to Clause [9

The flavor shall define a mapping that takes an arbitrary point function y = ¢(x1,...,2%) to
a function y = ¢(x1,...,x), called the Level 1 (bare) interval version of ¢ in §, for which
the x; and y are Level 1 bare intervals of §. Its evaluations shall include the common evaluations
of modulo the embedding map.

The flavor shall also define a mapping that takes such a point function to a function ¥ =
©(X1,...,X}), called the Level 1 decorated interval version of ¢ in §, for which the X; and
Y are Level 1 decorated intervals of §. If y = p(x1,...,xx) is a common evaluation of the bare
interval version, then y.., = ©((1)con, - - -, (Tk)con) shall be an evaluation of the decorated interval
$-version. It is termed a Level 1 decorated common evaluation of ¢, and ((1)com, - - - 5 (€& )con)
is a Level 1 decorated common input. These mappings from point function to Level 1 bare and
decorated interval version shall ensure the validity of suitable flavor-defined Fundamental Theorems
of interval arithmetic, and of decorated interval arithmetic, respectively.

The Level 1 interval versions shall be fully specified but may have no value for some combina-

tions of input intervals.
[Example. In the set-based flavor, the Level 1 bare interval version of ¢ is the natural interval extension
of the point function, and is defined for all combinations of input intervals. However in classical Moore
arithmetic and in Kaucher arithmetic, the Level 1 interval version of division x/y, for instance, is not
defined when 0 € y.]

7.4.2. Nonarithmetic operations required in all flavors. For a nonarithmetic operation required

in all flavors according to Clause [9] the primary version in § shall be a Level 1 function for which
each interval input or output becomes an interval of §, and whose evaluations include the common
evaluations specified in Clause [9) modulo the embedding map.
[Example. The interval constructors numsToInterval and textToInterval are required in all flavors.
A flavor will in general extend these beyond the common evaluations. E.g., in the set-based flavor
numsToInterval(l,u) constructs unbounded intervals by allowing non-common inputs with | = —oo
and/or u = 400, in a Kaucher flavor it might construct improper intervals by allowing | > u. |

7.4.3. Flavor-defined nonarithmetic operations. Besides the operations required in all flavors,
a flavor may define flavor-specific operations that are required in each implementation of that
flavor. Each such operation shall be fully specified at Level 1.
[Examples.

— The set-based flavor defines reduction operations, one of which is the dot-product. The primary
version of this is s = dot(z,y) = Y., x;y; where x,y are two real vectors of length n. Though
this may be regarded as a point function (or a family of them, parameterized by n), it is not an
arithmetic operation because it is not intended to have an interval version.

— A flavor might define a decorated interval version of a non-arithmetic operation.

— A flavor might define an operation on decorations, adapted to its decoration model.

— A flavor might provide other constructors besides the required ones, or give extra inputs to the
required constructors. E.g., in a flavor that provides open and half-open as well as closed intervals,
optional extra input(s) to numsToInterval might specify which bounds are open.

]

[Note. Apart from the decorated common evaluations the relation between the bare and decorated
interval versions of an operation ¢ is flavor-defined, but barring special cases such as “Not an Interval”
input, the interval part of the latter should equal the former. That is, if ¢ is defined at decorated
interval inputs (X1, ..., Xy), with decorated interval value Y, and if the interval parts of X; and Y
are x; and y, then p(x1,...,xy) should in most cases be defined and have value y.]

7.5. The relation of Level 1 to Level 2.
Let § be a flavor.

7.5.1. Types. At Level 2, bare intervals of § shall be organized into finite sets called (bare
interval) types. A type is an abstraction of a particular way to represent intervals. What types
are provided by an implementation is both flavor-defined and language- or implementation-defined.

There shall be a one-one correspondence between bare interval types and decorated interval
types (bare types and decorated types for short). An element of a decorated type is a pair (x, dz)
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where x belongs to the corresponding bare type, and dx belongs to the finite set of decorations of
the flavor.

An implementation shall ensure that the decoration com is applied only to common intervals;
a common interval may however have a decoration other than com.

Level 2 entities are called datums. A type may contain some exceptional datums, e.g., a “Not
an Interval” datum, besides those that denote intervals. A T-datum means a general member of
a type T; a T-interval means a T-datum that denotes an interval. If the type has no exceptional
datums, these terms are synonymous.

Each Level 2 bare interval shall denote a unique Level 1 interval @ of § and is normally regarded
as being that interval. However § may formally define it as a pair (x,¢) where ¢ (the type name)
is a symbol that uniquely identifies the type, thus making datums of different types different even
if they denote the same Level 1 interval.

Hence, each Level 2 decorated interval denotes a unique Level 1 decorated interval of § but
may formally be a triple (&, dz,t) of interval, decoration and type name.

7.5.2. Hull. Each bare type T has a T-hull operation. At Level 1 it shall be defined by an
algorithm that maps an arbitrary interval & of § to a minimal T-interval y such that y O @ in the
flavor’s “contains” order, if such a y exists, and otherwise is undefined. Minimal means that if z
is another T-interval and y O z O « then y = z.

At Level 2, an implementation should provide the T-hull for each supported bare type T, as
an operation convertType that maps an arbitrary interval of any other supported bare type of §
to its T-hull if this exists, and signals the flavor-independent Intvl0verflow exception otherwise.
Its action on non-interval datums is flavor-defined.

7.5.3. Lewvel 2 operations. For each bare or decorated interval version of an arithmetic operation
in §9.1] and for each operation in §9.2] to §9.6] a T-version of ¢ shall be provided for each bare
interval type T of the implementation of §. For flavor-defined operations the flavor shall specify
whether an implementation shall or should provide a T-version.

When passing from a Level 1 operation to a T-version—whether required in all flavors or
flavor-specific:

— Inputs or output of bare interval datatype change to type T.

— Those of decorated interval datatype change to the decorated type of T.

— Those of real datatype change to a type-dependent Level 2 number format F. The flavor should
make recommendations or requirements on the relation between I and T.

In the description below, sometimes a flavor-defined Level 2 value may be returned in cases

where no Level 1 value exists, instead of or alongside signaling an exception.
[Example. For the mid() function at Level 2 in the set-based flavor, returning the midpoint of Empty
as NaN, and of Entire as 0, illustrate flavor-defined values. Both values are undefined at Level 1. It
was considered that no numeric value of mid(()) makes sense, but that some algorithms are simplified
by returning a default value O for mid(Entire).]

For some operations and inputs the implementation might be unable to effectively compute
some value or determine whether some statement is true or false—e.g., owing to constraints on
time, space or algorithmic complexity. Below, the term is found means that the implementation
is able to compute such a value or determine such a fact; is not found means the opposite.
[Examples.

— A constructor in the set-based flavor needs to ensure I < u when forming an interval [l,u]. This
may be hard to check, for some implementations and types.

— In a flavor where it is a fatal error to evaluate an arithmetic operation outside its domain, it
may be hard to decide if the required operation ¢(x) = tan(z) is defined on = [z,T] when x,T are
large and differ by less than 7. Let format F be IEEE754 binary64 and T the inf-sup type based on
F. The integer a = 214112296674652 differs from 1363081215701177/2 by less than 2.6e-16; and
a —1,a,a + 1 are exact F-numbers. One of the T-intervals [a — 1,a] and [a,a + 1] (but not both)
contains a singularity of p; but which? |

Evaluation of a T-version @7 of an operation ¢ shall be as if the following is done. Let
X = (Xy,...,Xk) be the tuple of Level 1 values denoted by the inputs to 7.
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1. If the Level 1 operation is found to be undefined at X then ot signals the flavor-independent
UndefinedOperation exception, or returns a flavor-defined value, or both. This includes the
case where some input has no Level 1 value, e.g., a numeric input is NaN.

2. If it is not found whether the Level 1 operation is defined at X then o signals the flavor-
independent PossiblyUndefinedOperation exception, or returns a flavor-defined value, or
both.

3. Otherwise, it is found that the Level 1 value Y = ¢(X7,..., X}) is defined in F.

(a) If Y is a bare interval y there are two cases.

— If a T-interval z containing y is found (in particular if Entire exists in § and is a T-
interval), then ¢r returns such a z.

— Otherwise, ot signals the flavor-independent Intvl0verflow exception and the returned
result, if any, is flavor-defined.

(b) If Y is a decorated interval y,, there are three cases.

— If ¢ is an arithmetic operation, and (Xi,..., X)) is a decorated common input (this
implies dy = com, see , and a common T-interval z containing y is found, then @1
returns such a z with the decoration com.

— Otherwise, if a T-interval z containing vy is found (in particular if Entire exists in § and
is a T-interval), then ¢t returns such a z with a flavor-defined decoration.

— Otherwise, no such z is found. Then @1 signals the Intvl0verflow exception and the
returned result, if any, is flavor-defined.

(¢) If Y is numeric, @7 returns a value of an appropriate number format, approximating Y in

a type- and operation-dependent way.

(d) If Y is boolean, ¢y returns Y.

7.5.4. Measures of accuracy. Two accuracy modes for an interval-valued operation are de-
fined for all flavors. An accuracy mode is in the first instance a property of an individual evaluation
of an operation ¢, over an input box @, returning a result of type T. If the evaluation does not
have an interval value at Level 1, its accuracy mode is undefined. The basic property of enclosure
in the sense of the flavor, defined in §7.5.3] and required for conformance, is called valid accuracy
mode. The property that the result equals the T-hull of the Level 1 value is called tightest accuracy
mode.

A flavor may define other accuracy modes, and may make requirements on the accuracy
achieved by an implementation. To simplify the user interface, modes should be linearly ordered
by strength, with tightest the strongest and valid the weakest, where mode M is stronger than
mode M’ if M implies M’.

7.6. Flavors and the Fundamental Theorem (informative). For a common evaluation
of an arithmetic expression, each library operation is, modulo the embedding map, defined and
continuous on its inputs so that it satisfies the conditions of the strongest, “continuous” form of
the FTIA in Theorem At Level 1, the range enclosure obtained by a common evaluation is
the same, independent of flavor.

It is possible in principle for an implementation to make this true also at Level 2 by providing
shared number formats and interval types that represent the same sets of reals or intervals in each
flavor; and library operations on these types and formats that have identical numerical behavior
in each flavor. For example, both set-based and Kaucher flavors might use intervals stored as
two IEEET754 binary64 numbers representing the lower and upper bounds, and might ensure that
operations, when applied to the intervals recognized by both flavors, behave identically. Such
shared behavior might be useful for testing correctness of an implementation.

Beyond common evaluations, versions of the FTTA in different flavors can be strictly incompa-
rable. For example, the set-based FTIA handles unbounded intervals, which the classical Kaucher
flavor does not; conversely, Kaucher intervals have an extended FTIA applicable to reverse-bound
intervals, which has no simple interpretation in the set-based flavor.

8. Decoration system

8.1. Decorations overview. A decoration is information attached to an interval; the com-
bination is called a decorated interval. Interval calculation has two main objectives:
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— obtaining correct range enclosures for real-valued functions of real variables;
— verifying the assumptions of existence, uniqueness, or nonexistence theorems.

Traditional interval analysis targets the first objective; the decoration system, as defined in this
standard, targets the second.

A decoration primarily describes a property, mot of the interval it is attached to, but of the
function defined by some code that produced the interval by evaluating over some input box.

The function f is assumed to be represented by an expression in the sense of Clause [6] For
instance, if a section of code defines the expression y/y2 — 1+xy, then decorated-interval evaluation
of this code with suitably initialized input intervals x,y gives information about the definedness,
continuity, etc. of the point function f(z,y) = \/y2 — 1 + xy over the box (x,y) in the plane.

The decoration system is designed in a way that naive users of interval arithmetic do not notice
anything about decorations, unless they inquire explicitly about their values. For example, in the
set-based flavor, they only need

— call the newDec operation on the inputs of any function evaluation used to invoke an existence
theorem,

— explicitly convert relevant floating-point constants (but not integer parameters such as the p in
pown(z,p) = zP) to intervals,

and have the full rigor of interval calculations available. A smart implementation might even relieve

users from these tasks. Expert users can inspect, set and modify decorations to improve code

efficiency, but are responsible for checking that computations done in this way remain rigorously

valid.

Especially in the set-based flavor, decorations are based on the desire that, from an interval
evaluation of a real function f on a box @, one should get not only a range enclosure f(x) but also
a guarantee that the pair (f,«) has certain important properties, such as f(z) being defined for
all x € x, f restricted to & being continuous, etc. This goal is achieved, in parts of a program that
require it, by performing decorated interval evaluation, whose semantics is summarized as follows:

Each intermediate step of the original computation depends on some or all of the inputs, so
it can be viewed as an intermediate function of these inputs. The result interval obtained on each
intermediate step is an enclosure for the range of the corresponding intermediate function. The
decoration attached to this intermediate interval reflects the available knowledge about whether this
intermediate function is guaranteed to be everywhere defined, continuous, bounded, etc., on the
given inputs.

In some flavors, certain interval operations ignore decorations, i.e., give undecorated interval
output. Users are responsible for the appropriate propagation of decorations by these operations.

This standard’s decoration system—in contrast with 754’s way of reporting on the outcome
of an operation—has no status flags. It provides a fully local handling of exceptional conditions
in interval calculations—important in a concurrent computing environment. A general aim, as
in 754’s use of NaN and flags, is not to interrupt the flow of computation: rather, to collate
information while evaluating f, that can be inspected afterwards.

The following language- or implementation-defined features may be provided: (i) status flags
that are raised in the event of certain decoration values being produced by an operation; (ii) means
for the user to specify that such an event signals an exception, and to invoke a system- or user-
defined handler as a result. [Example. The user might be able to specify execution be terminated if
an arithmetic operation is evaluated on a box that is not wholly inside its domain—an interval version
of 754’s “invalid operation” exception.]

8.2. Decoration definition and propagation. Each flavor shall document its set of pro-
vided decorations and their mathematical definitions. These are flavor-defined, except for the
decoration com, see

The implementation makes the decoration system of each flavor available to the user via
decorated interval extensions of relevant library operations. Such an operation , with interval
inputs x1,...,x; carrying decorations dx1,...,dry, shall compute the same interval output y as
the corresponding bare interval extension of ¢—hence, dependent on the a; but not on the dx;. It
shall compute a local decoration d, dependent on the x; and possibly on y, but not on the dz;. It
shall combine d with the dz; by a flavor-defined propagation rule to give an output decoration dy,
and return y decorated by dy.
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The local decoration d might convey purely Level 1 information—e.g., that ¢ is everywhere con-
tinuous on the box & = (@1, ..., xk). It might convey Level 2 information related to the particular
finite-precision interval types being used—e.g., that y, though mathematically a bounded interval,
became unbounded by overflow. For diagnostic use it might convey Level 3 or 4 information, e.g.,
how an interval is represented, or how memory is used.

If f is an expression, decorated interval evaluation of an expression means evaluation of f
with decorated interval inputs and using decorated interval extensions of the expression’s library
operations. Those inputs generally need to be given initial decorations that lead to the most
informative output-decoration. A flavor should provide a function that gives this initial decoration
to a bare interval.

It is the responsibility of each flavor to document the meaning of its decorations and the correct
use of these decorations within programs.

8.3. Recognizing common evaluation. A flavor may provide the decoration com with the
following propagation rule for library arithmetic operations. In an implementation with more than
one flavor, each flavor shall do so.

Here ¢ denotes a Level 2 version of a point library arithmetic operation, see

If each input to ¢, and the result, is common, and if each input is decorated
com, then the result shall be decorated com.

[Note. com is the only decoration that shall have the same meaning in all flavors.

Informally, it records that the individual operation p took bounded nonempty input intervals and
produced a bounded (necessarily nonempty) output interval. This can be interpreted as “overflow did
not occur”. The propagation rule ensures that if the initial inputs to an arithmetic expression f are

common, and are initially decorated com, then the final result y = f(x1,...,xy) is decorated com if
and only if the evaluation of the whole expression was common as defined in §7.5.3]
[Examples. Reasons why an individual evaluation of ¢ with common inputs @ = (x1,...,x) might

not return com include the following.

— Outside domain: The implementation finds ¢ is not defined and continuous everywhere on x. Ex-
amples: +/[—4,4], sign([0, 2]).

— Overflow: The Level 1 result is too large to be represented. Example: Consider an interval type T
whose intervals are represented by their lower and upper bounds in some floating-point format, let
REALMAX be the largest finite number in that format, and & be the common T-datum [0, REALMAX].
Then x + x cannot be enclosed in a common T-datum.

— Cost: It is too expensive to determine whether the result can be represented. A possible example is
tan([a, b]) where [a,b] is of a high-precision interval type, and one of its bounds happens to be very
close to a singularity of tan(x).

9. Operations required in all flavors

This clause defines the required library arithmetic and non-arithmetic operations, see of
the standard. An implementation shall provide each required operation in each provided flavor.

For each arithmetic operation, this clause gives the mathematical formula for the point func-
tion, its domain of definition, and the set where it is continuous if different from the domain. The
common evaluations of these operations are defined by this information according to case @ in
and are not described for each individual operation.

For each non-arithmetic operation, the common evaluations are described explicitly.

The behavior of each operation outside the set of common evaluations is flavor-defined, subject
to the general flavor requirements in

9.1. Arithmetic operations.

Table [9.1| on page [23|lists required arithmetic operations, including those normally written in
function notation f(z,y,...) and those normally written in unary or binary operator notation, ex
or rey.

[Note. The list includes: all general-computational operations in 754 §5.4 except convertFromInt;

and some recommended functions in 754 §9.2.]
Notes to Table[9.1]
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TABLE 9.1. Required forward elementary functions.
Each one is continuous at each point of its domain, except where stated in the

Notes.

bound, e.g., (—m, 7] denotes {z e R | -7 < x <7 }.

Square and round brackets are used to include or exclude an interval

Name Definition  Point function domain Point function range Notes
Basic operations
neg(x) -z R R
add(z,y) T +y R? R
sub(z,y) x—y R? R
mul(z, y) Ty R? R
div(z, y) z/y R?\ {y = 0} R el
recip(z) 1/z R\ {0} R\ {0}
sqr(z) x? R [0, 00)
sqrt(z) N3 [0, ) [0, c0)
fma(z, y, 2) (xxy)+2z R3 R
Power functions _
Rif p >0 odd
. [0,00) if p > 0 even
pown(zx, p) P, pel {E\?ﬁio <0 {1} ifp=0 b
p R\{0} if p < 0 odd
(0,00) if p < 0 even
pow(z,y) il {z>0} U {x=0,y>0}  [0,00) a
exp,exp2,expl0(x) b* R (0, 0) d
log,log2,log10(x) logy (0, 0) R d
Trigonometric/hyperbolic functions
sin(x) R [—1,1]
cos(x) R [—1,1]
tan(x R\{(k + 3)m|k € Z} R
asin(z) [-1,1] [—7/2,7/2] o
acos(z) —1,1] [0, 7]
atan(z) R (—=m/2,7/2)
atan2(y, x) R? \ {{0,0)} (—m, 7] @7 @
sinh(z) R R
cosh(x) R [1,00)
tanh(x) R (—1,1)
asinh(x) R R
acosh(z) [1,00) [0, 00)
atanh(z) (-1,1) R
Integer functions
sign(z) R {-1,0,1}
ceil(z) R Z
floor(x) R Z
trunc(x) R Z
roundTiesToEven(z) R Z
roundTiesToAway(x) R Z
Absmaz functions
abs(x) || R [0, 00)
min(z, y) R2 R
max(z,y) R? R k

a. In describing the domain, notation such as {y = 0} is short for { (z,y) € R* |y =0}, etc.
b. Regarded as a family of functions of one real variable x, parameterized by the integer argument p.
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c. Defined as e?™® for real > 0 and all real y, and 0 for z = 0 and y > 0, else has no value. It is
continuous at each point of its domain, including the positive y axis which is on the boundary of the
domain.

d. b=¢,2 or 10, respectively.

e. The ranges shown are the mathematical range of the point function. To ensure containment, an interval
result may include values outside the mathematical range.

f. atan2(y,z) is the principal value of the argument (polar angle) of (z,y) in the plane. It is discontinuous
on the half-line y = 0,z < 0 contained within its domain.

g. To avoid confusion with notation for open intervals, in this table coordinates in R? are delimited by
angle brackets ( ).

h. sign(z)is —1if 2 < 0; 0if x = 0; and 1 if x > 0. It is discontinuous at 0 in its domain.

i. ceil(xw) is the smallest integer > z. floor(zx) is the largest integer < x. trunc(z) is the nearest integer
to z in the direction of zero. ceil and floor are discontinuous at each integer. trunc is discontinuous
at each nonzero integer. (As defined in the C standard §7.12.9.)

j. roundTiesToEven(z),roundTiesToAway(z) are the nearest integer to z, with ties rounded to the even
integer or away from zero, respectively. They are discontinuous at each x = n+% where n is an integer.
(As defined in the C standard §7.12.9.)

k. Smallest, or largest, of its real arguments.

9.2. Cancellative addition and subtraction.

For common intervals « = [z, 7], y = [y, Y], the operation cancelMinus(x,y) is defined if and
only if the width of @ is not less than that of y, i.e., Z—z > 7 —y, and is then the unique interval z
such that y+ z = @, with formula z = [z — y, T —7]. The operation cancelPlus(x,y) is equivalent

to cancelMinus(x, —y).

9.3. Set operations.
For common intervals = [z,7], y = [y, 7]

— intersection(x,y) is the intersection Ny if this is nonempty, with formula [max(z,y), min(z, 7).
If the intersection is empty, no common value is defined.
— convexHull(x,y) is the tightest interval containing « and y, with formula [min(z, y), max(z, 7)].

9.4. Constructors. An interval constructor by definition is an operation that creates a bare
or decorated interval from non-interval data.
A flavor shall provide means to construct common intervals as follows.

— The operation numsToInterval(l,u), takes real values [ and u. If the condition ! < w holds, its
value is the common bare interval [l,u] = {2z € R |l <z <wu}. Otherwise, it has no common
value.

— The operation textToInterval(s) takes a text string s. If s is a valid interval literal with
decorated value Zco in the set-based flavor, see §10.5.1] [I2.11] its value is the common bare
interval . Otherwise, it has no common value.

Each bare interval constructor shall have a corresponding decorated constructor that provides a
decoration appropriate to the flavor. If the bare interval constructor has a bare common value
x, the decorated constructor has a decorated common value . .,. Otherwise, it has no common
value.

9.5. Numeric functions of intervals.
The operations in Table are defined for all common intervals, with the formula shown.

9.6. Boolean functions of intervals.
The comparison relations in Table shall be provided, whose value is a boolean (1 = true,
0 = false) result.

9.7. Operations on/with decorations. The function newDec initializes a bare interval:
newDec(x) = x4

where d is a decoration, dependent on x and the flavor, such that the result is suitable input for
decorated-interval evaluation of an expression in that flavor.

For a decorated interval @g4,, the operations intervalPart(x,,) and decorationPart(x,,)
shall be provided, with value « and dx, respectively.
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TABLE 9.2. Required numeric functions of intervals.

Name Definition

inf(x) |z
sup(z) | T
mid(x) | (z+7)/2

rad(z) | (T —x)/2
mag(x) | sup{|z| |z € 2} = max(|z/, [7])
min(|z|, |Z|) if 2, T have the same sign

mig(z) | inf{|z||zcx} = { 0 otherwise

TABLE 9.3. Comparisons for intervals @ and b. Notation V, means “for all a in
a”, and so on. Column 4 gives formulae when a=[a, @] and b=[b, b] are common.

Name ‘ Symbol ‘ Defining predicate ‘ Common a, b ‘ Description
equal(a,b) | a=b |VoTha=bAVydeb=a|a=bANa=0b|aequalsbh
subset(a,b) | aCbd Vedpba=>b b<aAa<b| aisasubset of b

interior(a, b) aGb |VeBa<bAVeTb<a|b<aAa<b| aisinterior to b
disjoint(a,b) | afrib VoVoa #Db @<bVb<a| aandb are disjoint
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CHAPTER 2

Set-Based Intervals

This Chapter contains the standard for the set-based interval flavor.

10. Level 1 description

In this clause, subclauses §10.1]to §10.4]describe the theory of mathematical intervals and inter-
val functions that underlies this flavor. The relation between expressions and the point or interval
functions that they define is specified, since it is central to the Fundamental Theorem of Interval
Arithmetic. Subclauses list the required and recommended arithmetic operations with
their mathematical specifications.

10.1. Non-interval Level 1 entities. In addition to intervals, the required operations of
this flavor handle entities of the following kinds, as inputs or outputs.

— The set R = R U {—o0, +o0} of extended reals. Following the terminology of 754 (e.g., 754
§2.1.25), any member of R is called a number: it is a finite number if it belongs to R, else an
infinite number.

An interval’s members are finite numbers, but its bounds can be infinite. Finite or infinite
numbers can be inputs to interval constructors, as well as outputs from operations, e.g., the
interval width operation.

— The set of (text) strings, namely finite sequences of characters chosen from some alphabet.
Since Level 1 is primarily for human communication, there are no Level 1 restrictions on the
alphabet used. Strings may be inputs to interval constructors, as well as inputs or outputs of
read/write operations.

— The boolean values false, true.

— The set of decorations defined in

10.2. Intervals. The set of mathematical intervals provided by this flavor is denoted IR. It
conmprises those subsets « of the real line R that are closed and connected in the topological sense:
that is, the empty set (denoted # or Empty) together with all the nonempty intervals, denoted
[z, T], defined by

[Q,T]Z{$ER|£S$SE}, (4)

where z = inf  and T = sup « are extended-real numbers satisfying z < T, x < +00 and T > —o0.
One calls x the lower bound and T the upper bound of the interval. Together they are its

bounds. Conventionally () has bounds inf (} = +oo, sup @ = —co.

[Notes.

— The definition implies —0o and +oo can be bounds of an interval, but are never members of it. In
particular, @ defines [—00, +o0] to be the set of all real numbers satisfying —oo < x < 400, which
is the whole real line R—not the whole extended real line R.

— Mathematical literature generally uses a round bracket, or reversed square bracket, to show that a
bound is excluded from an interval, e.g., (a,b] or ]a,b] to denote {z | a <z <b}. Where it is
convenient to use this notation, it is pointed out, e.g., in the tables of function domains and ranges
in {103, (10

— The set of intervals IR could be described more concisely as comprising all sets {z € R |z <z <7}
for arbitrary extended-real x, T. However, this obtains Empty in many ways, as [z, ] for any bounds
satisfying x > T, and also as [—oo, —00] or [+00, +o0]. The description @) was preferred as it makes
a one-to-one mapping between valid pairs x,T of bounds and the nonempty intervals they specify.
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]

A box or interval vector is an n-tuple (x1, ..., x,) whose components x; are intervals, that is
a member of IR . Usually « is identified with the cartesian product @ X...x x,, of its components,
a subset of R"; however, the correspondence is one-to-one only when all the x; are nonempty.

In particular x € x, for x € R™, means by definition z; € x; for all i = 1,...,n; and x is
empty if and only if any of its components x; is empty.

10.3. Hull. The (interval) hull of an arbitrary subset s of R™, written hull(s), is the tightest
member of IR" that contains s. (The tightest set with a given property is the intersection of all
sets having that property, provided the intersection itself has this property.)

10.4. Functions and expressions. The terms function, domain, range, point function, sup-
ported, operation, provided, arithmetic operation have the meanings defined in and expression
has the meaning in

Subclause [7-4] requires each flavor to define the Level 1 bare interval version and decorated
interval version of any point function. In this flavor, the former is the natural interval extension
defined here.

Given an n-variable scalar point function f, an interval extension of f is a (total) mapping
f from n-dimensional boxes to intervals, that is f : IR — IR, such that f(z) € f(x) whenever
x € ¢ and f(x) is defined, equivalently

f(x) 2 Rege(f|z)
for any box x € R", regarded as a subset of R". The natural interval extension of f is the
mapping f defined by
f(z) = hull(Rge(f | z)).
Equivalently, using multiple-argument notation for f, an interval extension satisfies

f(mlv"'amn) :_) Rge(f‘xl,“wmn)a
and the natural interval extension is defined by

f(x1,...,x,) = hull(Rge(f |x1,...,2n))

for any intervals xq,...,®,.

In some contexts, it is useful for & to be a general subset of R™, or the x; to be general subsets
of R; the definition is unchanged. In this case, we refer to each of the above extensions as a full
Level 1 extension of f.

The natural extension is automatically defined for all interval or set arguments. The decoration
system, Clause[TT] gives a way of diagnosing when the underlying point function has been evaluated
outside its domain.

When f is a binary operator e written in infix notation, this gives the usual definition of its
natural interval extension as

zey=hull{zey|x ez, ycy, and x ey is defined }).

[Example. With these definitions, the relevant natural interval extensions satisfy \/[—1,4] = [0, 2] and
V[=2,—-1] = 0; also & x [0,0] = [0, 0] for any nonempty x, and x/[0,0] = 0, for any x.]

When f is a vector point function, a vector interval function with the same number of inputs
and outputs as f is called an interval extension of f if each of its components is an interval extension
of the corresponding component of f.

From the above definition, an interval extension of a real constant—a zero-argument point
function returning a real value c—is any zero-argument interval function that returns an interval
containing c¢. Its natural extension returns the single-point interval [c, ¢].
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10.5. Required operations.

The operations listed in this subclause include those required in all flavors, see Clause )] An
implementation shall provide interval versions of them appropriate to its supported interval types.
For constants and the forward and reverse arithmetic operations in §10.5.2} [10.5.3 [10.5.5] each such
version shall be an interval extension ( of the corresponding point function—for a constant,
that means any constant interval enclosing the point value. The required rounding behavior of
these, and of the numeric functions of intervals in is detailed in

The names of operations, as well as symbols used for operations (e.g., for the comparisons in
, might not correspond to those that any particular language would use.

10.5.1. Interval literals.

An interval literal is a text string that denotes an interval. Level 1, which is mainly for
human communication, merely assumes there exist some agreed rules on the form and meaning of
interval literals. A specified form and meaning shall be used in Level 2 onward: the definition is
in This definition is also used in Level 1 of this document for examples, where relevant.
[Example. This includes the inf-sup form [1.234e5,Inf]; the uncertain form 3.141671; and the
named interval constant [Empty].]

10.5.2. Interval constants.
The constant functions empty() and entire() have value Empty and Entire, respectively.

10.5.3. Forward-mode elementary functions.

Table[9.1]on page[23|lists required arithmetic operations. The term operation includes functions
normally written in function notation f(z,y,...), as well as those normally written in unary or
binary operator notation, ex or x e y.

10.5.4. Two-output division.
The result of interval division x/y considered as a set, that is

€T sety:{x/y|xemayEyandy#O}a
can have zero, one or two nonempty disjoint connected components, which need not be closed.

[Examples. Use the classical notation where a square or round bracket means a closed or open bound,
respectively. Then

[1, 2] /set[0,0] = 0,
[1,2] feet[1,1] = [1, 2],
[1 1] /set[1 "’OO) ( 71]a
[1,2] /set[—1,1] = (—o0, —=1] U [1, 400),
[1,1] /set Entlre = (—00,0) U (0, +00),

are cases with 0, 1, 1, 2 and 2 output components, respectively. The third and fifth cases have
components that are not closed.)

In applications such as the Interval Newton Method, it is useful to return enclosures of these
components separately rather than the result of normal division which is the (closed) convex hull
of their union, namely x/y = hull(x /et y). The value of the operation divToPair(x,y) is an
ordered pair (u,v) of closed intervals, namely

(0,0) if @ /et y is empty,
divToPair(x,y) =< (@,0) if @ /st y has one component u,
(w,v) if x /et y has two components u, v, ordered so that u < v,

where @ denotes the topological closure of a, which in this case is equivalent to hull(a).
[Note. divToPair is not regarded as an arithmetic operation, since if it appears in an arithmetic
expression, containment might be lost unless its two outputs are handled with care.

10.5.5. Reverse-mode elementary functions.

Constraint-satisfaction algorithms use the functions in this subclause for iteratively tightening
an enclosure of a solution to a system of equations.

Given a unary arithmetic operation ¢, a reverse interval extension of ¢ is a binary interval
function ¢Rev such that

¢Rev(e,z) D {z € x| p(x) is defined and in ¢}, (5)
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TABLE 10.1. Required reverse elementary functions.

From unary functions From binary functions
sqrRev(e, x) mulRev(b, ¢, x)
recipRev(e, x) divRev1(b, ¢, x)
absRev(c, x) divRev2(a, ¢, x)
pownRev(c, z, p) powRevl(b,c,x)
sinRev(c, ) powRev2(a, ¢, x)
cosRev(e, ) atan2Rev1(b, ¢, x)
tanRev(c, ) atan2Rev2(a, ¢, )

coshRev(c, )

for any intervals ¢, x.
Similarly, a binary arithmetic operation e has two forms of reverse interval extension, which
are ternary interval functions eRev; and eRevs such that

oRevi(b,c,z) O {x € x| b € b exists such that x e b is defined and in ¢}, (6)

eReva(a,c,z) O {z € x| a € a exists such that a e z is defined and in c}. (7)

If e is commutative, then eRev; and eRevsy agree and may be implemented simply as eRev.
In each of @ , the unique natural reverse interval extension is the one whose value
is the interval hull of the right-hand side. Clearly, any reverse interval extension encloses this hull.
The last argument x in each of @, is optional, with default « = R if absent.
[Note. The argument x can be thought of as giving prior knowledge about the range of values taken by
a point-variable x, which is then sharpened by applying the reverse function: see the example below.]
Reverse operations shall be provided as in Table Note pownRev(z,p) is regarded as a
family of unary functions parametrized by p.
[Example.

— Consider the function sqr(xz) = x?. Evaluating sqrRev([1,4]) answers the question: given that

1 < 22 < 4, what interval can we restrict x to? Using the natural reverse extension, we have
sqrRev([1,4]) = hull{z € R | 2% € [1,4] } = hull([-2, -1] U [1,2]) = [-2,2].

— If we can add the prior knowledge that x € x = [0,1.2], then using the optional second argument
gives the tighter enclosure

sqrRev([1,4],[0,1.2]) = hull{z € [0,1.2] | 2% € [1,4] } = hull ([0, 1.2] N ([~2, 1] U [1,2])) = [1,1.2].

— One might think it suffices to apply the operation without the optional argument and intersect the
result with . This is less effective because “hull” and “intersect” do not commute. E.,g., in the
above, this method evaluates

sqrRev([1,4]) N = [-2,2] N [0,1.2] = [0,1.2],

so no tightening of the enclosure x is obtained.

10.5.6. Cancellative addition and subtraction.

Cancellative subtraction solves the problem: Recover interval z from intervals x and y, given

that one knows x was obtained as the sum y + z.
[Example. In some applications, one has a list of intervals a1, ..., a,, and needs to form each interval
Sy which is the sum of all the a; except ay, that is s;, = Z?zl’i#k a;, fork =1,...,n. Evaluating all
these sums independently costs O(n2) work. However, if one forms the sum s of all the a;, one can
obtain each sj from s and ay, by cancellative subtraction. This method only costs O(n) work.

This example illustrates that in finite precision, computing  (as a sum of terms) typically incurs
at least one roundoff error, and might incur many. Thus the assumption underlying these cancellative
operations is that x is an enclosure of an unknown true sum x,, whereas y is “exact”. The computed
z is an enclosure of an unknown true zy such that y + zo = x.]

The operation cancelPlus(x,y) is equivalent to cancelMinus(x, —y) and therefore not spec-
ified separately.
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For any two bounded intervals  and y, the value of the operation cancelMinus(x,y) is the
tightest interval z such that

Yy+z2x, (8)

if such a z exists. Otherwise cancelMinus(z,y) has no value at Level 1.

This specification leads to the following Level 1 algorithm. If & = () and ¥y is bounded, then
z=10. f x # 0 and y = 0, then z has no value. If x = [z,7] and y = [y, 7| are both nonempty
and bounded, define z = £ —y and Z = T—7. Then z is defined to be [z,7] if z < Z (equivalently if
width(x) > width(y)), and has no value otherwise. If either « or y is unbounded, z has no value.
[Note. Because of the cancellative nature of these operations, care is needed in finite precision to
determine whether the result is defined or not.]

10.5.7. Set operations.

The value of the operation intersection(x,y) is the intersection & Ny of the intervals  and
Y.

The value of the operation convexHull(x,y) is the interval hull of the union & Uy of the
intervals  and y.

10.5.8. Constructors.

An interval constructor by definition is an operation that creates a bare or decorated interval
from non-interval data. The following bare interval constructors shall be provided.

The operation numsToInterval(l,u), takes extended-real values I and u. If (see §10.2) the
conditions [ < u, [ < 400 and u > —oo hold, its value is the nonempty interval [l,u] = {z € R |
I <z <wu}. Otherwise, it has no value.

The operation textToInterval(s) takes a text string s. If s is a valid interval literal, see
its value is the interval denoted by s. Otherwise, it has no value.

10.5.9. Numeric functions of intervals.

The operations in Table shall be provided, the argument being an interval and the result
a number, which for some of the operations might be infinite.

[Note. Implementations should provide an operation that returns mid(x) and rad(x) simultaneously.]

TABLE 10.2. Required numeric functions of an interval & = [z, T].
Note sup can have value —oo; each of inf, wid, rad and mag can have value +oo.

Name Definition

inf(z) {lower bound of x, if  is nonempty
o0, if @ is empty

sup(x) {upper bound of x, if & is nonempty

00, if @ is empty

mid () {mldpomt z +7T)/2, if  is nonempty bounded
no value, if x is empty or unbounded

wid(z) {Wldth T — g, if  is nonempty
no value, if @ is empty

rad(z) {radlus T —z)/2, if x is nonempty
no value, if @ is empty

mag(x) {magmtude sup{|z|| z € ¢ } , if = is nonempty
no value, if x is empty

mig(z) {mlgmtude inf{ || |z € &}, if @ is nonempty
no value, if @ is empty

10.5.10. Boolean functions of intervals.

The following operations shall be provided, whose value is a boolean (1 = true, 0 = false)
result.

There is a function isEmpty(x), with value 1 if x is the empty set, 0 otherwise. There is a
function isEntire(x), with value 1 if @ is the whole line, 0 otherwise.

There are eight boolean valued comparison relations, which take two interval inputs. These
are defined in Table |l in which column three gives the set-theoretic definition, and column four

31 June 1, 2014



Chapter 2

P1788/D9.2, June 1, 2014
Draft Standard For Interval Arithmetic

§10.5

gives an equivalent specification when both intervals are nonempty. Table shows what the
definitions imply when at least one interval is empty.

TABLE 10.3. Comparisons for intervals a and b. Notation V, means “for all a in
a’, and so on. In column 4, a=[a, @] and b=[b, b], where a,b may be —oo, and @, b
may be +oo; and <’ is the same as < except that —oo <’ —00 and 400 <’ +oo are

true.
Name | Symbol Defining predicate For a,b # 0
equal( a=b |VoBha=bAVyIab=a| a=bAa=b
subset( aChb Vedpa=>b b<aAa<b | aisasubset of b
less( a<b |VeBha<bAVyIaa<b| a<bAa<bd a is weakly less than b
precedes( a<b VoVoa <b a<b a is to left of but may touch b
interior( acb |VeBa<bAVeb<al|b< aAa<'b| aisinterior to b
strictLess( a<b |[Voha<bAV¥y3aa<b|a<'bAa<'b]| aisstrictly less than b
strictPrecedes( a<b VoVoa <b a<b a is strictly to left of b
disjoint( aib VaVoa #b a<bVb<a | aandb are disjoint

[Notes.

— Column two of Table[10.3 gives suggested symbols for use in typeset algorithms.

TABLE 10.4. Comparisons with empty intervals.

a
b

=2 S

a
b

SRS

SR

I
==

a=2>b
aChb
a<b
a—<b
ach
a<b
a<b
affb

O = O~ O

— R, OO RO OO | Y

— =R = =]

— All these relations, except a(1ib, are transitive for nonempty intervals.
— The first three are reflexive.
— interior uses the topological definition: b is a neighbourhood of each point of a. This implies, for

instance, that interior(Entire Entire) is true.
— All occurrences of < in column 4 of Table[10.3 can be replaced by <'.

]
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10.6. Recommended operations.
An implementation should provide interval versions of the functions listed in this subclause.
If such an interval version is provided, it shall behave as specified here.

10.6.1. Forward-mode elementary functions.
The list of recommended functions is in Table [[0.51 Each interval version shall be an interval
extension of the point function.

TABLE 10.5. Recommended elementary functions.
Normal mathematical notation is used to include or exclude an interval bound,
e.g., (—1,1] denotes {zr e R| -1 <z <1}.

Name Definition Point function domain Point function range Note
Rif ¢ > 0 odd
rootn(z, q) real /x, I[Eg o) liq >0 e\(fieél same as domain a
12\ (0} R FIDN
(0,00) if ¢ < 0 even
expml(z)
exp2ml(z) b*—1 R (—1,00) bl |
explOml(z)
logp1(z) in
log2p1(x) log, (z+1) (=1, 00) R b, lc
log10pl(x)
s

compoundml(z,y) (1+z)¥ —1 {z>-1} U {z=-1,y>0} [-1,00)
[

hypot(z,y) v a? + y? R2 0,00)

rSqrt(x) 1/\x (0, 00) (0, 00)

sinPi(z) sin(mx) R [-1,1] e}
cosPi(x) cos(mx) R [—1,1] e
tanPi(zx) tan(7z) R\{k+1|keZ} R e
asinPi(x) arcsin(z)/m [—1,1] [—1/2,1/2] €
acosPi(z) arccos(z)/m [-1,1] [0,1] el
atanPi(z) arctan(z)/m R (-1/2,1/2) g
atan2Pi(y, ) atan2(y, x)/m R%\ {(0,0)} (—1,1] e ﬂ

Notes to Table[10.7

a. Regarded as a family of functions of one real variable x, parameterized by the integer argument gq.

b. b=e,2 or 10, respectively.

c¢. Mathematically unnecessary, but included to let implementations give better numerical behavior for
small values of the arguments.

d. In describing domains, notation such as {y = 0} is short for { (z,y) € R* | y =0}, and so on.

e. These functions avoid a loss of accuracy due to 7 being irrational, cf. Table note E[

f. To avoid confusion with notation for open intervals, in this table coordinates in R? are delimited by
angle brackets ().

10.6.2. Slope functions.

The functions in Table [I0.6] are the commonest ones needed for efficient implementation of
improved range enclosures via first- and second-order slope algorithms. They are analytic at x =0
after filling in the removable singularity there, where each has the value 1.

10.6.3. Boolean functions of intervals.

The following operations should be provided, whose value is a boolean (1 = true, 0 = false)
result.

There is a function isCommonInterval(z), with value 1 if « is a common interval (§7.2)) and
0 otherwise. There is a function isSingleton(x), with value 1 if « is the set of a single real and
0 otherwise.

There is a function isMember(m,x), where m is an extended real and x is an interval. Its
value is 1 if m is a finite real and m is a member of the set x, 0 otherwise.
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TABLE 10.6. Recommended slope functions.

Name Definition Point function domain Point function range
expSlopel(z) é(em -1) R (0, 00)
expSlope2(z) %(em —1—x) R (0, 00)
logSlopel(x) —%(log(l—i—x) —z) R (0, 0)
logSlope2(x) % (log(l—&-x)—m—i—gg) R (0, 0)
cosSlope2(z) —%(cos x—1) R [0,1]
sinSlope3(z) —%(sinx — ) R (0,1]
asinSlope3(z) %(arcsinm — ) [—1,1] [1,37 — 6]
atanSlope3(z) —%(arctan x—1) R (0,1]
coshSlope2(x) %(coshx -1) R [1,00)
sinhSlope3(x) %(sinhx — ) R [1,00)

10.6.4. Extended interval comparisons.

The interval overlapping function overlap(a, b), also written a @ b, arises from the work of
J.F. Allen [2] on temporal logic. It may be used as an infrastructure for other interval comparisons.
If implemented, it should also be available at user level; how this is done is implementation-defined
or language-defined.

Allen identified 13 states of a pair (a, b) of nonempty intervals, which are ways in which they
can be related with respect to the usual order a < b of the reals. Together with three states for
when either interval is empty, these define the 16 possible values of overlap(a,b).

To describe the states for nonempty intervals of positive width, it is useful to think of b = [b, b]
(with b < b) as fixed, while a = [a,a] (with a < @) starts far to its left and moves to the right. Its
bounds move continuously with strictly positive velocity. Then, depending on the relative sizes of
a and b, the value of a @ b follows a path from left to right through the graph below, whose nodes
represent Allen’s 13 states.

starts — containedBy — finishes

T 4
— before — meets — overlaps — equals  — overlappedBy — metBy — after —
1 )

finishedBy — contains — startedBy

For instance, “a overlaps b”—equivalently a @ b has the value overlaps—is the casea < b < @ < b.

The three extra values are: bothEmpty when a = b = (), else firstEmpty when a = 0,
secondEmpty when b = ().

Table shows the 16 states, with the 13 “nonempty” states specified (a) in terms of set
membership using quantifiers and (b) in terms of the bounds a, @, b, b, and also (c) shown diagram-
matically.

The “set” and “bound” columns in Table remove some ambiguities of the diagram view
when one interval shrinks to a single point that coincides with a bound of the other. Such a case
is allocated to equal when all four bounds coincide; else to starts, finishes, finishedBy or
startedBy as appropriate; never to meets or metBy.
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TABLE 10.7. The 16 states of interval overlapping situations for intervals a, b.
Notation V, means “for all a in @”, and so on. Phrases within a cell are joined by
“and”, e.g., starts is specified by (a = b A @ < b).

State a@ b Set Bound Diagram
is specification | specification
States with either interval empty
bothEmpty |a =0 A b=
firstEmpty |a =0 A b# 0
secondEmpty |a # D A b=10
States with both intervals nonempty
before | V,Vp, a <b a<b —_— b
a a
VoVp a < b a<a —
meets d.Vp a < b a=>b — b
3Fpa=> b<b e e
d.Vp a < b a<b [EN——
overlaps AV, a<b b<a ,_QL b
3,3 b<a a<b 3 d
Vo a < b —b I
starts V. b<a % ;i Q-—L b
Ve a<b “ e a
containedB FVa b < a b<a [y — b
Y1 3Vea<b a<b :
Ve b < a ;—1
finishes | J,Vp, b<a %i% - -—E
IWVea<h “= g @
equat Vodp a=10 a=b b
d Vodob=a a=> o a
HQVb a < b a < b [ e——
finishedBy | 3V, a < b bz .Lf
TV b<a - a a
contains Ja¥p @ <b a<b b b
3.V b<a b<a ¢ &
Hbva b<a
< b— —
startedBy | J,Vp a <b g < % 7—“
IV b<a “ & a
TV b<a b<a —"
overlappedBy | 3,Vp b<a a<b = ,b_L
HIaa<b b<a e a
ViVe b<a b < b ;—j
metBy | I, b=a b=a - -b—L
JVab<a a<a e a
after | VpVob<a b<a - b —
a a
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[Note. The 16 state values can be encoded in four bits. However, if they are then translated into
patterns P in a 16-bit word, having one position equal to 1 and the rest zero, one can easily implement
interval comparisons by using bit-masks.

For instance, suppose we make the states s in Table[I0.7's order correspond to the 16 bits in the
word, left-to-right, so s = bothEmpty maps to P(s) = 1000000000000000, s = firstEmpty maps to
P(s) = 0100000000000000, and so on. Consider the relation disjoint(a,b). This is true if and only
if one or both of a or b is empty, or a is “before” b, or a is “after” b. That is, iff the logical “and” of
P(s) with the mask disjointMask = 1111000000000001 is not identically zero.

This scheme can be efficiently implemented in hardware, see for instance M. Nehmeier, S. Siegel
and J. Wolff von Gudenberg [7]. All the required comparisons in this standard can be implemented in
this way, as can be, e.g., the “possibly” and ‘certainly” comparisons of Sun’s interval Fortran. Thus
the overlap operation is a primitive from which it is simple to derive all interval comparisons commonly
found in the literature.]
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11. The decoration system at Level 1

11.1. Decorations and decorated intervals overview. The decoration system of the set-
based flavor conforms to the principles of Clause An implementation makes the decoration
system available by providing:

— a decorated version of each interval extension of an arithmetic operation, of each interval con-
structor, and of some other operations;

— various auxiliary functions, e.g., to extract a decorated interval’s interval and decoration parts,
and to apply a standard initial decoration to an interval.

The system is specified here at a mathematical level, with the finite-precision aspects through-
out Clause[[2} Subclauses §11.2] give the basic concepts. §I1.5] define how intervals
are given an initial decoration, and the binding of decorations to library interval arithmetic oper-
ations to give correct propagation through expressions. §11.7]is about non-arithmetic operations.
describes housekeeping operations on decorations, including comparisons, and conversion
between a decorated interval and its interval and decoration parts. discusses the decoration
of user-defined arithmetic operations. The decoration com makes it possible to verify, under fairly
restrictive conditions, whether a given computation gives the same result in different flavors; §11.9]
gives explanatory notes on the com decoration. defines a restricted decorated arithmetic
that suffices for some important applications and is easier to implement efficiently.

The Annex [B] contains a rigorous theoretical foundation, including a proof of the Fundamental
Theorem of Interval Arithmetic for this flavor.

11.2. Definitions and basic properties. Formally, a decoration d is a property (that is,
a boolean-valued function) p4(f, ) of pairs (f,x), where f is a real-valued function with domain
Dom(f) € R™ for some n > 0 and = € IR" is an n-dimensional box, regarded as a subset of
R™. The notation (f,x) unless said otherwise denotes such a pair, for arbitrary n, f and .

Equivalently, d is identified with the set of pairs for which the property holds:
d={(f,z) | pa(f x) is true }. (9)

The set D of decorations has five members:

Value | Short description Property | Definition

com common Peon(fs ) | @ is a bounded, nonempty subset of Dom(f);
f is continuous at each point of x; and the
computed interval f(x) is bounded.

dac defined & continuous | pgac(f,x) | @ is a nonempty subset of Dom(f), and the
restriction of f to « is continuous; (10)
def defined paet (f, ) | ® is a nonempty subset of Dom/( f);
trv trivial perv(f, ) | always true (so gives no information);
ill ill-formed pi11(f, ) | Not an Interval; formally Dom(f) = 0,
see §11.3

These are listed according to the propagation order , which may also be thought of as a
quality-order of (f,x) pairs—decorations above trv are “good” and those below are “bad”.

A decorated interval is a pair, written interchangeably as (u, d) or ug4, where u € IR is a real
interval and d € I is a decoration. (u,d) may also denote a decorated box ((u1,dy), ..., (un,dy)),
where u and d are the vectors of interval parts uw; and decoration parts d;, respectively. The set
of decorated intervals is denoted by DIR, and the set of decorated boxes with n components is
denoted by DIR".

When several named intervals are involved, the decorations attached to wu,wv,... are often
named du, dv, ... for readability, for instance (u,du) or ug,, etc.

An interval or decoration may be called a bare interval or decoration to emphasize that it is
not a decorated interval.

Treating the decorations as sets as in @D, trv is the set of all (f,x) pairs, and the others are
nonempty subsets of trv. By design they satisfy the exclusivity rule

For any two decorations, either one contains the other or they are disjoint. (11)
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Namely the definitions give:

com C dac C def C trv D ill, note the change from C to D; (12)

com, dac and def are disjoint from il1. (13)

Property implies that for any (f, ) there is a unique tightest (in the containment order
(12)), decoration such that ps(f,®) is true, called the strongest decoration of (f,), or of f
over x, and written Dec(f | ). That is:

Dec(f|x) =d < pa(f,x) holds, but p.(f,x) fails for all e C d. (14)

[Note. Like the exact range Rge(f |x), the strongest decoration is theoretically well-defined, but its
value for a particular f and © might be impractically expensive to compute, or even undecidable.]

11.3. The ill-formed interval. The i1l decoration results from invalid constructions, and
propagates unconditionally through arithmetic expressions. Namely, if a constructor call does not
return a valid decorated interval, it returns an ill-formed one (i.e., decorated with i11); and the
decorated interval result of a library arithmetic operation is ill-formed, if and only if one of its
inputs is ill-formed. Formally, 111 may be identified with the property Dom(f) = @ of (f, x) pairs.

An ill-formed decorated interval is also called Nal, Not an Interval. Except as described in
the next paragraph, an implementation shall behave as if there is only one Nal, whose interval
part has no value at Level 1.

Information may be stored in an Nal in an implementation-defined way (like the payload of
a 754 floating-point NaN), and functions may be provided for a user to set and read this for
diagnostic purposes. An implementation may provide means for an exception to be signaled when
an Nal is produced.

[Example. The constructor call numsToInterval(2,1) is invalid in this flavor, so its decorated version
returns Nal.]

11.4. Permitted combinations. A decorated interval y,, shall always be such that y 2
Rge(f | ) and pay (f, ) holds, for some (f, ) as in §11.2}—informally, it must tell the truth about
some conceivable evaluation of a function over a box. If dy = def, dac or com then by definition
x is nonempty, and f is everywhere defined on it, so that Rge(f|«) is nonempty, implying vy is
nonempty. Hence, these decorated intervals are contradictory: Bg.c and (ges; and T if x is empty
or unbounded. Implementations shall not produce them.

No other combinations are essentially forbidden.

11.5. Operations on/with decorations. This subclause contains operations to initialize
the decoration on a bare interval and to disassemble and reassemble a decorated interval; and
comparisons for decorations.

11.5.1. Initializing. Correct use of decorations when evaluating an expression has two parts:
correctly initialize the input intervals; and evaluate using decorated interval extensions of library
operations.

The simplest expression with one argument z is the trivial expression “z” with no operations.
It defines the identity function Id that maps a real x to itself, Id(z) = x. For interval-evaluation of
this expression over some bare interval @, the appropriate initial decoration for x is the strongest
decoration d that makes py(Id, ) true, that is

com if & is nonempty and bounded,
d=Dec(Id|x) =< dac if x is unbounded,
trv if @ is empty.

The function newDec() constructs a decorated interval from a bare one by adding such an initial
decoration:

newDec(z) = x4 where d = Dec(Id|x). (15)
Initializing each input thus, before evaluating an expression, ensures the most informative decora-

tion on the output.
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11.5.2. Disassembling and assembling. For a decorated interval m4,, the operations
intervalPart(x,,) and decorationPart(xy,) shall be provided, with value x and dz, respec-
tively. For the case of Nal, decorationPart(Nal) has the value i11, but intervalPart(Nal) has
no value at Level 1.

Given an interval & and a decoration dz, the operation setDec(x,dz) returns the decorated
interval x4, if this is an allowed combination. The cases of forbidden combinations are as follows:

— setDec(f), dz) where dx is one of def, dac or com returns (yyy.
— setDec(x, com), for any unbounded x, returns Tgac.
— setDec(x, i11) for any «, whether empty or not, returns Nal.

[Note. Careless use of the setDec function can negate the aims of the decoration system and lead
to false conclusions that violate the FTIA. It is provided for expert users, who might need it, e.g.,
to decorate the output of functions whose definition involves the intersection and convexHull
operations.|

11.5.3. Comparisons. For decorations, comparison operations for equality = and its negation
= shall be provided, as well as comparisons >, <, >, < with respect to the propagation order .

11.6. Decorations and arithmetic operations. Given a scalar point function ¢ of k vari-
ables, a decorated interval extension of y—denoted here by the same name p—adds a dec-
oration component to a bare interval extension of ¢. It has the form wg, = ¢(v4,), where
v4p = (v, dv) is a k-component decorated box ((v1,dvy),..., (vg,dvy)). By the definition of a bare
interval extension, the interval part w depends only on the input intervals v; the decoration part
dw generally depends on both v and dv. In this context, Nal is regarded as being (1.

The definition of a bare interval extension implies

w D Rge(¢|v), (enclosure). (16)
The decorated interval extension of ¢ determines a dvy such that
Dduv, (p, v) holds, (a “local decoration”). (17)
It then evaluates the output decoration dw by
dw = min{dvg, dvy, ..., dvi}, (the “min-rule”), (18)
where the minimum is taken with respect to the propagation order:
com > dac > def > trv > ill. (19)

[Notes.

1. Because Nal is treated as (111, this definition implies (without treating it as a special case) that
©(vay) is Nal if, and only if, some component of vy, is Nal.

2. Let f(z1,...,2,) be an expression defining a real point function f(x1,...,2z,). Then decorated
interval evaluation of f on a correctly initialized input decorated box x4, gives a decorated interval
Ya, Such that not only, by the Fundamental Theorem of Interval Arithmetic, one has

y 2 Ree(f|x) (20)

but also
Pay(f, ) holds. (21)

For instance, if the computed dy equals def, then f is proven to be everywhere defined on the box x.
This is the Fundamental Theorem of Interval Arithmetic (FTIA). The rules for initializing
and propagating decorations are key to its validity. They are justified, and a formal statement and
proof of the FTIA given, in Annex|[B

Briefly, @ gives the correct result for the simplest expression of all, where f is the identity
f(z) = x, which contains no arithmetic operations. The decorations are designed so that the min-
rule (@ embodies basic facts of set theory and analysis, such as “If each of a set of functions is
everywhere defined [resp. continuous| on its input, their composition has the same property” and “If
any of a set of functions is nowhere defined on its input, their composition has the same property”.
It causes correct propagation of decorations through each arithmetic operation, and hence through
a whole expression.

39 June 1, 2014



P1788/D9.2, June 1, 2014
Chapter 2 Draft Standard For Interval Arithmetic §11.8

3. In the same way as the enclosure requirement @) is compatible with many bare interval extensions,
typically coming from different interval types at Level 2, so there might be several dvg satisfying the
local decoration requirement . The ideal choice is the strongest decoration d such that py(p,v)
holds, that is to take

dvg = Dec(¢ | v). (22)

This is easily computable in finite precision for the arithmetic operations in [10.6 However,
functions may be added to the library in the future for which is impractical to compute for some
arguments v. Hence, the weaker requirement is made.

11.7. Decoration of non-arithmetic operations.
Interval-valued operations. These give interval results but are not interval extensions of point
functions:

— the reverse-mode operations of §10.5.5}
— the cancellative operations cancelPlus(x,y) and cancelMinus(x,y) of §10.5.6
of §10.5.7

— The set-oriented operations intersection(x,y) and convexHull(x,y)

No one way of decorating these operations gives useful information in all contexts. Therefore,
a trivial decorated interval version is provided as follows. If any input is Nal, the result is Nal;
otherwise the corresponding operation is applied to the interval parts of the inputs, and its result
decorated with trv. The user may replace this by a nontrivial decoration via setDec(), see
where this can be deduced in a given application.

Non-interval-valued operations. These give non-interval results:

— the numeric functions of §10.5.9
— the boolean-valued functions of §10.5.10}

— the overlap function of §10.6.4
For each such operation, if any input is Nal, the result has no value at Level 1. Otherwise, the

operation acts on decorated intervals by discarding the decoration and applying the corresponding
bare interval operation.

11.8. User-supplied functions. A user may define a decorated interval extension of some
point function, as defined in §11.6] to be used within expressions as if it were a library operation.
[Examples.

(i) In an application, an interval extension of the function
@)=+ 1/a

was required. Evaluated as written, it gives unnecessarily pessimistic enclosures: e.g., with x =
[1,2], one obtains

f@) =132 +1/[3,2] = [3,2] + [3,2 = [1.4],
much wider than Rge(f |x) = [2,21].

Thus it is useful to code a tight interval extension by special methods, e.g., monotonicity
arguments, and to provide this as a new library function. Suppose this has been done. To convert
it to a decorated interval extension just entails adding code to provide a local decoration and
combine this with the input decoration by the min-rule @) In this case, it is straightforward to
compute the strongest local decoration d = Dec(f |x), as follows.

com if0 ¢ x and x is nonempty and bounded,
d= dac if0 ¢ x and x is unbounded,
trv if0 € x or x is empty.
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(i)

The next example shows how an expert might ma- 4
nipulate decorations explicitly to give a function,

defined piecewise by different formulas in different 3t
regions of its domain, the best possible decoration.

Suppose that 2r
1t
@) = fi(z) := x?2—4 if|z| > 2, 0
| fo(w) := —V/4— 22 otherwise, l
g g " . -2

where := means ‘defined as”, see the diagram. -4 -2 0 2 4

The function consists of three pieces on regions x < —2, —2 < x < 2 and x > 2 that join continu-
ously at region boundaries, but the standard gives no way to determine this continuity, at run time
or otherwise. For instance, if f is implemented by the case function, the continuity information
is lost when evaluating it on, say, * = [1, 3], where both branches contribute for different values

of v € x.
However, a user-defined decorated interval function as defined below provides the best possible
decorations.
function y 4, = f(xdx)
u = fi(zN[-o0,-2])
v = fo(xn[-2,2])
w = fi(xN[2,+x])
Yy =uUvUw
dy = dz

Here U denotes the convexHull operation. The user’s knowledge that f is everywhere defined and
continuous is expressed by the statement dy = dx, propagating the input decoration unchanged.
f, thus defined, can safely be used within a larger decorated interval evaluation.

11.9. Notes on the com decoration.
[Notes.

— The force of com is the Level 2 property that the computed interval f(x) is bounded. Equivalently,
overflow did not occur, where overflow has the generalized meaning that a finite-precision operation
could not enclose a mathematically bounded result in a bounded interval of the required output type.
Briefly, for a single operation, “com is dac plus bounded inputs and no overflow”.

Thus the result of interval-evaluating an arithmetic expression in finite precision is decorated com
if and only if the evaluation is common at Level 2, meaning: each input that affects the result is
nonempty and bounded, and each individual operation that affects the result is everywhere defined
and continuous on its inputs and does not overflow.

— A tempting alternative is to make com record whether the evaluation is common at Level 1, meaning
that all the relevant intervals are mathematically bounded, even if overflow occurred in finite precision.
E.g., one might drop the "bounded inputs” requirement and require “mathematically bounded”
instead of “actually bounded” on the output of an operation.

However, the dac decoration already provides such information, and the suggested change gives
nothing extra. Namely, if the inputs  to f(x) are bounded, and the output decoration is dac, it
follows, from the fact that a continuous function on a compact set is bounded, that the point function
f is mathematically bounded on x, and all its individual operations are mathematically bounded on
their inputs even if overflow might have occurred in finite precision.
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For example, consider f(x) = 1/(2x) evaluated at @ = [1, M] using an inf-sup type where M is
the largest representable real. This gives

Yay = f(mcom) = 1/(2 * [LM]com) = 1/[2>+Oo]dac = [0, %]dav

Despite the overflow, one can deduce from the final dac that the result of the multiplication was
mathematically bounded.

This might be of limited use: consider g(x) = 1/f(x) = 1/(1/(2x)), evaluated at the same
x = [1, M] giving z4.. The standard has no way to record that the lower bound of y is mathematically
positive, i.e., 1/(2M). Thus the Level 2 result is z4, = [2, 400]4ry, compare [2,2M]con at Level 1.

11.10. Compressed arithmetic with a threshold (optional).

11.10.1. Motivation. The compressed decorated interval arithmetic (compressed arith-
metic for short) described here lets experienced users obtain more efficient execution in applications
where the use of decorations is limited to the context described below. An implementation need
not provide it; if it does so, the behavior described in this subclause is required. Which compressed
interval types are provided is implementation-defined.

Each Level 2 instance of compressed arithmetic is based on a supported Level 2 bare interval
type T, but is a distinct “compressed type”, with its own datums and library of operations.

The context is that of evaluating an arithmetic expression, where the use made of a deco-
rated interval evaluation y,, = f (x4.) depends on a check of the result decoration dy against an
application-dependent threshold 7, where 7 > trv in the propagation order :

dy > 7: represents normal computation. The decoration is not used, but one exploits the
range enclosure given by the interval part and the knowledge that dy remained > 7.

dy < 1: declares an exceptional condition to have occurred. The interval part is not used,
but one exploits the information given by the decoration.

11.10.2. Compressed interval types. For such uses, one needs to record an interval’s value, or
its decoration, but never both at once. The compressed type of threshold 7, associated with
T, is the type each of whose datums is either a (bare) T-interval or a decoration less than 7. It is
denoted T,. Two such types are the same if and only if they have the same T and the same 7. A
T, datum can be any T datum or any decoration except that:

— Only decorations < 7 occur; in particular com is never used.
— The empty interval @ is replaced by-—equivalently, is regarded by the implementation as being—a
new decoration emp added to the table in , whose defining property is

Value | Short description | Property | Definition
emp ‘ empty ‘ Pemp (5 X) ‘ x N Dom(f) is empty;

emp lies between trv and ill in the containment order and the propagation order :

(23)

com C dac C def C trv D emp D ill, (24)
com > dac > def > trv > emp > ill.

Since 7 > trv, it is always true that emp < 7, which means that as soon as an empty result is
produced while evaluating an expression, the dy < 7 case has occurred.

[Note. The reason for treating () as a decoration < T is that obtaining an empty result (e.g., by
doing something like \/[—2,—1] while evaluating a function) is one of the exceptional conditions
that compressed interval computation should detect.]

The only way to use compressed arithmetic with a threshold 7 is to construct T, datums.
Conversion between compressed types, say from a T,-interval to a T/, -interval, shall be equivalent
to converting first to a normal decorated interval by normalInterval(), then between decorated
interval types if T # T’, and finally to the output type by 7'-compressedInterval().

[Note. Since, for any practical interval type T, a decoration fits into less space than an interval, one
can implement arithmetic on compressed interval datums that take up the same space as a bare interval
of that type. For instance, if T is the IEEE754 binary64 inf-sup type, a compressed interval uses 16
bytes, the same as a bare T-interval; a full decorated T-interval needs at least 17 bytes.
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Because compressed intervals must behave exactly like bare intervals as long as one does not fall
below the threshold, and take up the same space, there is no room to encode T as part of the interval’s
value.]

11.10.3. Operations. The enquiry function isInterval(x) returns true if the compressed in-
terval x is an interval, false if it is a decoration.

The constructor 7-compressedInterval() is provided for each threshold value 7. The result of
T-compressedInterval(X), where X = x4, is a decorated T-interval, is a T, -interval as follows:

if dr > 7, return the T,-interval with value «
else return the T,-interval with value dzx.

T-compressedInterval(x) for a bare interval « is equivalent to T-compressedInterval(newDec(x)).
The function normalInterval(x) converts a T, -interval to a decorated interval of the parent
type, as follows:

if # is an interval, return o,
if * is a decoration d
if d =111, return Empty,;;; = Nal
elseif d=emp, return Empty,,
else return Entireq

Arithmetic operations on compressed intervals shall follow worst case semantics rules that
treat a decoration in {trv,def,dac} as representing a set of decorated intervals, and are necessary
if the fundamental theorem is to remain valid. Namely, inputs to each operation behave as follows:
— Operations purely on bare intervals are performed as if each x is the decorated interval x.,

resulting in a decorated interval y,, that is then converted back into a compressed interval. If
dy < 7, the result is the decoration dy, otherwise the bare interval y.

— For operations with at least one decoration input, the result is always a decoration. A bare
interval input is treated as in the previous item. A decoration d in {emp,i11} is treated as (4.
A decoration d in {trv,def,dac} is treated (conceptually) as x4 with an arbitrary nonempty
interval . The decoration com cannot occur. Performing the resulting decorated interval opera-
tion on all such possible inputs leads to a set of all possible results y,,,. The tightest decoration
(in the containment order (24)) enclosing all resulting dy is returned.

As a result, each operation returns an actual or implied decoration compatible with its input, so
that in an extended evaluation, the final decoration using compressed arithmetic is never stronger
than that produced by full decorated interval arithmetic.

[Example. Assuming T > def,

— The division def/[1,2] becomes xqq:/[1, 2], with arbitrary nonempty interval x.
The result is always decorated def, so returns def.

— But [1,2]/def becomes [1,2];/xqes with arbitrary nonempty interval x.
The result can be decorated def, trv or emp, so returns the tightest decoration containing these,
namely trv.

]

Since there are only a few decorations, one can prepare complete operation tables according
to this rule, and only these tables need to be implemented.

If compressed arithmetic is implemented, it shall provide versions of all the required operations
of and it should provide the recommended operations of
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12. Level 2 description

12.1. Level 2 introduction. Entities and operations at Level 2 are said to have finite
precision. From them, implementable interval algorithms may be constructed. Level 2 entities
are called datumsﬂ Since the standard deals with numeric functions of intervals (such as the
midpoint) and interval functions of numbers (such as the construction of an interval from its lower
and upper bounds), this clause involves both numeric and interval datums, as well as decoration,
string and boolean datums.

12.1.1. Types and formats. Following 754 terminology, numeric (usually but not necessarily
floating-point) datums are organized into formats. Interval datums are organized into types.
Each format or type is a finite set of datums, with associated operations. If F denotes a format,
an F-number means a member of F, possibly infinite but not the “not a number” value NaN;
to allow it to be NaN, it is called an F-datum. If T denotes a bare or decorated interval type,
a T-interval means a member of T, possibly empty but (in the decorated case) not the “not an
interval” value Nal; to allow it to be Nal, it is called a T-datum. A T-box means a box with
T-datum components—equivalently, with T-interval components, if T is a bare interval type.

The standard defines three kinds of interval type:

— Bare interval types, see are named finite sets of (mathematical, Level 1) intervals.

— Decorated interval types, also see §12.5] are named finite sets of decorated intervals.

— Compressed interval types (optional) are named finite sets of compressed intervals. They
are described in and Level 2 makes no further requirements on them.

For each bare interval type there shall be a corresponding derived decorated interval type,
and each decorated interval type shall be derived from a bare interval type, see An
implementation shall provide at least one supported bare interval type. If 754-conforming, it shall
provide the inf-sup type, see of at least one of the five basic formats of 754 §3.3. Beyond
this, which types are provided is language- or implementation-defined.

It is language- or implementation-defined whether the format or type of a datum can be
determined at run time.

12.1.2. Operations. A Level 2 operation is a finite-precision approximation to the correspond-
ing Level 1 operation. To describe the required functionality, the standard treats each Level 1
operation as having a number of Level 2 versions in which each interval input or output is given
a specific interval type, and each numeric input or output is given a specific numeric format.
[Note. An implementation might provide the functionality via differently named operations for each
version, or by overloading a single operation name, or by a single operation that accepts all the required
type/format combinations, or in other ways.

For example, let T and Ty be two supported interval types. The standard requires a version of
addition z = x + y where each of x,y, z has type T, and another where each of them has type Ts.
An implementation might provide this functionality by having two separate operations; another might
have a single operation that takes inputs of types T1 and Ts in any combination, with some rule to
determine the type of the output z; etc.]

The term T-version of a Level 1 operation denotes one in which any input or output that is
an interval, is a T-datum. For bare interval types this includes the following:

(a) A T-interval extension ( of one of the required or recommended arithmetic operations of
105,

(b) A set operation, such as intersection and convex hull of T-intervals, returning a T-interval.

(¢) A function such as the midpoint, whose input is a T-interval and output is numeric.

(d) A constructor, whose input is numeric or text and output is a T-datum.

(e) The operations of whose input is a T-interval and output is a string.

Additionally, a version of convertType with output of type T, see is a T-version irre-
spective of the type of the input interval. Generically these comprise the operations of the type
T, for the implementation.

12.1.3. Exception behavior. For some operations, and some particular inputs, there might not
be a valid result. At Level 1 there are several cases when no value exists. However, a Level 2

INot “data”, whose common meaning could cause confusion.
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operation always returns a value. When the Level 1 result does not exist, the operation returns
either

— a special value indicating this event (e.g., NaN for most of the numeric functions in ; or
— a value considered reasonable in practice. For example, mid(Entire) returns 0; a constructor
given invalid input returns Empty; and one of the comparisons of if any input is Nal,
returns false.
The standard defines the following exceptions that may be signaled, causing a handler to be
invoked:

— For the interval constructors of and for exactToInterval in it is possible that at
Level 2, using finite precision, the implementation cannot decide whether a Level 1 value exists
or not, see Difficulties in implementation in If the constructor is certain that no Level
1 value exists, the exception UndefinedOperation is signaled; if it cannot decide, the exception
PossiblyUndefinedOperation is signaled.

— If intervalPart() is called with Nal as input, the exception IntvlPartOfNal is signaled, see
§12.12.11]

— If some inputs of an operation are invalid, the exception InvalidOperand might be signaled, see
{113

These exceptions are separate from the exceptional conditions handled by the decoration system.

The mechanism of how a handler deals with an exception is language- or implementation-defined.

An implementation may provide exception handling additional to that above.

12.2. Naming conventions for operations. An operation is generally given a name that
suits the context. For example, the addition of two interval datums x, y might be written in generic
algebra notation « + y; or with a generic text name add(z, y); or giving full type information such
as infsup-decimalb4-add(x, y). It might also be written as T-add(x,y) to show it is an operation
of a particular but unspecified type T.

In a specific language or programming environment, the names used for types might differ
from those used in this document.

12.3. Tagging, and the meaning of equality at Level 2. A Level 2 format or type is
an abstraction of a particular way to represent numbers or intervals—e.g., “IEEE 64 bit binary
floating-point” for numbers—focusing on the Level 1 entities denoted, and hiding the Level 3
representation.

However, a datum is more than just the Level 1 value: for instance, the number 3.75 represented
in 32 bit binary floating-point is a different datum from the same number represented in 64 bit
binary floating-point (“single” and “double” precision respectively in typical implementations).

This is achieved by formally regarding each datum as a pair:

number datum = (Level 1 number, format name),
bare interval datum = (Level 1 interval, type name),

where the name is a symbol that uniquely identifies the format or type. Since a decorated interval
combines a bare interval and a decoration it thus becomes a triple at Level 2:

decorated interval datum = (Level 1 interval, type name, decoration).

The Level 1 value is said to be tagged by the format or type name. It follows that distinct formats
or types are disjoint sets. By convention, such names are omitted from datums except when clarity
requires.

[Example. Level 2 interval addition within a type named t is normally written z = x + y, though the
full correct form is (z,t) = (x,t) + (y,t). The full form might be used, for instance, to indicate that
mixed-type addition is forbidden between types s and t but allowed between types s and u. Namely,
one can say that (x,s) + (y,t) is undefined, but (x,s) + (y,u) is defined.]

The interval comparison operations of including comparison for equality, are provided
between datums x, y of the same type. Additionally they are provided between datums of different
types provided the types are comparable, see

Therefore it is necessary to distinguish kinds of equality. @ and y are identical datums if they
have the same Level 1 value and the same type. If their types are comparable then equal(x,y)
is defined for them; if they have the same Level 1 value, equal(x,y) returns true and they are
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called equal. If their types are not comparable, equal(x,y) is undefined; they are not equal even
if they have the same Level 1 value.
[Note. This is like the situation for 754 floating-point numbers. For instance, the number 3.75 is
representable exactly by datums x,y, z in binary32, binary64 and decimal64, respectively. They are
non-identical datums; but the comparison x = y (equivalently compareQuietEqual(x,y)) is defined
since x and y have the same radix, and returns true because they have the same Level 1 value.
However, © = z is not defined within the 754 standard, because x has a different radix from z.

Similarly, let x, y and z be the datums in the inf-sup types of binary32, binary64 and decimal64,
respectively, for an interval that they all represent exactly, such as [1,3.75]. They are non-identical
datums; but the comparison * = y (equivalently equal(x,y)) is defined and returns true; while
x = z is not defined in this standard, though x and z have the same Level 1 value, because their types
are not comparable.)

For a decorated interval type T, the unique Nal datum is equal to itself as a datum, but
compares unequal to any T-datum, including itself, with the equal relation. This follows the
behavior of NaN among 754 floating-point datums.

12.4. Number formats. In view of §12.3] a number format, or just format, is formally
the set of all pairs (z, f) such that x belongs to a given finite set F of numbers and symbols, and
f is a name for the format. A format is provided if the implementation provides a representation
of it as in and is supported (by this standard) if in addition:

— F comprises a subset of the extended reals R that includes —oo and +oo, together with a value
NaN, and optionally signed zeros —0 and 0.

— F contains 0, or contains —0 and +0, or both.

F contains at least one nonzero finite number.

— F is symmetric: if x is in F, so is its additive inverse —x, where +0 are additive inverses of each
other, as are +oo.

Following the convention of omitting names, the format is normally identified with the set F,
and one may say a supported format is a set comprising NaN together with a finite subset of R,
and possibly +0, subject to the above rules. A member of F is called an F-datum. Every member
except NaN is called numeric, or an F-number.

As an aid to notation, if z is an F-number then Val(z), the (extended-real) value of z, is
the member of R that = denotes: Val(—0) = Val(+0) = 0, Val(z) = z for other F-numbers, and
Val(NaN) is undefined. Thus Val(IF) is the whole set { Val(z) | # € F } of extended reals denoted
by F.

A floating-point format in the 754 sense, such as binary64, is identified with the number
format for which FF is the set of datums representable in that format. At Level 2, different kinds
of NaN map to the unique NaN of the number format.

In this document the five basic formats of 754 §3.3 are named binary32, binary64, binary128,
decimal64, decimal128. Abbreviated names such as b64 instead of binary64 are sometimes used,
and refer to the same format.

A number format F is said to be compatible with an interval type T if each non-empty
T-interval contains at least one finite F-number.

For a Level 2 operation, an input or output that in the corresponding Level 1 operation is an
extended real becomes a datum of some format F. On input, if this datum « is not NaN, it is
replaced by Val(z) before applying the Level 1 operation; if NaN, it is handled by rules specific to
the operation. On output, an extended-real Level 1 result is mapped (rounded) to an F-datum

according to rules specific to the operation (see §12.12.8|).

12.5. Bare and decorated interval types.

12.5.1. Definition. In view of a bare interval type, or just type, is formally the set
of all pairs (x,t) such that x belongs to a given finite subset T of the mathematical intervals IR,
and t is a name for the type. It is provided if the implementation provides a representation of it
as in and is supported (by this standard) if in addition:

— T contains Empty and Entire.
— T is symmetric: if « is in T, so is —x.

46 June 1, 2014



P1788/D9.2, June 1, 2014
Chapter 2 Draft Standard For Interval Arithmetic §12.6

The decorated interval type derived from T is formally the set of triples (x, ¢, d) such that
(z,t) is a T-interval, and d € D is a decoration that follows the rule for permitted combinations
(z,d) in

Following the convention of omitting names, the type is normally regarded as being the set T,
and one may say a bare interval type is an arbitrary set of intervals subject to the above rules.
The derived decorated type is then regarded as a set of pairs (x,d), equivalently x4, where x € T
and d € D.

Following 754’s terminology for formats (754-2008 Definition 2.1.36), a type T’ is Widelﬂ than
a type T (and T is narrower than T') if T is a subset of T when they are regarded as sets of Level
1 intervals, ignoring the type tags and possible decorations. Two types are comparable if either
is wider than the other. [Example. The basic 754-conforming types of a given radix are comparable,
see }

Each decorated interval type shall contain a “Not an Interval” datum Nal, identified with

(@,111). It shall appear to be unique at Level 2, but non-Level-2 operations may be provided to
set and get a payload in an Nal for diagnostic purposes, in an implementation-defined way (see
{3,
[Example. To illustrate the flexibility allowed in defining types, let S1 and Sy be the sets of inf-
sup intervals using 754 single (binary32) and double (binary64) precision, respectively. That is, a
member of Sy [respectively So] is either empty, or an interval whose bounds are exactly representable
in binary32 [respectively binary64].

An implementation usually would define these as different bare interval types, by tagging members
of S1 by one type name t; and members of Sy by another name to—represented at Level 3 by a pair of
binary32 or of binary64 numbers, respectively. However, it might treat them as one type, with the
representation by a pair of binary32’s being a space-saving alternative to the pair of binary64’s, to
be used, say, for some large arrays. The resulting Level 1 intervals are exactly the same those of inf-sup
binary64, so this is just another way to store the latter type; but an implementation would give it a
different name, to reflect the different storage and hence different operations at the code level.]

12.5.2. Inf-sup and mid-rad types.

The inf-sup type derived from a supported number format F (the type inf-sup F, e.g., “inf-
sup binary64”) is the bare interval type T comprising all intervals whose bounds are in Val(F),
together with Empty. When F is a 754 format, the radix of T means the radix of F.

[Note. This implies Entire is in T because 0o € F by the definition of a supported format, see
so T satisfies the requirements for a bare interval type given in §12.5.1]]

A mid-rad bare interval type is one whose nonempty bounded intervals comprise all intervals
of the form [m — r,m + r], where m € Val(F) for some number format F, and r € Val(F’) for a
possibly different format F’, with m,r finite and > 0. From the definition in such a type
shall contain Empty and Entire (so at Level 3 it shall have representations of these). It may also
contain semi-bounded intervals.

12.6. 754-conformance. The standard defines the notion of 754-conformance, whose stronger
requirements improve accuracy and programming convenience.

12.6.1. Definition. A 754-conforming type is an inf-sup type derived from a 754 floating-
point format (one of the five basic formats or an extended precision or extendable precision format)
in the sense of that meets the general requirements for conformance and whose operations
meet the accuracy requirements in

A T754-conforming implementation is one, all of whose types are 754-conforming, and
whose operations meet the requirements for mixed-type arithmetic in the next paragraphs. It
might be a conforming part of an implementation in the sense of

12.6.2. 754-conforming mized-type operations. The 754 standard requires a conforming floating-
point system to provide mixed-format formatOf operations, where the output format is specified
and the inputs may be of any format of the same radix as the output. The result is computed as
if using the exact inputs and rounded to the required accuracy on output.

A 754-conforming implementation shall provide corresponding mixed-type interval operations.
Namely, if it provides types T, Ty, Ts,... derived from 754 formats F,Fi,F5,... all of the same

2Wider means having more precision. In the 754 context, for a given radix, a wider format is one with a wider
bit string for the exponent and/or significand in its Level 4 encoding.
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radix, then for each formatOf operation with output format F and accepting input formats chosen
from IF1,Fs,... there shall be an interval version of that operation with output type T and input
types chosen from Ty, To,.... The result shall be computed as if using the exact inputs and shall
meet the accuracy requirement for that operation, specified in
[Note. For inf-sup types this requirement may be met by implicit widening of inputs to a common
widest format, as double rounding is not an issue for directed rounding.)

12.7. Multi-precision interval types. Multi-precision systems—extendable precision in
754 terminology—generally provide an (at least conceptually) infinite sequence of levels of pre-
cision, where there is a finite set F,, of numbers representable at the nth level (n =1,2,3,...), and
1 C Fy C F3.... These are typically used to define a corresponding infinite sequence of interval
types T,, with T; C T C T3....

[Example. For multi-precision systems that define a nonempty T, -interval to be one whose bounds are
F,,-numbers, each T,, is an inf-sup type with a unique interval hull operation—explicit, in the sense of
{iz3)

A conforming implementation defines such T,, as a parameterized sequence of interval types.
It cannot take the union over n of the sets T,, as a single type, because this infinite set has no
interval hull operation: there is generally no tightest member of it enclosing a given set of real
numbers. This constrains the design of conforming multi-precision interval systems.

12.8. Explicit and implicit types, and Level 2 hull operation.
12.8.1. Hull in one dimension. For each bare interval type T there shall be defined an interval
hull operation

y = hullyp(s),

also called the T-hull, which is part of T’s mathematical definition. For an implicit type, see below,
the implementation’s documentation shall specify the T-hull, e.g., by an algorithm. For an explicit
type, it is uniquely determined and need not be separately specified.
[Note. An implementation provides hully as the operation convertType for conversion between any
two supported types, see §12.12.10]

The T-hull maps an arbitrary set of reals, s, to a minimal T-interval y enclosing s. Minimal
is in the sense that

s C y, and for any other T-interval z, if s C z C y then z = y.

Since T is a finite set and contains Entire, such a minimal y exists for any s. In general y might
not be unique. If it is unique for every subset s of R, then the type T is called explicit, otherwise
it is implicit.

Two types with different hull operations are different, even if they have the same set of intervals.

The T-hull operation overflows if it can only find an unbounded T-interval y to enclose a
bounded set s. Similarly, any Level 2 interval-valued operation overflows when its Level 1 result
is bounded but too large to be enclosed in a bounded interval of the output type.

[Examples. Every inf-sup type is explicit. A mid-rad type is typically implicit.

As an example of the need for a specified hull algorithm, let T be the mid-rad type (§12.5.2), where
m and r use the same floating-point format ¥, say binary64, and let s be the interval [-1,1 + €],
where 1+ ¢ is the next F-number above 1. Clearly any minimal interval (m,r) enclosing s hasrT = 1+z¢,
but m can be any of the many F-numbers in the range 0 to €; each of these gives a minimal enclosure
of s.

A possible general algorithm, for a bounded set s and a mid-rad type, is to choose m € F as close
as possible to the mathematical midpoint of the interval s, 3] = [inf s, sup s] (with some way to resolve
ties) and then the smallest r € T such that r > max(m — s,5 —m). The cost of performing this
depends on how the set s is represented. If s is a binary64 inf-sup interval, it is simple. If s is defined
as the range of a function, it might be expensive.]

12.8.2. Hull in several dimensions. In n dimensions the T-hull, as defined mathematically in
is extended to act componentwise, namely for an arbitrary subset s of R™ it is hully(s) =
(y4,---,9,) where

y,; = hullp(s;),
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and s; = {s; | s € s} is the projection of s on the ith coordinate dimension. It is easily seen that
this is a minimal T-box containing s, and that if T is explicit it equals the unique tightest T-box
containing s.

12.9. Level 2 interval extensions. Let T be a bare interval type and f an n-variable scalar
point function. A T-interval extension of f, also called a T-version of f, is a mapping f from
n-dimensional T-boxes to T-intervals, that is f : T" — T, such that f(z) € f(x) whenever = € x
and f(x) is defined. Equivalently

f(x) 2 Rege(f|z) (25)
for any T-box x € T™, regarding x as a subset of R"™. Generically, such mappings are called Level
2 interval extensions.

Though only defined over a finite set of boxes, a Level 2 extension of f is equivalent to a full
Level 1 extension of f ( so that this document does not distinguish between Level 2 and
Level 1 extensions. Namely define f* by

f7(s) = f(hullp(s))
for any subset s of R”. Then the interval f*(s) contains Rge(f | s) for any s, making f* a Level
1 extension; and f*(s) equals f(s) whenever s is a T-box.

12.10. Accuracy of operations. This subclause describes requirements and recommenda-
tions on the accuracy of operations. Here, operation denotes any Level 2 version, provided by the
implementation, of a Level 1 operation with interval output and at least one interval input. Bare
interval operations are described; the accuracy of a decorated operation is defined to be that of its
interval part.

12.10.1. Measures of accuracy. Three accuracy modes are defined that indicate the quality of
interval enclosure achieved by an operation: tightest, accurate and valid in order from strongest to
weakest. Each mode is in the first instance a property of an individual evaluation of an operation
f of type T over an input box . The term tightness means the strongest mode that holds
uniformly for some set of evaluations, e.g., for some one-argument function, an implementation
might document the tightness of f(z) as being tightest for all  contained in [~10'®,10'%] and at
least accurate for all other .

The tightest and valid modes apply to all interval types and all operations. The accurate
mode is defined only for inf-sup types (because it involves the next0Out function), and for interval
forward and reverse arithmetic operations of (because it requires operations f that
are monotone at Level 1: u C v implies f(u) C f(v)).

Let foiact denote the corresponding Level 1 operation. The weakest mode valid is just the
property of enclosure:

-f(x) 2 fexact (.’B) (26)

For a forward arithmetic operation, it is equivalent to .
The strongest mode tightest is the property that f(z) equals fi pgesi(), the T-hull of the
Level 1 result:

ftightest (33) = huHT(fexact (33)) (27)

The intermediate mode accurate applies to an inf-sup type T derived from a number format

F. It asserts that f(x) is valid, , and is at most slightly wider than the result of applying the
tightest version to a slightly wider input box:

F(x) C nextOut(fightest (nextOut (hully(x)))). (28)
Here the nextOut function is defined in terms of the functions
nextUp, nextDown : Val(F) — Val(F)

as follows. For x € Val(F), define nextUp(x) to be 400 if z = +o0, and the least member of
Val(F) greater than x otherwise; since +oo € Val(F), this is well-defined. Define nextDown(x) to
be —nextUp(—z). Then, if « is a T-interval, define

{ [nextDown(g%, nextUp(Z)] if @ = [z, 7] # 0,

next0Out(x) = =0

(29)
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When x is a T-box, nextOut acts componentwise.
[Notes.

— For a 754 format, nextUp and nextDown are equivalent to the corresponding functions in 754-2008
§5.3.1.

— In ([28), the inner next0Out() aims to handle the problem of a function such as sinx evaluated at a
very large argument, where a small relative change in the input can produce a large relative change
in the result. The outer nextOut() relaxes the requirement for correct (rather than, say, faithful)
rounding, which might be hard to achieve for some special functions at some arguments.

— The input box * might have components of a different type from the result type T, in the case of
754-conforming mixed-type operations §12.6.2 The hully in (28) forces these to have type T, so
each component of x is widened by at least the local spacing of F-numbers, at each finite bound.

For example, let T be a 2-digit decimal inf-sup type. Then nextOut widens the T-interval
x = [2.4,3.7] to [2.3,3.8]—an ulp at each end. But an operation might accept 4-digit decimal inf-
sup inputs, and & might be [2.401,3.699]. Then nextOut(x) is [nextDown(2.401), nextUp(3.699)] =
[2.4,3.7), giving an insignificant widening. But

next0Out(hully([2.401, 3.699])) = next0ut([2.4,3.7]) = [2.3, 3.8]

gives a widening comparable with the precision of T.

12.10.2. Accuracy requirements. Following the categories of functions in Table the accu-
racy of the basic operations, the integer functions and the absmax functions shall be tightest.

For all other operations in Table for the reverse mode operations of Table and for
the recommended operations of Table and Table [T10.6] the accuracy shall be valid, and, for
inf-sup types, should be accurate. For any operation in these four tables, if any input is Empty
the result shall be Empty.

12.10.3. Documentation requirements. An implementation shall document the tightness of
each of its interval operations for each supported bare interval type. This shall be done by di-
viding the set of possible inputs into disjoint subsets ( “ranges”) and stating a tightness achieved in
each range. This information may be supplemented by further detail, e.g., to give accuracy data
in a more appropriate way for a non-inf-sup type.

[Example. Sample tightness information for the sin function might be

Operation | Type | Tightness | Range
sin infsup binary64 | tightest | for any & C [-10'5,10%5]

accurate | for all other x.

]

Each operation should be identified by a language- or implementation-defined name of the
Level 1 operation (which might differ from that used in this standard), its output type, its input
type(s) if necessary, and any other information needed to resolve ambiguity.

12.11. Interval and number literals.

12.11.1. Overview.

This subclause defines an interval literal: a (text) string that denotes a bare or decorated
interval. This entails defining a number literal: a string within an interval literal that denotes
an extended-real number; if it denotes a finite integer it is an integer literal.

The bare or decorated interval denoted by an interval literal is its value (as an interval literal).
Any other string has no value in that sense. For convenience a string is called valid or invalid (as
an interval literal) according as it does or does not have such a value. The usage of value, valid
and invalid for number and integer literals is similar.

Interval literals are used as input to textToInterval and in the Input/Output clause
In this standard, number (and integer) literals are only used within interval literals. The
definitions of literals are not intended to constrain the syntax and semantics that a language might
use to denote numbers and intervals in other contexts.

The definition of an interval literal s is placed in Level 2 because its use is not mandatory at
Level 1, see However, the value of s is a bare or decorated Level 1 interval . Within s,
conversion of number literals to their values shall be done as if in infinite precision. Conversion of
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x to a Level 2 datum vy is a separate operation. In all cases y shall contain x; typically y is the
T-hull of « for some interval type T.

[Example.  The interval denoted by the literal [1.2345] is the Level 1 single-point interval x =
[1.2345,1.2345]con. However, the result of T-textToInterval("[1.2345]1"), where T is the 754
infsup binary64 type, is the interval, approximately [1.2344999999999999, 1.2345000000000002] oy,
whose bounds are the nearest binary64 numbers either side of 1.2345.]

The case of alphabetic characters in interval and number literals, including decorations, is
ignored. It is assumed here that they have been converted to lowercase. (E.g., inf is equivalent
to Inf and [1,2]_dac is equivalent to [1,2] _DAC.)

12.11.2. Number literals.

An integer literal comprises an optional sign and (i.e., followed by) a nonempty sequence of
decimal digits.

The following forms of number literal shall be provided.

(a) A decimal number. This comprises an optional sign, a nonempty sequence of decimal digits
optionally containing a point, and an optional exponent field comprising e and an integer
literal. The value of a decimal number is the value of the sequence of decimal digits with
optional point multiplied by ten raised to the power of the value of the integer literal, negated
if there is a leading - sign.

(b) A number in the hexadecimal-floating-constant form of the C99 standard (ISO/IEC9899,
N1256, §6.4.4.2), equivalently hexadecimal-significand form of IEEE 754-2008, §5.12.3. This
comprises an optional sign, the string 0x, a nonempty sequence of hexadecimal digits option-
ally containing a point, and an exponent field comprising p and an integer literal. The value of
a hexadecimal number is the value of the sequence of hexadecimal digits with optional point
multiplied by two raised to the power of the value of the integer literal, negated if there is a
leading - sign.

(¢) Either of the strings inf or infinity optionally preceded by +, with value +oo; or preceded
by -, with value —oo.

(d) A rational literal p/ ¢, that is p and ¢ separated by the / character, where p, ¢ are decimal
integer literals, with g positive. Its value is the exact rational number p/q.

An implementation may support a more general form of integer and/or number literal, e.g.,
in the syntax of the host language of the implementation. It may restrict the support of literals,
by relaxing conversion accuracy of hard cases: rational literals, long strings, etc., converting such
literals to Entire, for example. It shall document such restrictions.

By default the syntax shall be that of the default locale (C locale); locale-specific variants may
be provided.

12.11.3. Unit in last place. The “uncertain form” of interval literal, below, uses the notion
of the unit in the last place of a number literal s of some radix b, possibly containing a point
but without an exponent field. Ignoring the sign and any radix-specifying code (such as 0x for
hexadecimal), s is a nonempty sequence of radix-b digits optionally containing a point. Its last
place is the integer p = —d where d = 0 if s contains no point, otherwise d is the number of digits
after the point. Then ulp(s) is defined to equal b”. When context makes clear, “z ulps of s” or
just “z ulps”, is used to mean x x ulp(s). [Example. For the decimal strings 123 and 123., as well
as 0 and 0., the last place is 0 and one ulp is 1. For .123 and 0.123, as well as .000 and 0.000, the
last place is —3 and one ulp is 0.001.]

12.11.4. Bare intervals.

The following forms of bare interval literal shall be supported. To simplify stating the needed
constraints, e.g., | < u, the number literals [, u, m,r are identified with their values. Space shown
between elements of a literal denotes zero or more space characters.

(a) Special values: The strings [ ] and [ empty ], whose bare value is Empty; the string [ entire ],
whose bare value is Entire.

(b) Inf-sup form: A string [/, u ] where ! and u are optional number literals with | < u, I < 400
and u > —o0, see §10.2] and the note on difficulties of implementation §12.12.7 Its bare value
is the mathematical interval [I, u]. Any of [ and u may be omitted, with implied values | = —c0
and u = oo, respectively. A string [ m ] with number literal m is equivalent to [ m , m ].
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Form Literal Exact decorated value
Special [] Empty,,,

[entire] [—00, +00]dac
Inf-sup [1.e-3, 1.1e-3] [0.001,0.0011]con
[-Inf, 2/3] [—00,2/3]4ac
[0x1.3p-1,] [19/32, +00]dac
[,] [—OO +Oo}dac
Uncertain | 3.5671 [3.55,3.57] com
3.5671e2 [355, 357] con
3.56072 [3.558, 3.562) con
3.567 [3.555, 3.565] con
3.56072u [3.560, 3.562] con
-107 [—10.5, —9.5]con
-107u [—10.0, —9.5]con
-10712 [—22.0,2.0]con
-1077u [—10.0, +00]4ac
-1077 [—00, +00]qac
Nal [nai] Empty;q;
Decorated | 3.5671_def [3.55,3.57]qes

TABLE 12.1. Portable interval literal examples.

(c¢) Uncertain form: a string m ? r w E where: m is a decimal number literal of form @ above,
without exponent; r is empty or is a non-negative decimal integer literal ulp-count or is the 7
character; u is empty or is a direction character, either u (up) or d (down); and E is empty or
is an exponent field comprising the character e followed by a decimal integer literal exponent
e. No whitespace is permitted within the string.

With ulp meaning ulp(m), the literal m? by itself denotes m with a symmetrical uncer-
tainty of half an ulp, that is the interval [m — 7ulp, m+ ulp] The literal m?r denotes m with
a symmetrical uncertainty of r ulps, that is [m —r X ulp, m + r x ulp]. Adding 4 (down) or
u (up) converts this to uncertainty in one direction only, e.g., m?d denotes [m — $ulp,m] and
m?ru denotes [m,m + r X ulp]. Uncertain form with radius empty or ulp-count is adequate
for narrow (and hence bounded) intervals, but is severely restricted otherwise. Uncertain form
with radius ? is for unbounded intervals, e.g., m??d denotes [—oo, m], m??u denotes [m, +o0]
and m?? denotes Entire with m being like a comment. The exponent field if present multiplies
the whole interval by 10°, e.g., m ?ruee denotes 10° x [m, m + r X ulp].

12.11.5. Decorated intervals.
A decorated interval literal may denote either a bare or a decorated interval value depending
on context. The following forms of decorated interval literal shall be supported.

(a) The string [ nai ], with the bare value Empty and the decorated value Empty;;.
(b) A bare interval literal sx.
If sz has the bare value x, then sx has the decorated value newDec(x) Otherwise
sx has no decorated value.
(¢) A bare interval literal sx, an underscore “_", and a 3-character decoration string sd; where
sd is one of trv, def, dac or com, denoting the corresponding decoration dz.
If sx has the bare value x, and if x4, is a permitted combination according to then
s has the bare value « and the decorated value x4,. Otherwise s has no value as a decorated
interval literal.

[Examples. Table illustrates valid portable interval literals. These strings are not valid portable in-

terval literals: empty, [571], [1.000_000], [ganz], [entire!comment], [inf], 6777y, [nai] _ill,
[1-i11, [1_def, [0,inf] com.|

[13

12.11.6. Grammar for portable literals.
Portable literals permit exchange between different implementations.
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decDigit [0123456789]
nonzeroDecDigit [123456789]
hexDigit [0123456789abcdef]
spaceChar [ \t]
natural {decDigit} +
sign [+-]
integerLiteral {sign} ? {natural}
decSignificand {decDigit} * "." {decDigit} + | {decDigit}+ "." | {decDigit}+
hexSignificand {hexDigit} * "." {hexDigit}+ | {hexDigit}+ "." | {hexDigit}+

decNumlLit {sign} 7 {decSignificand} ( "e" {integerLiteral} )?

hexNumLit {sign} ? "0x" {hexSignificand} "p" {integerLiteral}

infNumLit {sign}? ( "inf" | "infinity" )

positiveNatural ~ ( "0" )* {nonzeroDecDigit} {decDigit} *

ratNumLit {integerLiteral} "/" {positiveNatural}

numberLiteral {decNumlLit} | {hexNumLit} | {infNumLit} | {ratNumlLit}

sp {spaceChar} *

dir ngn | "

pointintvl "[" {sp} {numberLiteral} {sp} "1"

infSuplntvl "[" {sp} {numberLiteral}? {sp} "," {sp} {numberLiteral}? {sp} "1"
radius {natural} | "2"

uncertintvl {sign} ? {decSignificand} "?" {radius}? {dir} ? ( "e" {integerLiteral} )?
emptylntvl n[u {Sp} n]n | ||[|| {Sp} "empty" {Sp} u]u

entirelntvl "[" {sp} "entire" {sp} "1"

speciallntvl {emptylntvl} | {entirelntvl}

barelntvlLiteral {pointintvl} | {infSuplntvl} | {uncertintvl} | {speciallntvl}

Nal "[" {sp} "nai" {sp} "I"

decorationLit "trv" | "def" | "dac" | "com"

intervalLiteral {Nal} | {barelntviLiteral} | {barelntviLiteral} "_" {decorationLit}

TABLE 12.2. Grammar for literals: integer literal is integerLiteral, number literal
is numberLiteral, bare interval literal is barelntvlLiteral and decorated interval literal
is intervallLiteral.

The syntax of portable integer and number literals and of portable bare and decorated interval
literals is defined by integerLiteral, numberLiteral, barelntviLiteral and intervalLiteral, respectively, in
the grammar in Table which uses the notation of 754 §5.12.3. Lowercase is assumed, i.e., a
valid string is one that after conversion to lowercase is accepted by this grammar. \t denotes the
TAB character.

The constructor textToInterval [13.2]of any implementation shall accept any portable
interval. An implementation may restrict support of some input strings (too long strings or strings
with a rational number literal). Nevertheless, the constructor shall always return a Level 2 interval
(possibly Entire in this case) that contains the Level 1 interval.

An implementation may support interval literals of more general syntax (for example, with
underscores in significand). In this case there shall be a value of conversion specifier cs that
restricts output strings of intervalToText to the portable syntax.

12.12. Required operations on bare and decorated intervals.

An implementation shall provide a T-version, see of each operation listed in §12.12.1] to
for each supported type T. That is, those of the T-version’s inputs and outputs that are
intervals are of type T (or the corresponding decorated type), except for the conversion operation
of whose output is of type T and whose input is of any type.

The implementation shall provide the type-independent decoration operations of
It shall provide the reduction operations of for the parent formats of supported 754-
conforming types.

Operations in this subclause are described as functions with zero or more input arguments
and one return value. It is language- or implementation-defined whether they are implemented
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in this way: for instance, two-output division, described in as a function returning an
ordered pair of intervals, might be implemented as a procedure divToPair(x,y, z1, z2) with input
arguments  and y and output arguments z; and zs.

An implementation, or a part thereof, that is 754-conforming shall provide mixed-type oper-
ations, as specified in for the following operations, which correspond to those that 754
requires to be provided as formatOf operations.

add, sub, mul, div, recip, sqrt, sqr, fma.

An implementation may provide more than one version of some operations for a given type.
For instance, it may provide an “accurate” version in addition to a required “tightest” one, to offer
a trade-off of accuracy versus speed or code size. How such a facility is provided is language- or
implementation-defined.

12.12.1. Interval constants. For each supported bare interval type T there shall be a T-version
of each constant function empty() and entire() of returning a T-interval with value
Empty and Entire, respectively. There shall also be a decorated version of each, returning
newDec(Empty) = Empty,,, and newDec(Entire) = Entireg,c, respectively, of the derived deco-
rated type.

12.12.2. Forward-mode elementary functions. Let T be a supported bare interval type and
DT the derived decorated type. An implementation shall provide a T-version of each forward
arithmetic operation in Its inputs and output are T-intervals, and it shall be a Level
2 interval extension of the corresponding point function. Recommended accuracies are given in
{12.10}

[Note. For operations, some of whose arguments are of integer type, such as integer power pown(z, p),
only the real arguments are replaced by intervals.]

Each such operation shall have a decorated version with corresponding arguments of type DT.
It shall be a decorated interval extension as defined in §I1.6}—thus the interval part of its output
is the same as if the bare interval operation were applied to the interval parts of its inputs.

The only freedom of choice in the decorated version is how the local decoration, denoted dvg
in of is computed. dvg shall be the strongest possible (and is thus uniquely defined) if
the accuracy mode of the corresponding bare interval operation is “tightest”, but otherwise is only

required to obey .

12.12.3. Two-output division.
There shall be a T-version of the two-output division divToPair(x,y) of §10.5.4] for each
supported bare interval type T, namely

(u,v) = divToPair(z,y),

where x and y are T-intervals. Each of the outputs w and v is a T-interval that encloses the
corresponding Level 1 value.

There shall be a decorated version where each of x, y, u and v is of the corresponding decorated
type. If either input is Nal then both outputs are Nal. Otherwise, if  and y are nonempty and
0 ¢ y, then wu is the same as the result of normal division «/y and shall be decorated the same
way; while v is empty and shall be decorated trv. In all other cases each output, empty or not,
shall be decorated trv.

12.12.4. Reverse-mode elementary functions. An implementation shall provide a T-version of
each reverse arithmetic operation in for each supported bare interval type T. Its inputs
and output are T-intervals.

These operations shall have “trivial” decorated versions, as described in

12.12.5. Cancellative addition and subtraction. An implementation shall provide a T-version
of each of the operations cancelMinus and cancelPlus in §10.5.6|for each supported bare interval
type T. Its inputs and output are T-intervals.

The T-version shall return an enclosure of the Level 1 value if the latter is defined, and
Entire otherwise. It shall return Empty if the Level 1 value is Empty. Thus, for the case of
cancelMinus(z,y), it returns Entire in these cases:

— either of  and y is unbounded;
— x # () and y = 0;
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— x and y are nonempty bounded intervals with width(z) < width(y).

cancelPlus(x, y) shall be equivalent to cancelMinus(z, —y).

If T is a 754-conforming type, the result shall be the T-hull of the Level 1 result when this is
defined.

These operations shall have “trivial” decorated versions, as described in
[Notes. Two cases need care. Examples are given where T is the inf-sup type of a format F.

— Determining whether the Level 1 value is defined needs care when x and y have equal widths in
finite precision. An example is cancelMinus([—1,a|,[—b,1) where a and b are positive F-numbers
less than [F'’s roundoff unit.

— For any x,y, the Level 1 result is always bounded when it is defined, but might overflow at Level
2. An example is cancelMinus([M, M], [-M,—M]) where M is the largest finite F-number. The
exact value is [2M,2M], whose T-hull is [M, +0c]. An implementation should not return Entire in
case of overflow. For any inf-sup type it can avoid doing so, since the Level 1 result has width not
exceeding that of «, and therefore at Level 2 cannot overflow to both —oo and +oo. Not returning
Entire in case of overflow makes the result Entire diagnostic: it occurs if, and only if, there is no
value at Level 1.

12.12.6. Set operations. An implementation shall provide a T-version of each of the operations
intersection and convexHull in for each supported bare interval type T. Its inputs and
output are T-intervals.

These operations should return the T-hull of the exact result. If either input to intersection
is Empty, or both inputs to convexHull are Empty, the result shall be Empty.

[Note. If T is an inf-sup type, the operation can always return the exact result.]

These operations shall have “trivial” decorated versions, as described in

12.12.7. Constructors. For each supported bare or decorated interval type T, there shall be a
T-version of each constructor in §10.5.8] It returns a T-datum.

Difficulties in implementation. Both textToInterval when its input is a literal of inf-sup form,
and numsToInterval, involve testing if a boolean value b = (I < u) is 0 (false) or 1 (true), to
determine whether the interval is empty or nonempty. Here [ and u are extended-real numbers.
In the former case they are values of number literals; in the latter, they are values of datums of
supported number formats.

Evaluating b as 0 when the true value is 1 (a “false negative”) leads to falsely returning Empty
as an enclosure of the true nonempty interval—a containment failure. Evaluating b as 1 when
the true value is 0 (a “false positive”) is undesirable, but permissible since it returns a nonempty
interval as an enclosure for Empty. Implementations shall ensure that false negatives cannot occur
and should ensure that false positives cannot occur.

[Note. Evaluating b correctly can be hard, if finite | and u have values very close in a relative sense and
are represented in different ways—e.g., if an implementation allows them to be floating-point values of
different radices. It could be especially challenging in an extendable-precision context.

Language rules might cause such errors even when | and u are of the same number format. E.g.,
in C, if long double is supported and has more precision than double, default behavior might be to
round long double inputs [ and u to double, on entry to a numsToInterval call. This would be
non-conforming—the comparison | < wu requires the exact values to be used, which requires use of a
version of numsToInterval with long double arguments.|

Bare interval constructors. A bare interval constructor call either succeeds or fails. This notion is
used to determine the value returned by the corresponding decorated interval constructor.

For the constructor numsToInterval(l,u), the inputs [ and u are datums of supported number
formats, where the format of [ may differ from that of u. For a given bare interval type T:

— There shall be a version of numsToInterval where [ and u are both of the same format, com-

patible with T, see
— If T is 754-conforming, there shall be a formatOf version of numsToInterval that accepts [ and
u having any combination of supported 754 formats of the same radix as T.
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Apart from these two requirements, what (I, «) format combinations are provided is language- or
implementation-defined.

The constructor call succeeds if (a) the implementation determines that the call has a Level 1
value x, see or (b) it cannot determine whether a Level 1 value exists, see the discussion at
the start of this subclause. The conditions under which case (b) might occur shall be documented.

Case (a) is that neither ! nor u is NaN, and the exact extended-real values they denote—also
called | and u for brevity—are known to satisfy I < u, I < 400, u > —oo. In this case the result
shall be a T-interval containing x. In case (b) the result shall be a T-interval containing ! and w.

If T is a 754-conforming type and [ and u are of 754 formats with the same radix as T, case
(b) cannot arise, and the result shall be the T-hull of @; in particular if « is an exact T-interval,
the result is . For other cases, the tightness of the result is implementation-defined.

Otherwise the call fails, and the result is Empty.

For the constructor textToInterval(s), the input s is a string. The constructor call succeeds
if: (a) the implementation determines that s is a valid interval literal with bare value x, see §12.11]
or (b) s is of inf-sup form [l,u] or [I,u]_dz with finite [ and u, but the implementation cannot
determine whether a Level 1 value exists, i.e. whether [ < u. The conditions under which case (b)
might occur shall be documented.

In case (a) the result shall be a T-interval containing x. If T is a 754-conforming type, this
shall be the T-hull of x; in particular if « is an exact T-interval, the result is . For other types
T, the tightness of the result is implementation-defined. In case (b) the result shall be an interval
containing [ and u.

Otherwise the call fails, and the result is Empty.

Decorated interval constructors. Each bare interval constructor shall have a corresponding decorated
constructor, taking the same input(s) as the bare constructor. The decorated constructor succeeds
if and only if the bare interval constructor succeeds. The decorated constructor fails returning Nal
if and only if the bare interval constructor fails.

If the bare interval constructor numsToInterval(l,u) succeeds, returning y, the decorated
form returns newDec(y), see §11.5)

If the bare interval constructor textToInterval(s) succeeds, returning y, the decorated form
returns y,,,, where dy is determined as follows:

— when s is a valid interval literal with decorated value x4, then dy shall equal dzx, except in the
case that dr = com and overflow occurred, that is, « is bounded and vy is unbounded. Then dy
shall equal dac.

Exception behavior. UndefinedOperation is signaled by both the bare and the decorated con-
structor when the input is such that the bare constructor fails. [Note. When signaled by the
decorated constructor it will normally be ignored since returning Nal gives sufficient information.)
PossiblyUndefinedOperation is signaled by both the bare and the decorated constructor when
the input is such that the implementation cannot determine whether a Level 1 value exists (the
two cases (b) above).

12.12.8. Numeric functions of intervals. An implementation shall provide a T-version of each
numeric function in Table of for each supported bare interval type T, giving a result
in a supported number format F that should be compatible with T, see An implementation
may provide several versions, returning results in different formats. If T is a 754-conforming type,
versions shall be provided giving a result in any supported 754 format of the same radix as T.

The mapping of a Level 1 value to an F-number is defined in terms of the following rounding
methods, which are functions from R to F. [Note. These functions help define operations of the
standard but are not themselves operations of the standard.]

— Round toward positive: x maps to the smallest F-number not less than z. If F has signed zeros,
0 maps to +0.

— Round toward negative: x maps to the largest F-number not greater than x. If F has signed
zeros, 0 maps to —0.

— Round to nearest: x maps to the F-number (possibly +00) closest to z, with an implementation-
defined rule for the distance to an infinity, and for the method of tie-breaking when more than
one member of F has the “closest” property. If F has signed zeros, 0 maps to +0.
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The implementation shall document how it handles cases not covered by the above rules, e.g.,
the distance to an infinity and the method of tie-breaking. If IF is a 754-conforming format, the tie-
breaking method shall follow 754 §4.3.1 and 754 §4.3.3; otherwise it is language- or implementation-
defined.

In formats that have a signed zero, a Level 1 value of 0 shall be returned as —0 by inf, and
40 by all other functions in this subclause.

— inf(x) returns the Level 1 value rounded toward negative.
— sup(«) returns the Level 1 value rounded toward positive.

— mid(x): the result m is defined by the following cases, where x,T are the exact (Level 1) lower
and upper bounds of .

x = Empty NaN.

x = Entire 0.

x = —00, T finite | The finite negative F-number of largest magnitude.

x finite, T = 400 | The finite positive F-number of largest magnitude.

z,T both finite m should be, and if T is a 754-conforming type shall be,
the Level 1 value rounded to nearest.

The implementation shall document how it handles the last case.

[Note. If F is compatible with T, a nonempty x always contains m. If F is not compatible with T
this might be impossible. E.g., let T be inf-sup binary64, and let x = [1 + u,1 + 2u] where u is
the binary64 roundoff unit. If F is binary64 (compatible) then m is 14w or 1+ 2u depending on
the tie-breaking method. If F is binary32 (incompatible) then no F-numbers lie in x, and m = 1.]

— rad(x) returns NaN if « is empty, and otherwise the smallest F-number r such that @ is contained
in the exact interval [m — r,m + r|, where m is the value returned by mid(x).
[Note. rad(x) might be +oo even though x is bounded, if F has insufficient range. However, if F is
a 754 format and T is the derived inf-sup type, rad(x) is finite for all bounded nonempty intervals.)

— wid(x) returns NaN if x is empty. Otherwise it returns the Level 1 value rounded toward +oo0.
[Note. For nonempty bounded x the ratio wid(x)/rad(x), which is always 2 at Level 1, ranges from
1 to +oo at Level 2. When F is a 754 format and T is the derived inf-sup type, it takes the value 1 if
the bounds of x are adjacent subnormal numbers, and the value 4o if £ = [—realmax, realmax].]

— mag(x) returns NaN if @ is empty. Otherwise it returns the Level 1 value rounded toward
positive.

— mig(x) returns NaN if x is empty. Otherwise it returns the Level 1 value rounded toward
negative, except that 0 maps to 40 if F has signed zeros.

Each bare interval operation in this subclause shall have a decorated version, where each input
of bare interval type is replaced by an input having the corresponding decorated interval type, and
the result format is that of the bare operation. Following if any input is Nal, the result is
NaN. Otherwise the result is obtained by discarding the decoration and applying the corresponding
bare interval operation.

12.12.9. Boolean functions of intervals.

An implementation shall provide a T-version of the function isEmpty(x) and the function
isEntire(x) in for each supported bare interval type T.

There shall be a function isNaI(x) for input @ of any decorated type, that returns true if @
is Nal, else false.

There shall be a T-version of each of the comparison relations in Table of for
each supported bare interval type T. Its inputs are T-intervals.

For a 754-conforming part of an implementation, mixed-type versions of these relations shall
be provided, where the inputs have arbitrary types of the same radix.

These comparisons shall return, in all cases, the correct value of the comparison applied to the
intervals denoted by the inputs as if in infinite precision. In particular equal(x,y), for those bare
interval inputs « and y for which it is defined, shall return true if and only if  and y (ignoring
their type) are the same mathematical interval, see

Each bare interval operation in this subclause shall have a decorated version, where each input
of bare interval type is replaced by an input having the corresponding decorated interval type.
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Following §11.7] if any input is Nal, the result is false (in particular equal(Nal, Nal) is false).
Otherwise the result is obtained by discarding the decoration and applying the corresponding bare
interval operation.

12.12.10. Interval type conversion. An implementation shall provide for each supported bare
interval type T the operation T-convertType to convert an interval of any supported bare interval
type to type T and from any supported decorated interval type to the corresponding decorated
type DT. Conversion is done by applying the T-hull operation, see For a bare interval x:

T-convertType(x) = hully(x).

Thus if T is an explicit type, see the result is the unique tightest T-interval containing «.

Conversion of a decorated interval is done by converting the interval part, except that if the
decoration is com and the conversion overflows (produces an unbounded interval) the decoration
becomes dac. That is, T-convertType(za.) = y,,, Where

y = T-convertType(x);

du — dac if dz = com and y is unbounded,
Y7\ dz  otherwise.

12.12.11. Operations on/with decorations.

An implementation shall provide the operations of These comprise the comparison
operations =, #, >, <, >, < for decorations; and, for each supported bare interval type and corre-
sponding decorated type, the operations newDec, intervalPart, decorationPart and setDec.

A call intervalPart(Nal), whose value is undefined at Level 1, shall return Empty at Level 2,
and shall signal the IntvlPartOfNal exception to indicate that a valid interval has been created
from the ill-formed interval.

12.12.12. Reduction operations. For each supported 754-conforming interval type, an imple-
mentation shall provide, for the parent format of that type, the four reduction operations sum,
dot, sumSquare and sumAbs of IEEE 754-2008 §9.4, correctly rounded.

Correctly rounded means that the returned result is defined as follows.

— If the exact result is defined as an extended-real number, return this after rounding to the
relevant format according to the current rounding direction. An exact zero shall be returned as
40 in all rounding directions, except for roundTowardNegative, where —0 shall be returned.

— For dot and sum, if a NaN is encountered, or if infinities of both signs were encountered in the
sum, NaN shall be returned. (“NaN encountered” includes the case oo x 0 for dot.)

— For sumAbs and sumSquare, if an Infinity is encountered, +oo shall be returned. Otherwise, if a
NaN is encountered, NaN shall be returned.

(These rules allow for short-circuit evaluation in certain cases.)

All other behavior, such as overflow, underflow, setting of IEEE 754 flags, signaling exceptions,
and behavior on vectors whose length is given as non-integral, zero or negative, shall be as specified
in IEEE 754-2008 §9.4. In particular, evaluation is as if in exact arithmetic up to the final rounding,
with no possibility of intermediate overflow or underflow.

Also, since correct rounding applies, the Inexact flag shall be set unless an exact extended-
numeric result is returned. (If a final overflow or underflow is indicated, the result is inexact.)

It is recommended that these operations for the parent format F be based on an accumulator
format datatype A(F) capable to represent exact dot products of long F vectors.

12.13. Recommended operations.

12.13.1. Forward-mode elementary functions.

The functions listed in are arithmetic operations. If any of them is provided, it shall
have a version for each bare and decorated interval type, specified as is done in §12.12.2] for the
required operations.

12.13.2. Slope functions.
The functions listed in §10.6.2| shall be handled in the same way as those in §12.13.1
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12.13.3. Boolean functions of intervals.

The functions listed in shall be handled in the same way as those in

If T-version of the function isMember(m,x) is provided, the number format F of the argument
m should be compatible with T. An implementation may provide several T-versions, with different
formats of m. If T is a 754-conforming type, versions should be provided with the argument m of
any supported 754 format of the same radix as T.

12.13.4. Extended interval comparisons.
How the operations in §10.6.4] are handled at Level 2 is implementation-defined.

12.13.5. Ezact reduction operations. An implementation that provides 754-conforming type
for the parent format I should provide an accumulator format datatype A(F) associated with the
F, and associated operations. An A(F) datum z is capable to represent exactly dot products of
vectors of any reasonable length of arbitrary finite F-numbers.

The following operations should be provided.

— convert converts from an accumulator format to a floating-point format, or vice versa, or from
one accumulator format to another.

— exactAdd and exactSub adds or subtracts two accumulator or floating-point format operands,
of which at least one is an accumulator, giving an accumulator format result.

— exactFma computes z + x * y where z has an accumulator format and x,y are of floating-point
format, giving an accumulator format result.

— exactDotProduct. Let a and b be vectors of length n holding floating-point numbers of format
F. Then exactDotProduct(a,b) computes a-b = > ,_, axby exactly, giving an accumulator
format result.

The result of all operations may be converted if necessary to a specified result format by application
of the convert operation.

[Example. The Complete Arithmetic, specified by Kulisch and Snyder [5],[4], is an example of im-
plementation of accumulator format and exact reduction operations. The recommended accumulator
format for the binary64 format in the Complete Arithmetic has 4 bits for sign and status, 2134 bits
before the point, and 2150 after the point, for a total of 4288 bits or 536 bytes; this allows for at least
288 multiply-adds before overflow can occur. |

59 June 1, 2014



P1788/D9.2, June 1, 2014
Chapter 2 Draft Standard For Interval Arithmetic §13.3

13. Input and output (I/0) of intervals

13.1. Overview. This clause of the standard specifies conversion from a text string that
holds an interval literal to an interval internal to a program (input), and the reverse (output).
The methods by which strings are read from, or written to, a character stream are language- or
implementation-defined, as are variations in some locales (such as specific character case matching).

Containment is preserved on input and output so that, when a program computes an enclosure
of some quantity given an enclosure of the data, it can ensure this holds all the way from text data
to text results.

In addition to the above I/O, which might incur rounding errors on output and/or input, each
interval type T has an exact text representation, via operations that convert any internal T-interval
x to a string s, and back again to recover x exactly.

13.2. Input. Input is provided for each supported bare or decorated interval type T by the T-
version of textToInterval(s), where s is a string, as specified in §12.12.7 It accepts an arbitrary
interval literal s and returns a T-interval enclosing the Level 1 value of s.

For 754-conforming types T the required tightness is specified in For other types, the
tightness is implementation-defined.

[Note. This provides the basis for free-format input of interval literals from a text stream, as might be
provided by overloading the >> operator in C++.]

13.3. Output. An implementation shall provide an operation
intervalToText (X, cs),

where cs is optional. X is a bare or decorated interval datum of any supported interval type T,
and cs is a string, the conversion specifier. The operation converts X to a valid interval literal
string s, see§12.11] which shall be related to X as follows, where Y is the Level 1 value of s.

(i) Let T be a bare type. Then Y shall contain X and shall be empty if X is empty.
(ii) Let T be a decorated type. If X is Nal, then Y shall be Nal. Otherwise, write X = x4,
Y =yg4,- Then
— y shall contain @ and shall be empty if x is empty.
— dy shall equal dx, except in the case that dr = com and overflow occurred, that is, « is
bounded and vy is unbounded. Then dy shall equal dac.

[Note. Y being a Level 1 value is significant. E.g., for a bare type T, it is not allowed to convert
X = 0 to the string garbage, even though converting garbage back to a bare interval at Level 2 by
T-textToInterval gives (), because garbage has no Level 1 value as a bare interval literal]

The tightness of enclosure of X by Y is language- or implementation-defined.

If present, cs lets the user control the layout of the string s in a language- or implementation-
defined way. The implementation shall document the recognized values of cs and their effect; other
values are called invalid.

If ¢s is invalid, or makes an unsatisfiable request for a given input X, the output shall still
be an interval literal whose value encloses X. A language- or implementation-defined exten-
sion to interval literal syntax may be used to make it obvious that this has occurred. [Exam-
ple. Suppose, for uncertain form, that m is undefined or r is “unreasonably large”. Then a string
such as [Entire!uncertain form conversion error] might be produced. The implementation of
textToInterval would need to accept this string as meaning the same as [Entire]. Such a string
is not a portable literal, see §12.11.6}]

Among the user-controllable features should be the following, where [, u are the interval bounds
for inf-sup form, and m, r are the base point and radius for uncertain form, as defined in

(i) It should be possible to specify the preferred overall field width (the length of s), and whether
output is in inf-sup or uncertain form.

(ii) Tt should be possible to specify how Empty, Entire and Nal are output, e.g., whether lower
or upper case, and whether Entire becomes [Entire] or [-Inf, Inf].

(iii) For I, v and m, it should be possible to specify the field width, and the number of digits after
the point or the number of significant digits. For r, which is a non-negative integer ulp-count,
it should be possible to specify the field width. There should be a choice of radix, at least
between decimal and hexadecimal.
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(iv) For uncertain form, it should be possible to select the default symmetric form, or the one
sided (u or d) forms. It should be possible to choose whether an exponent field is absent (and
m is output to a given number of digits after the point) or present (and m is output to a
given number of significant digits).

(v) Tt should be possible to output the bounds of an interval without punctuation, e.g.,
1.234 2.345 instead of [1.234, 2.345]. For instance, this might be a convenient way
to write intervals to a file for use by another application.

If ¢s is absent, output should be in a general-purpose layout (analogous, e.g., to the %g specifier
of fprintf in C). There should be a value of c¢s that selects this layout explicitly.
[Note. This provides the basis for free-format output of intervals to a text stream, as might be provided
by overloading the << operator in C++.

If an implementation supports more general syntax of interval literals than the portable syntax
defined in there shall be a value of ¢s that restricts output strings to the portable syntax.

If T is a 754-conforming bare type, there shall be a value of c¢s that produces behavior identical
with that of intervalToExact, below. That is, the output is an interval literal that, when read
back by T-textToInterval, recovers the original datum exactly.

13.4. Exact text representation. For any supported bare interval type T, an implementa-
tion shall provide operations intervalToExact and exactToInterval. Their purpose is to provide
a portable exact representation of every bare interval datum as a string.

These operations shall obey the recovery requirement:

For any T-datum «, the value s = T-intervalToExact(x) is a string,
such that y = T-exactToInterval(s) is defined and equals x.

[Note. From this is datum identicality: @ and y have the same Level 1 value and the same type.
They might differ at Level 3, e.g., a zero bound might be stored as —0 in one and +0 in the other.]

If T is a 754-conforming type, the string s shall be an interval literal which, for nonempty «,
is of inf-sup type, with the lower and upper bounds of x converted as described in §13.4.1] For
such s, the operation exactToInterval is functionally equivalent to textToInterval.

If T is not 754-conforming, there are no restrictions on the form of the string s apart from
the above recovery requirement. However, the representation should display, in a human-readable
way, the exact values of the parameters of the type’s mathematical description (e.g., m, r and 7
for a type that represents an interval in triplex form [m + r,m + 7).

The algorithm by which intervalToExact converts  to s is regarded as part of the definition
of the type and shall be documented by the implementation.

[Example. Writing a binary64 floating-point datum exactly in hexadecimal-significand form passes the
“readability” test since it displays the parameters sign, exponent and significand. Dumping its 64 bits
as 16 hex characters does not.]

Since exactToInterval creates an interval from non-interval data, it is a constructor similar to
textToInterval. When its input is invalid, it shall return Empty and signal one of the exceptions
UndefinedOperation or PossiblyUndefinedOperation as specified in

13.4.1. Conwversion of 754 numbers to strings. A 754 format F is defined by the parameters:
b = the radix, 2 or 10; p = the number of digits in the significand (precision); emaz = the maximum
exponent; emin =1 — emax = the minimum exponent (see 754-2008 §3.3).

A finite F-number = can be represented (—1)° x b¢ X m where s = 0 or 1, e is an integer,
emin < e < emax, and m has a p-digit radix b expansion dg.dids . ..d,—1, where d; is an integer
digit 0 < d; < b (so 0 < m < b). As used within interval literals, x denotes a real number, with
no distinction between —0 and +0. To make the representation unique, constraints are imposed in
three mutually exclusive cases:

~ A normal number, with |z| > ™", shall have dy > 1 (so 1 < m < b).

— A subnormal number, with 0 < |z| < b shall have e = emin, which implies dy = 0 (so
0<m<1).

— Zero, x = 0, shall have sign bit s = 0 and exponent e = 0 (and necessarily m = 0).

[Note. For b = 2 the standard form used by 754 is the same as this, except for replacing zero by

two signed zeros, with exponent e = emin. For b = 10, there is also the difference that 754 normal
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numbers have several representations if they need fewer than p digits in their expansion. The standard
form above chooses the representation with smallest quantum, which is the unique one having doy # 0.]

The rules given below for converting x to a string zstr allow user-, language- or implementation-
defined choice while ensuring the values of s, m and e are easily found from xstr in each of these
cases, even without knowledge of the format parameters p, emaz, emin.

zstr is the concatenation of: a sign part sstr; a significand part mstr; and an exponent part
estr. If b = 2, the hex-indicator "0x" is prefixed to mstr.

sstr is "=" or an optional "+"  as appropriate.

If b = 10, mstr is the (decimal) expansion dy.d1ds . . . d,—1, optionally abbreviated by removing
some or all trailing zeros. If this leaves no digits after the point, the point may be removed. If
b = 2, mstr is formed from the (binary) expansion dy.d1ds . ..d,—1, abbreviated in the same way,
and then converted to a hexadecimal string Dy.D; ... (so necessarily Dy is 1 if « is normal, 0 if x
is subnormal or zero).

estr consists of "e" if b = 10, "p" if b = 2, followed by the exponent e written as a signed
decimal integer, with the sign optional if e > 0.

[Examples. In any binary format, the number 2 (with s =0, m = 1, e = 1) may be written as 0x1pl
or +0x1.0p+01, etc., but not as 0x2p0; while % may be written as 0x1p-1 or +0x1.0p-01, etc. The
number —4095 (with s =1, m = gg%, e = 11) may be written as -0x1.ffep+11.

In decimal32 (see 754-2008 Table 3.6), which has p = 7, the smallest positive normal number
may be written 1e-95 or +1.000000e-95, etc.; and the next number below it as 0.999999e-95. The
smallest positive number may be written 0.000001e-95.]

Above, alphabetic characters have been written in lowercase, but they may be in either case.

A shorter form for subnormal numbers may be used, normalized by requiring d; # 0; however,
to find the canonical m and e from zstr one then needs to know emin. For instance, the smallest
positive decimal32 number x = 0.000001e-95 has the shorter form 0.1e-101, but to deduce that
2 has m = 0.000001 and e = —95 one needs to know that emin = —95 for this format.

13.4.2. Exact representations of comparable types. The exact text representation of a bare
interval of any type should also be a valid exact representation in any wider (in the sense of
type, which when converted back produces the mathematically same interval.

That is, let type T’ be wider than type T. Let « be a T-interval and let

s = T-intervalToExact(x).
Then
' = T'-exactToInterval(s)

should be defined and equal to T'-convertType(z).
[Note. If T and T’ are 754-conforming types, this property holds automatically, because of the prop-
erties of textToInterval and the fact that s is an interval literal.)
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14. Level 3 description

14.1. Level 3 introduction. Level 3 is where Level 2 datums are represented, and operations
on them described. Level 3 entities are here called objects. They represent Level 2 datums and
may be referred to as concrete, while the datums are abstract.

14.2. Representation. Individual datums of an abstract type or format are represented by
individual objects of its concrete type or format. The property that defines a representation, for a
given type or format, is:

Each datum shall be represented by at least one object. Each object shall
represent at most one datum.

(30)
[Examples. Let F be a 754 format and let T the derived (bare) inf-sup type. Three possible represen-
tations are:

— inf-sup form. Any T-interval x is represented at Level 3 by the object (inf(z), sup(x)) of two Level
2 numbers — members of F. All intervals have only one Level 3 representative because operations
inf and sup are uniquely defined at Level 2 §12.12.8 interval [0,0] has representative (-0, +0),
interval Empty has representative (400, —00).

— inf-sup-nan form. The objects are defined to be pairs (I,u) where l,u are members of F. A
nonempty T-interval x = [z, 7] is represented by an object (I,u) such that the values of | and u are
x and T, and Empty is represented by (NaN, NaN). [lts valid objects are (NaN, NaN), together with
all (I,u) such that l,u are not NaN and | < u, | < 400, u > —00.

— neginf-sup-nan form. This is as the previous, except that for a nonempty T-interval x the value
oflis —z.

If, in these descriptions I, u and NaN are viewed as Level 2 datums, then interval [0,0] has four repre-
sentatives in inf-sup-nan and neginf-sup-nan forms: (-0,40), (-0, -0), (40,40), (40, —-0). Each
nonempty interval with nonzero bounds has only one representative: there are unique |l and u. Empty
has also only one representative: there is an unique NaN. However, NaN itself has representatives, and
from this viewpoint Empty has more than one representative: there are many NaNs, quiet or signaling
and with different payloads, to use in Empty = (NaN, NaN).

]

14.3. Operations and representation. Each Level 2 (abstract) library operation is imple-
mented by a corresponding Level 3 (concrete) operation, whose behavior shall be consistent with
the abstract operation.

When an input Level 3 object does not represent a Level 2 datum, the result is implementation-
defined. An implementation shall provide means for the user to specify that an InvalidOperand
exception be signaled when this occurs.

To promote reproducibility ( , an implementation should provide a computational

mode where, provided certain programming restrictions are adhered to, the computed values de-
pend only on the Level 2 values of inputs.
[Note. Such an effect might be achieved by canonicalizing, i.e., ensuring that, at least for operations
with numeric output, the representative of the output is independent of the representatives of the
inputs—in the notation above, y' is not changed by changing the x}. However, doing so incurs a cost,
and there will be an implementation-defined trade-off between the run time overhead of a “reproducible
mode”, and its scope, i.e., how few programming restrictions it imposes.

As an example, let F be a 754 decimal format and T the derived inf-sup type. Suppose a T-interval
[[,u] is represented at Level 3 as the pair of F-numbers (I,u). Let f be the expression

f(z) = sameQuantum(inf(x),0.3)

(see 754 §5.7.3). Suppose a program reads x using textToInterval, first from the string [0.3,inf],

then from [0.30,inf]. A straightforward implementation might store them with the two Level 3

representations ' = (0.3, 400) and «” = (0.30, 4+00), where 0.3 and 0.30 stand for the 754 decimal

number objects (0, —1,3) and (0, —2,30) denoting the same real value 0.3 = 3 x 10~ = 30 x 1072,

Thus ' = x" at both Level 1 and Level 2, and the user might expect they give the same output, but
f(z') = sameQuantum(0.3,0.3) = true;

f(z") = sameQuantum(0.30, 0.3) — false.
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The standard does not say which of these results is “correct”. Rather than change the implementation,
it might be better to document that such code must be avoided if reproducible behavior is required.]

14.4. Interchange representations and encodings. The purpose of interchange repre-
sentations and encodings is to allow the loss-free exchange of Level 2 interval data between 754-
conforming implementations. This is done by imposing a standard Level 3 representation using
Level 2 number datums and delegating interchange encoding of number datums to the IEEE 754
standard.

Let & be a datum of the bare interval inf-sup type T derived from a supported 754 format F.
Tts standard Level 3 representative is an ordered pair (inf(x),sup(z)) of two Level 2 F-numbers
as defined in §12.12.8] For example, the only representative of Empty is the pair (+oo, —00) and
the only representative of [0, 0] is the pair (-0, 40).

Let x4, be a datum of the decorated interval type DT derived from T. Its standard Level 3
representative is an ordered triple (inf(x),sup(x),dz)) of two Level 2 F-datums and a decora-
tion. For example, the only representative of Empty,,, is the triple (400, —00, trv) and the only
representative of Nal is the triple (NaN, NaN, i11).

Interchange Level 4 encoding of an interval datum is a bit string that comprises the interchange
encodings of fields of the ordered pair/triple above, in the order given.

Interchange encoding of the F-datum fields is a bit string encoding of one of the 754 interchange
formats (754 §3.6). The first bit is the sign bit and the last bit is the least significant bits (LSB) of
the significand. The choice of interchange format and the choice between densely packed decimal
(DPD) or binary integer decimal (BID) significand encoding for decimal 754 interchange formats
(754 §3.5) are parameters of interchange encoding.

Interchange encoding of the decoration field is an 8-bit string according with the table

Decoration | Encoding
i1l 00000000
trv 00100000
def 01000000
dac 01100000
com 10000000

[Example. The interchange representation of inf-sup binary32 decorated interval [—1, 3]con is a triple

(-0x1.000000p0, +0x1.800000p1, com).

The interchange encodings of its fields are these bit strings (with underscores for readability):

-0x1.000000p0 | 10111111_10000000-00000000-00000000
+0x1.800000p1 | 01000000-01000000-00000000-00000000
com 10000000 .

The interchange encoding of the interval is a bit string of length 72:

10111111-10000000-00000000-00000000-01000000-01000000-00000000-00000000-10000000 . |
[Note. The above rules imply an interval has a unique interchange representation if it is not Nal and in
a binary format, but not generally otherwise. The reason for the rules is that the sign of a zero bound
cannot convey any information relevant to intervals; but an implementation may potentially use cohort
information, or a NaN payload.]

A 754-conforming implementation shall provide an interchange encoding for each supported
754 interval type. Interchange encodings for non-754 interval types, and on non-754 systems, are
implementation-defined. If an implementation provides other decoration attributes besides the
standard ones, then how it maps them to an interchange encoding is implementation-defined.
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Including a new flavor in the standard

Additional flavors can be included in this standard. Standard-conforming flavors shall conform
to the specifications in clauses 7 and 8. Official acceptance of a new flavor is done by submitting a
Project Authorization Request (PAR) to the IEEE Standards Association for an amendment. The
procedures for submitting an amendment shall be those as outlined in the IEEE Standards Style
Manual, although the editing instructions normally would involve only a statement to insert an
annex corresponding to the new flavor. The new flavor shall be vetted with the same care as the
base standard. It is the responsibility of the interested parties to form the working group, submit
the PAR, reach consensus, and see the amendment through the Sponsor Ballot.
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ANNEX B

The fundamental theorem of decorated interval arithmetic
for the set-based flavor

This subclause states and proves the Fundamental Theorem for the set-based flavor, in a
computationally verifiable form where the decoration system is used to identify the different cases
of that theorem. It thereby proves that a conforming implementation of this flavor can be used
to conclude while evaluating a point function that it is everywhere defined, or everywhere defined
and continuous, etc., on an input box.

B1. Preliminaries

The variables in an expression. We denote the set of variables occurring in expression f by V(f).
This set is defined as follows:

— If f is a single named variable, e.g. x, then V(f) = {x}. The x is here regarded as a symbol,
chosen from some set of allowed symbols.
— Iff=h(gy,...,g;) then

k
vin =V

In particular, if £ = 0 (so f is a constant, see below) then V(f) = 0.

Argument association by keyword. It is helpful to use both positional and keyword notation for

associating dummy arguments to actual arguments when invoking a function

Library operations ¢ use positional notation (v, ..., v) with the arguments in a fixed order,
and the names of the dummy arguments are not important. However the theorem is simpler to
state and prove if, for a function defined by expression, the variables occurring in the expression
are linked by name to their actual arguments. E.g., expression f = b/d + a is deemed to define
a function f with arguments a,b,d in no specified order. Keyword notationE] is illustrated by
fla="5,b=12,d =4), which denotes the evaluation 12/4 + 5 with result 8.

Formally, positional notation numbers the elements of V(f) from 1 to n and indexes actual
arguments x; to match, making a map = : ¢ — x; defined on {1,...,n}; while keyword notation
indexes the arguments x, directly by the variables v, making a map x : v — z,, defined on V().

Such an z is regarded as an actual-argument vector. When U C V(f), notation xyy means the
subvector comprising those x,, for v € U, i.e., the restriction of map x to subset U of its domain.

Keyword notation helps solve two related problems, of empty interval inputs and of ill-formed
interval inputs. These occur with positional notation when there is an argument that does not
actually occur in the expression.

[Example. Make the positional definition y = f(a,b,c,d) = b/d + a, where argument ¢ does not occur

in the defining expression f = b/d + a.

— Suppose, with bare interval evaluation, we evaluate y = f(a, b, ¢, d) where a,b, d are nonempty but
¢ = (0. What actually results from evaluating the expression f is y» = b/d + a, which (whether at
Level 1 or 2) is in general nonempty.

Using the positional definition, the input box is the product of 4 intervals, xtp = axbxcxd =
a xbx 0 xd=10, so that the theoretical range is yp = Rge(f|0) = 0.

Using the keyword definition, the input box is the product of 3 intervals x,, for v € V(f), that is
xx = a x b x d# 0, making the theoretical range to be yi = Rge(f | xx) # 0. In fact—if using
the Level 1 interval versions of operations—y coincides with y, whenever 0 ¢ b.

1Similar to the keyword argument feature in Fortran, the subs command in Maple, etc.
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— A similar case arises with decorated interval evaluation, where inputs aq,,bay, dqgq are well-formed
but cq4. is Nal. Positional notation suggests the input box, and hence the result, should be Nal, but
this result cannot come by evaluating the expression one operation at a time; the only way to get it
is to redefine evaluation to include a preliminary scan that looks for Nal inputs.

]

This example shows that keyword notation defines a theoretical result having a more useful
and common-sense relation to the computed result of bare or decorated interval evaluation of an
expression, than does positional notation.

Constant functions. It is necessary to clarify the case of a zero-argument arithmetic operation h. A
point argument of a general k-ary h is a tuple u = (uy,...,u,) € R¥. For k = 0 this is the empty
tuple (), which is the unique element of RY. Since R is a singleton set, a particular b : R® — R is
either total—defined everywhere—on R?, with a unique real value; or defined nowhere on RO.

— The total functions are in one to one correspondence with R. If ¢ is a symbol denoting a real
number, the notation ¢() means the total function on R® with value c.
— The nowhere defined function on RV is by definition the “Not a Number” function NaN.

In this way, each h : R® — R is either identified with a real constant—e.g., the functions 0.1() and
m() are identified with 0.1 and 7—or is the unique NaN function.

The Level 1 interval version (the natural interval extension) of a total ¢() is ¢ : R — IR with
value [c, ¢]; that of the NaN function is the “Not an Interval” function Nal with value 0.
The decorated version of ¢() produces [c, ¢|con; the decorated version of Nal produces 0;1.

At Level 2 one must consider finite precision. E.g., if T is the type inf-sup binary64, and
¢ = 0.1, then [c, ] is not a T-interval and must be enclosed in a larger interval. A general interval
extension of the constant ¢() is any interval [c,¢] that contains c. Its decorated version is [c,qc
where

any decoration D com, if [¢,¢] is bounded,
de = . . .
any decoration D dac, if [¢,¢] is unbounded.

Initialization of intervals. Define a decorated interval X = x4, to be validly initialized if either
gz = Din1 or par(Id, ) holds, the latter being equivalent to dz 2 Dec(Id|x). An X for which
dx # i11 is called tightly initialized if do = Dec(Id |x). A decorated box is validly, or tightly,
initialized if each of its decorated interval components is so.

The possible valid initializing decorations for the various kinds of interval are shown in the
table below, with the tight initialization case underlined.

Interval x ‘ Valid initializing decoration
nonempty and bounded, com, dac, def, trv
unbounded, dac, def, trv

empty, trv

any nonempty bare interval; or empty | i1l

The tightly initialized cases coincide with those obtainable from a decorated constructor. If it
succeeds, the decoration is as set by the newDec function. If it fails, the result is (;11.

B2. The theorem

THEOREM B2.1 (Fundamental Theorem of Decorated Interval Arithmetic, FTDIA). Let f
be an arithmetic expression denoting a real function f. Suppose f is evaluated, possibly in finite
precision, on a validly initialized decorated box X = xg4,, with components indexed over V(f), to
give result Y =y,

If some component of X is decorated i1l then

dy = i11 (31)

If no component of X is decorated i11, and none of the operations ¢ of f is an everywhere
undefined function Un, then dy # i1l and

y 2 Ree(f|z) and (32)
dy 2 Dec(f | x). (33)
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In more primitive terms, @, say that f(x) € y for all x € x, and pqy(f,x) holds.
Proof. We proceed by induction on the number of operations in f.

Base case. This is the case when f has zero operations. That is, it is a single variable, say x, and
denotes the identity function f = Id : « — z (x € R). Then the output Yay €quals the input
decorated interval X = xg4,. [Note. In finite precision it appears this need not be the case because
of e.g., type conversion. However this is to be treated as a separate unary arithmetic operation—a
decorated interval extension of l|d—which must obey the usual rules for arithmetic operations.]

Thus if de = 111, then dy = 111 and holds. If dx # 111, then Rge(f|x) = Rge(Id |x) =
T =1y so holds. Also 111 # dy = dx 2 Dec(Id|x) = Dec(f | x) by the definition of valid
initialization, so holds. Hence the Theorem is true in this case.

Induction step. Suppose the Theorem has been established for all expressions with fewer than N
operations, and let f have N operations.

By the definition of an expression, f is obtained from k expressions g;, ¢« = 1,...,k, through
an arithmetic operation h of some arity k& > 0. That is, f = h(gy,...,g;), where necessarily each
g; has fewer than N operations. (Note the case k = 0, of a constant function, is included in this
argument. )

Let V; = V(g;), that is, the set of variables occurring in g;. Then V(f) = Ule V(g;). When f,
h, and the g; are regarded as defining point functions, this means f(z) = h(gi(zv,), ..., gr(zv,)),
where xy, is V(g;) regarded as a vector.

By the inductive hypothesis the theorem holds for each g;. That is, we have computed an
interval g; and a decoration dg;, such that by ,

g; 2 Rge(gi | zv;) and (34)
Pdg, (9, Tv,) holds. (35)

By the definition of a decorated interval version of f, y,, is computed using a decorated interval
extension of h, hence by the definition in

y 2 Rge(h|g) and (36)

dy = min{ dh,dg,...,dgy } (37)
for some dh such that

pan(h, g) holds. (38)

Corresponding to the different meanings of the decorations, are verified case by case.

Case df = i11. Then either some dg; = i1l or dh = il1l.

— If dg; =111, by Dom g; is empty, and therefore Dom f is empty.

— If dh = 111, then by Dom h is empty, and therefore Dom f is empty.

In both cases, Rge(f | ) = 0 and pi11(f, ) holds. Since the computed result is 011, hold.

Case df = trv. This is always true, and nothing needs to be shown.

Case df = def. Then each dg; > def. Hence, for all i = 1,...,k, xy, is a nonempty subset of
Dom g;, and by ([34), g; 2 Rge(gi | @v,). Since also dh > def, g is a nonempty subset of Dom h.
Hence f is everywhere defined on @, that is pges (f, ) holds, and holds.

It remains to show (32)). For any v € Rge(f | ), there is 2 € @ such that v = f(z). Then there
exist xy, € xy, for i =1,...,k such that

v=f(z)= h(gl(xvl), ... ,gk(:cvk)).
Denote u; = g;(zv,) and u = (ug,...,ug). Since u; € Rge(g; | xv,) C g,
v=f(x) =h(u,..., ug)
€ {h(u) |ueg}
=Rge(h[g) Cy.

Since v was arbitrary, this proves . It holds in the next two cases since dac and com are stronger
than def.

and v € g, we have
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Case df = dac. This is as the def case with the addition that the restriction of each g; to xy, is
everywhere continuous, and the restriction of h to g is everywhere continuous. Hence the restriction
of f to x is everywhere defined and continuous, and holds.

Case df = com. Then each dg; = com. Hence, for all i = 1,...,k, xy, is a bounded, nonempty
subset of Dom g;, g; is continuous at each point in @y;, and the computed g, is bounded. Since
also dh = com, h is defined and continuous at each point of g, f is defined and continuous at each
point of @, and the computed y is bounded; holds.

This completes the induction step and the proof. O

From the details of the proof one sees

COROLLARY B2.2. If the result y,,, has dy = 111, and the expression has at least one operation,
then y = 0.

This gives an argument in favor of assuming that if the decoration is i1l then the interval
part is always empty, i.e., of defining Nal to be 0;1;.
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C1. Introduction

This document specifies a subset of functionality and requirements of the IEEE P1788 Standard
for Interval Arithmetic, referred to below as the full standard. This subset constitutes the Basic
Standard for Interval Arithmetic. As such, it can be viewed as a profile and could be presented as
part of the (full) IEEE P1788 document. However, the goals of the present document are to be
self-contained, simpler and easier to grasp (than the full one), and to contain all the information

needed for implementing this basic standard.
It aims to:

— cover most of the functionality of existing packages for interval arithmetic;
— provide the functionality needed by most applications; and

— be easier to implement than the full standard.

71



P1788/D9.2, June 1, 2014
Chapter C Draft Standard For Interval Arithmetic §C2.3

This basic standard does not introduce any new features—it selects the ones from the full standard
that are commonly used (according to the participants in the interval arithmetic standardization
effort). It features

— set-based intervals,

— the inf-sup interval type based on the IEEE binary64,
— the decoration system, and

simplified I/O.

A program that is built on top of an implementation of the basic standard should compile and run
using an implementation of the full standard, or any superset of the former.

Implementing the full standard will be a major undertaking; implementing the basic standard
could be accomplished much more easily. Having an implementation of the basic standard and
testing its concepts in practice, and in particular the decoration system, would create a solid base
on which to build an implementation of the full standard.

As in the full standard, below are presented Level 1 (§C2|), the decoration system (,
Levels 2 and 3, ( 7 and input and output of intervals (§C5|). Required features from the
full standard that are not required here are listed in §C7]

C2. Level 1 description

In this clause, subclauses to describe the theory of set-based intervals and inter-
val functions. Subclause §C2.5|lists the required arithmetic operations (also called elementary
functions) with their mathematical specifications.

C2.1. Level 1 entities. Set-based intervals deal with entities of the following kinds.

~ The set R = R U {00, 400} of extended reals.
— The set of (text) strings, namely finite sequences of characters chosen from some alphabet.
— The set of decorations defined in

Any member of R is called a number. It is a finite number if it belongs to R, else an infinite
number. An interval’s members are finite numbers, but its bounds can be infinite. Finite or
infinite numbers can be inputs to interval constructors, as well as outputs from operations, e.g.,
the interval width operation.

Since Level 1 is primarily for human communication, there are no Level 1 restrictions on the
alphabet used. Strings may be inputs to interval constructors, as well as inputs or outputs of
read/write operations.

C2.2. Intervals. The set of mathematical intervals is denoted by IR. It consists of exactly
those subsets @ of the real line R that are closed and connected in the topological sense. Thus, it
comprises the empty set (denoted ) or Empty) together with all the nonempty intervals, denoted
[, Z] and defined by

2,7 ={zeR|z<z<T}, (39)

where z and T, the bounds of the interval, are extended-real numbers satisfying z < Z, x < 400
and T > —oo0.

This definition implies —oo and 4oo can be bounds of an interval, but are never members of
it. In particular, [—oo,+00] is the set of all real numbers satisfying —0o < x < 400, which is the
whole real line R—not the whole extended real line R.

A box or interval vector is an n-tuple (x1,...,x,), whose components x; € IR. The box x
is empty if (and only if) any of its components x; is empty.

C2.3. Hull. The (interval) hull of an arbitrary subset s of R™, written hull(s), is the tightest
member of IR that contains s. Here the tightest set with a given property is the intersection of
all sets having that property, provided the intersection itself has this property.
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C2.4. Functions.

C2.4.1. Function terminology. The terms operation, function and mapping are broadly syn-
onymous. The following summarizes usage, with references in parentheses to precise definitions of
terms.

— A point function ( is a mathematical real function of real variables. Otherwise, function
is usually used with its general mathematical meaning.

— An arithmetic operation (§C2.4.3)) is a point function for which an implementation provides
versions in the implementation’s library (§C2.4.3)).

— A wersion of a point function f means a function derived from f; typically a bare or decorated
interval extension (§C2.4.4)) of f.

— An interval arithmetic operation is an interval extension of a point arithmetic operation (

— An interval non-arithmetic operation is an interval-to-interval library function that is not an

interval arithmetic operation (§C2.4.4)).

— A constructor is a function that creates an interval from non-interval data (§C2.5.4)).

C2.4.2. Point function. A point function is a (possibly partial) multivariate real function:
that is, a mapping f from a subset D of R™ to R™ for some integers n > 0,m > 0. It is a scalar
function if m = 1, otherwise a wvector function. When not otherwise specified, scalar is assumed.

The set D where f is defined is its domain, also written Dom f. To specify n, call f an
n-variable point function, or denote values of f as

flxy, ... xp). (40)
The range of f over an arbitrary subset s of R™ is the set Rge(f|s) defined by
Rege(f|s)={f(z) |z € sand z € Dom f }. (41)

Thus mathematically, when evaluating a function over a set, points outside the domain are
ignored—e.g., Rge(sqrt | [-1,1]) = [0, 1].

Equivalently, for the case where f takes separate arguments s, ..., s,, each being a subset
of R, the range is written as Rge(f|s1,...,8,). This is an alternative notation when s is the
cartesian product of the s;.

C2.4.3. Point arithmetic operation. A (point) arithmetic operation is a function for which
an implementation provides versions in a collection of user-available operations called its library.
This includes functions normally written in operator form (e.g., +, x) and those normally written
in function form (e.g., exp, arctan). It is not specified how an implementation provides library
facilities.

C2.4.4. Interval-valued functions. Let f be an n-variable scalar point function. An interval
extension of f is a (total) mapping f from n-dimensional boxes to intervals, that is f : R" — IR,
such that f(z) € f(x) whenever z €  and f(z) is defined, equivalently

J(x) 2 Rge(f | )

for any box x € W, regarded as a subset of R™.
The natural interval extension of f is the mapping f defined by

f(x) = hull(Rge(f | )).
Equivalently, using multiple-argument notation for f, an interval extension satisfies
flx1,...,x,) D Rege(f|®1,...,xn),
and the natural interval extension is defined by
flx,...,xpy) = hull(Rge(f | &1, ..., a:n))
for any intervals xq,...,x,.

When f is a binary operator e written in infix notation, this gives the usual definition of its
natural interval extension as

zey=hull{zey|ze€x, yecy, and z ey is defined }).

[Example. With these definitions, the relevant natural interval extensions satisfy \/[—1,4] = [0, 2] and
VI[=2,—1] =0, also © x [0,0] = [0, 0] for any nonempty x, and /[0,0] = 0, for any x.]
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When f is a vector point function, a vector interval function with the same number of inputs
and outputs as f is called an interval extension of f, if each of its components is an interval
extension of the corresponding component of f.

An interval-valued function in the library is called an
— interval arithmetic operation, if it is an interval extension of a point arithmetic operation,

and an
— interval non-arithmetic operation otherwise.
Examples of the latter are interval intersection and convex hull, (z,y) — x Ny and (x,y) —
hull(z U y).

C2.4.5. Constants. A real scalar function with no arguments—a mapping R” — R™ with
n = 0 and m = 1—is a real constant. An interval extension of a real constant is any zero-
argument interval function that returns an interval containing c¢. The natural extension returns
the interval [c, ¢].
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§C2.5

C2.5. Required operations.

C2.5.1. Interval constants. The constant functions empty() and entire() have value Empty

and Entire respectively.

C2.5.2. Elementary functions. Table lists required arithmetic operations. The term

operation includes functions normally written in function notation f(z,y,..

normally written in unary or binary operator notation, ex or = e y.

TABLE C2.1. Required elementary functions.
Normal mathematical notation is used to include or exclude an interval bound,
e.g., (—m, 7| denotes {zx e R | —w <z <7 }.

.), as well as those

Name Definition  Point function domain Point function range Note
Basic operations
neg(x) -z R R
add(z,y) T4y R? R
sub(z, y) x—y R? R
mul(z, y) Ty R? R
div(w, y) /[y R?\ {y = 0} R el
recip(z) 1/z R\ {0} R\ {0}
sqr(zx) x? R [0, 00)
sqrt(z) N3 [0, ) [0, 00)
fma(z,y, 2) (zxy)+2z R? R
Power functions _
Rif p >0 odd
. [0,00) if p > 0 even
pown(z, p) P, pel {E\i(ﬁio <0 {1} ifp=0 b
P R\{0} if p < 0 odd
(0,00) if p < 0 even
pow(z,y) x¥ {z>0} U {x=0,y>0}  [0,00) a
exp,exp2,expl0(z) b” R (0, 0) d
log,log2,log10(x) logy, (0, 0) R d
Trigonometric/hyperbolic functions
sin(x) R [—1,1]
cos(x) R [—1,1]
tan(x) R\{(k + 3)n|k € Z} R
asin(z) [-1,1] [—7/2,7/2] o
acos(z) [—1,1] [0, 7]
atan(z) R (—=m/2,7/2)
atan2(y, 7) B2\ {(0,0)} (o] i1z
sinh(z) R R
cosh(z) R [1,00)
tanh(z R (—1,1)
asinh(x) R R
acosh(x) [1,00) [0, 00)
atanh(z) (-1,1) R
Integer functions
sign(z) R {-1,0,1}
ceil(x) R Z
floor(x) R Z
trunc(zx) R Z
Absmaz functions
abs(z) || R [0, 00)
min(z,y) R? R
max(x,y) R2 R
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Notes to Table[C2.1]

a. In describing the domain, notation such as {y = 0} is short for { (z,y) € R* |y =0}, etc.

b. Regarded as a family of functions of one real variable x, parameterized by the integer argument p.

c. Defined as ¥ for real > 0 and all real y, and 0 for z = 0 and y > 0, else there is no value at Level
1.

d. b=¢e,2 or 10, respectively.

e. The ranges shown are the mathematical range of the point function. To ensure containment, an interval
result may include values outside the mathematical range.

f. atan2(y,z) is the principal value of the argument (polar angle) of (z,y) in the plane.

g. To avoid confusion with notation for open intervals, in this table coordinates in R? are delimited by
angle brackets ().

h. sign(z)is —1if 2 < 0; 0if z =0; and 1 if x > 0.

i. ceil(x) is the smallest integer > z. floor(z) is the largest integer < z.

j- Smallest, or largest, of its real arguments.

Proving the correctness of interval computations relies on the Fundamental Theorem of Interval
Arithmetic, which in turn relies on the relation between a point-function and its interval extensions.
Thus, the domain of each point-function and its value at each point of the domain are specified to
aid a rigorous implementation. This is mostly straightforward, but needs care for functions with
discontinuities, such as pow() and atan2().

C2.5.3. Set operations. The intersection and convex hull operations shall be provided as in
Table

TABLE C2.2. Set operations
Name Value

intersection(a,b) intersection a N b of the intervals a and b
convexHull(a,b) interval hull of the union @ U b of the intervals a and b

C2.5.4. Constructors. An interval constructor is an operation that creates a bare or decorated
interval from non-interval data. The constructors numsToInterval and textToInterval shall be
provided with values as defined below:

Lul={zeR|i<z<u} ifl<u,l<+ooand u> -0

numsToInterval(l,u) = i
no value otherwise

where | and u are extended-real values; and

interval denoted by s if s is a valid interval literal (§C4.7.1))

textToInterval(s) = .
no value otherwise

C2.5.5. Numeric functions of intervals. The operations in Table shall be provided, the
argument being an interval and the result a number, which for some of the operations may be
infinite.

C2.5.6. Boolean functions of intervals. The six boolean functions in Tables and
shall be provided. The return value of each is a boolean (1 = true, 0 = false) result.

In Table column three gives the set-theoretic definition, and column four gives an equiv-
alent specification when both intervals are nonempty. Table [C2.6]shows what the definitions imply
when at least one interval is empty.
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TABLE C2.3. Required numeric functions of an interval = [z, T].
Note inf can have value —oo; each of sup, wid, rad and mag can have value +oo.

Name Definition

inf(z {lower bound of x if « is nonempty
oo if & is empty

sup(@ {upper bound of @ if x is nonempty

oo if @ is empty

mid(z {mldpomt x +T)/2 if  is nonempty bounded
no value if @ is empty or unbounded

wid(x {Wldth T — z if  is nonempty
no value if x is empty

rad( {radlus T —x)/2 if x is nonempty
no value if « is empty

mag(x {magnltude sup{ |z| | z € « } if « is nonempty
no value if x is empty

mig( {mlgnltude inf{|z| | x €  } if « is nonempty
no value if @ is empty

TABLE C2.4. The isEmpty and isEntire functions.

Name Returns
isEmpty(«) 1 if @ is the empty set, 0 otherwise
isEntire(x) 1 if @ is the whole line, 0 otherwise

TABLE C2.5. Comparisons for intervals a and b. Notation V, means “for all a in
a”, and so on. In column 4, a=[a,a] and b=[b, b], where a,b may be —oo and @, b
may be +oo.

Name Symbol Definition For a,b # () Description
equal(a,b) a=b VoFpa=bAVydsb=a a=bAG=0b aequalsbh
subset (a,b) aCb VeIda=>b b<aAa<b aisasubsetofb
interior(a,b) a©b V,Jpa<bAV,IJpb<a b<aAa<b aisinterior tob
disjoint (a,b) afib VoVba #b @<bVb<a aandb are disjoint

TABLE C2.6. Comparisons with empty intervals.

a=0 a#0 a=10

b#0 b=0 b=10
a=>b 0 0 1
aChb 1 0 1
acb 1 0 1
afb 1 1 1
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C3. The decoration system at Level 1

C3.1. Decorations and decorated intervals overview. An implementation makes the
decoration system available by providing:

— a decorated version of each interval extension of an arithmetic operation, of each interval con-
structor, and of some other operations;

— various auxiliary functions, e.g., to extract a decorated interval’s interval and decoration parts,
and to apply a standard initial decoration to an interval.

The decoration system is specified here at a mathematical level, with the finite-precision aspects
presented in Clause[C4} Subclauses §C3.2} §C3.3] §C3.4]give the basic concepts; §C3.6] define
how intervals are given an initial decoration, and how decorations are bound to library interval
arithmetic operations to give correct propagation through expressions; §C3.7, §C3.8] are about
non-arithmetic operations.

C3.2. Definitions and properties. A decoration d is a property (that is, a boolean-valued
function) pg(f, ) of pairs (f,x), where f is a real-valued function with domain Dom(f) C R™ for
some n > 0 and € IR is an n-dimensional box, regarded as a subset of R".

The notation (f, ) unless said otherwise denotes such a pair, for arbitrary n, f and . Equiv-
alently, d is identified with the set of pairs for which the property holds:

d={(f,x) | pa(f,x) is true }. (42)

The set D of decorations has five members:

Value Short description Property Definition

com common Peon(f, ) | @ is a bounded, nonempty subset of Dom( f);
f is continuous at each point of x; and the
computed interval f(x) is bounded.

dac defined & continuous | pgac(f,x) | @ is a nonempty subset of Dom(f), and the
restriction of f to x is continuous; (43)
def | defined Paes(fy ) |  is a nonempty subset of Dom(f);
trv | trivial Perv(f, ) | always true (so gives no information);
i1l | ill-formed pi11(f, ) | Not an Interval; formally Dom(f) = 0,
see §C3.3

These are listed according to the propagation order 7 which may also be thought of as a
quality-order of (f,x) pairs—decorations above trv are “good” and ill is “bad”.

A decorated interval is a pair, written interchangeably as (u, d) or ug, where u € IR is a real
interval and d € D is a decoration. (u,d) may also denote a decorated box ((u1,d1), ..., (Uy,dy)),
where u and d are the vectors of interval parts w; and decoration parts d;, respectively.

The set of decorated intervals is denoted by DIR, and the set of decorated boxes with n
components is denoted by DIR".

When several named intervals are involved, the decorations attached to wu,wv,... are often
named du, dv, ... for readability, for instance (u,du) or ug,, etc.

An interval or decoration may be called a bare interval or decoration, to emphasize that it is
not a decorated interval.

Treating the decorations as sets as in , trv is the set of all (f, ) pairs, and the others are
nonempty subsets of trv. By design, they satisfy the exclusivity rule

For any two decorations, either one contains the other or they are disjoint. (44)
Namely, the definitions give:

com C dac C def C trv D ill, note the change from C to D (45)

com, dac and def are disjoint from ill. (46)
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Property implies that for any (f,x) there is a unique tightest (in the containment order
), decoration such that pg(f, ) is true, called the strongest decoration of (f,x), or of f
over x, and written Dec(f | ). That is:

Dec(f |x) =d <= pa(f,x) holds, but p.(f, ) fails for all e C d. (47)

[Note. Like the exact range Rge(f |x), the strongest decoration is theoretically well-defined, but its
value for a particular f and @ may be impractically expensive to compute, or even undecidable.]

C3.3. The ill-formed interval. An ill-formed decorated interval is also called Nal, Not an
Interval. Conceptually, there shall be only one Nal. Its interval part has no value at Level 1.

The i1l decoration results from invalid constructions and propagates unconditionally through
arithmetic expressions. Namely, the i11 decoration arises as a return value of

— a constructor when it can not construct a valid decorated interval, or of
— a library arithmetic operation if and only if one of its inputs is ill-formed.

Formally, i11 may be identified with the property Dom(f) = () of (f, x) pairs.
[Example. The constructor call numsToInterval(2,1) is invalid, so its decorated version returns Nal.

]

Information may be stored in an Nal in an implementation-defined way (like the payload of
a 754 floating-point NaN), and functions may be provided for a user to set and read this for
diagnostic purposes. An implementation may provide means for an exception to be signaled when
a Nal is produced.

C3.4. Permitted combinations. A decorated interval y,, shall always be such that
y 2 Rge(f|x) and pgy(f, x) holds, for some (f,x).

If dy = dac, def or com, then by definition x is nonempty, and f is everywhere defined on it, so
that Rge(f | ) is nonempty, implying y is nonempty. Hence the decorated intervals Dgac, Dges, and
0com are contradictory: implementations shall not produce them.

No other combinations are forbidden.

C3.5. Operations on/with decorations. This subclause contains operations to initialize
the decoration on a bare interval and to disassemble and reassemble a decorated interval; and
comparisons for decorations.

C3.5.1. Initializing. A bare interval is initialized with a decoration by the operation

com if & is nonempty and bounded,
newDec(x) = x4 where d= (¢ dac if  is unbounded, . (48)
trv if x is empty.

C3.5.2. Disassembling and assembling. For a decorated interval x4,, the operations
intervalPart(x4,) and decorationPart(xy,) shall be provided, with value x and dz, respec-
tively. For the case of Nal, decorationPart(Nal) has the value i11, but intervalPart(Nal) has
no value at Level 1.

Given an interval & and a decoration dz, the operation setDec(x,dz) returns the decorated
interval x4, if this is an allowed combination. The cases of forbidden combinations are as follows:

— setDec(f), dx) where dx is one of def, dac or com returns (.

— setDec(x, com), for any unbounded x, returns Tgac.

— setDec(x, il11) for any «, whether empty or not, returns Nal.

[Note. Careless use of the setDec function can negate the aims of the decoration system and lead
to false conclusions that violate the FTIA. It is provided for expert users, who might need it, e.g.,
to decorate the output of functions whose definition involves the intersection and convexHull
operations.]

C3.5.3. Comparisons. For decorations, comparison operations for equality = and its negation
# shall be provided, as well as comparisons >, <, >, < with respect to the propagation order .
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C3.6. Decorations and arithmetic operations. Given a scalar point function ¢ of k
variables, a decorated interval extension of p—denoted here by the same name p—adds a
decoration component to a bare interval extension of . It has the form wg, = @(v4y), where
vgp = (v, dv) is a k-component decorated box ((v1,dvy),. .., (vg,dvy)). By the definition of a bare
interval extension, the interval part w depends only on the input intervals v; the decoration part
dw generally depends on both v and dv. In this context, Nal is regarded as being 0i1;.

The definition of a bare interval extension implies

w 2 Rge(¢|v), (enclosure). (49)
The decorated interval extension of ¢ determines a dvy such that

Ddw, (p, v) holds, (a “local decoration”). (50)
It then evaluates the output decoration dw by

dw = min{dvg, dv1, ..., dvg}, (the “min-rule”), (51)
where the minimum is taken with respect to the propagation order:

com > dac > def > trv > ill. (52)

C3.7. Decoration of non-arithmetic operations.

C3.7.1. Interval-valued operations. The set-oriented operations intersection(x,y)
and convexHull(x,y) of give interval results, but are not interval extensions of point
functions.

No one way of decorating these operations gives useful information in all contexts. Therefore
a trivial decorated interval version is provided as follows. If any input is Nal, the result is Nal;
otherwise the corresponding operation is applied to the interval parts of the inputs, and its re-
sult decorated with trv. The user may replace this by an appropriate nontrivial decoration via
setDec(), see where this can be deduced in a given application.

C3.7.2. Non-interval-valued operations. These give non-interval results:

— the numeric functions of and

~ the boolean-valued functions of

For each such operation, if any input is Nal the result has no value at Level 1. Otherwise, the
operation acts on decorated intervals by discarding the decoration and applying the corresponding
bare interval operation.

C3.8. Boolean functions of decorated intervals. The equality comparison equal, or =,
shall be provided for decorated intervals. The inequality comparison notEqual, or #, shall be
provided, as the the logical negation of =.

— Nal shall compare unequal to any decorated interval, including itself; Nal # Nal is true.
— Other input combinations shall compare equal if and only if the interval parts are equal and the
decoration parts are equal.

The unary function isNaI shall be provided. It is true if and only if its input is Nal.
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C4. Level 2 description

C4.1. Level 2 introduction. Entities and operations at Level 2 are said to have finite
precision. From them, implementable interval algorithms may be constructed. Level 2 entities
are called datumd]

C4.1.1. Interval type. The interval type, denoted by T, is the inf-sup type derived from the
IEEE 754 binary64 format; we refer to the latter as b64. This interval type comprises all intervals
whose endpoints are in b64, together with Empty. Since £0o € b64, Entire is in T.

An interval from T is also called a bare interval or a T-interval. We use the term T-
datum to refer to an entity that can be a T-interval or a Nal. A T-box is a vector with T-datum
components.

C4.1.2. Decorated interval type. The decorated interval type, derived from T, is the set of
tuples (x,d), where € T, and d € D. We denote this type by DT.
DT shall contain a “Not an Interval” datum Nal, identified with ((,111).

C4.1.3. Operations. The term T-version of a Level 1 operation denotes one in which any input
or output that is an interval, is a T-datum. For bare interval types this includes the following.

(a) An interval extension (§C4.4) of one of the arithmetic operations of

(b) A set operation, such as intersection and convex hull of T-intervals, returning a T-interval.
(¢) A function such as the midpoint, whose input is a T-interval and output is numeric.

(d) A constructor, whose input is numeric or text and output is a T-datum.

C4.1.4. Exception behavior. For some operations, and some particular inputs, there might not
be a valid result. At Level 1 there are several cases when no value exists. However, a Level 2
operation always returns a value. When the Level 1 result does not exist, the operation returns
either

— a special value indicating this event (e.g., NaN for most of the numeric functions in §C4.7.5)); or

— a value considered reasonable in practice. For example, mid(Entire) returns 0; a constructor
given invalid input returns Empty; and one of the comparisons of §C4.7.6| if any input is Nal,
returns false.

If intervalPart() is called with Nal as input, the exception Intv1Part0fNal is signaled, see

Ca77

If a bare or decorated constructor fails (see §C4.7.5) the exception UndefinedOperation is
signaled.

C4.2. Naming conventions for operations. An operation is generally given a name that
suits the context. For example, the addition of two interval datums «,y may be written in generic
algebra notation x + y; or with a generic text name add(z,y).

C4.3. Level 2 hull operation.
C4.3.1. Hull in one dimension. The interval hull operation
y = hull(s),

maps an arbitrary set of reals, s to the tightest interval y enclosing s.

C4.3.2. Hull in n dimensions. In n dimensions the hull, as defined mathematically in §C4.3.1]
is extended to act componentwise. That is, for an arbitrary subset s of R™ it is hull(s) =

(y17 e ayn) Where
y; = hull(s,),

and s; = {s; | s € s} is the projection of s on the ith coordinate dimension.

INot “data”, whose common meaning could cause confusion.
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C4.4. Level 2 interval extensions. Let f be an n-variable scalar point function. A T-
interval extension of f, also called a T-version of f, is a mapping f from n-dimensional T-boxes
to T-intervals, that is f : T® — T, such that f(x) € f(x) whenever z € x and f(z) is defined.
Equivalently

f(x) 2 Rge(f|z), (53)

for any T-box x € T", regarding x as a subset of R". Generically, such mappings are called Level
2 interval extensions.

Though only defined over a finite set of boxes, a Level 2 extension of f is equivalent to a full
Level 1 extension of f ( so that this document does not distinguish between Level 2 and
Level 1 extensions. Namely define f* by

f7(s) = f(hull(s))
for any subset s of R”™. Then the interval f*(s) contains Rge(f | s) for any s, making f* a Level
1 extension, and f*(s) equals f(s) whenever s is a T-box.

C4.5. Accuracy of operations. This subclause describes requirements and recommenda-
tions on the accuracy of operations. Here, operation denotes any Level 2 version, provided by the
implementation, of a Level 1 operation with interval output and at least one interval input. Bare
interval operations are described; the accuracy of a decorated operation is defined to be that of its
interval part.

C4.5.1. Measures of accuracy. Three accuracy modes are defined that indicate the quality
of interval enclosure achieved by an operation: tightest, accurate and valid in order from strongest
to weakest. Each mode is in the first instance a property of an individual evaluation of an operation
f over an input box . The term tightness means the strongest mode that holds uniformly for
some set of evaluations, e.g., for some one-argument function, an implementation might document
the tightness of f(x) as being tightest for all x contained in [~10'®,10'5] and at least accurate for
all other x.

Let foxact denote the corresponding Level 1 operation. The weakest mode valid is just the
property of enclosure:

f((L‘) :—) .fexact (.’B) (54)

The strongest mode tightest is the property that f(x) equals f;piest (), the hull of the Level
1 result:

ftightest(w> = hun(fexact (iL‘)) (55)

The intermediate mode accurate asserts that f(x) is valid, 7 and is at most slightly wider
than the result of applying the tightest version to a slightly wider input box:

f() C nextOut(fghtest (nextOut (hull(x)))). (56)
For an interval x,

nextDown(z), nextUp(7)] if x = [z,7] # 0,
0 ifx =0,

where nextUp and nextDown are equivalent to the corresponding functions in 754-2008.
When x is a T-box, nextOut acts componentwise.
[Notes.

- In @ the inner next0ut() aims to handle the problem of a function such as sinx evaluated at a
very large argument, where a small relative change in the input can produce a large relative change
in the result. The outer nextOut() relaxes the requirement for correct (rather than, say, faithful)
rounding, which might be hard to achieve for some special functions at some arguments.

nextOut(x) = { [ (57)

C4.5.2. Accuracy requirements. Following the categories of functions in Table the accu-
racy of the basic operations, the integer functions and the absmax functions shall be tightest.
For all other operations in Table the accuracy should be accurate.
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C4.5.3. Documentation requirements. An implementation shall document the tightness of each
of its interval operations. This shall be done by dividing the set of possible inputs into disjoint
subsets (“ranges”) and stating a tightness achieved in each range.

[Example. Sample tightness information for the sin function might be
Operation ‘ Type ‘ Tightness‘ Range
i tightest | for any = C [—1015,10%7]
for all other x.

sin infsup binary64

accurate

Each operation should be identified by a language- or implementation-defined name of the
Level 1 operation (which might differ from that used in this standard), its output type, its input
type(s) if necessary, and any other information needed to resolve ambiguity.

C4.6. Number and interval literals.
C4.6.1. Number literals. An integer literal comprises an optional sign and (i.e., followed by)
a nonempty sequence of decimal digits. The following forms of number literal shall be provided.

(a) A decimal number. This comprises an optional sign, a nonempty sequence of decimal digits
optionally containing a point, and an optional exponent field comprising e and an integer
literal. The value of a decimal number is the value of the sequence of decimal digits with
optional point multiplied by ten raised to the power of the value of the integer literal, negated
if there is a leading - sign.

(b) Either of the strings inf or infinity optionally preceded by +, with value +oo; or preceded
by -, with value —oo.

C4.6.2. Bare intervals. The following forms of bare interval literal shall be supported. Below,
the number literals [ and r are identified with their values. Space shown between elements of a
literal denotes zero or more space characters.

(a) Special values: The strings [ ] and [ empty 1, whose bare value is Empty; the string [ entire ],
whose bare value is Entire.

(b) Inf-sup form: A string [ !, u ] where ! and u are optional number literals with | < u, I < 400
and u > —o0, see Its bare value is the mathematical interval [I,u]. Any of [ and u may
be omitted, with implied values [ = —oo and u = 400, respectively. A string [ x ] is equivalent
tolx, x].

C4.6.3. Decorated intervals. A decorated interval literal may denote either a bare or a deco-
rated interval value depending on context. The following forms of decorated interval literal shall
be supported.

(a) The string [ nai ], with the bare value Empty and the decorated value Empty;;.
(b) A bare interval literal sx.
— If sz has the bare value @, then sz has the decorated value newDec(x) §C3.5
— If sx has no bare value, then it has no decorated value.
(¢) A bare interval literal s, an underscore “_", and a 3-character decoration string sd, where
sd is one of trv, def, dac or com, denoting the corresponding decoration dzx.
— If sz has the bare value x, and if x4, is a permitted combination according to then
sx has the bare value x and the decorated value xg,.
— If sx has no bare value, then it has no decorated value as a decorated interval literal.
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C4.7. Required operations. Operations in this subclause are described as functions with
zero or more input arguments and one return value. It is language-defined whether they are
implemented in this way.

C4.7.1. Interval constants. There shall be functions empty() and entire() returning an inter-
val with value Empty and Entire, respectively. There shall also be a decorated version of each,
returning newDec(Empty) = Empty,,, and newDec(Entire) = Entirega. respectively.

C4.7.2. Elementary functions. An implementation shall provide an interval version of each
arithmetic operation in Table [C2.1] Its inputs and output are intervals, and it shall be a Level
2 interval extension of the corresponding point function. Recommended accuracies are given in
{CL5
[Note. For operations, some of whose arguments are of integer type, such as integer power pown(z,p),
only the real arguments are replaced by intervals.]

Each such operation shall have a decorated version with corresponding arguments of type DT.
It shall be a decorated interval extension as defined in §C3.6}—thus the interval part of its output
is the same as if the bare interval operation were applied to the interval parts of its inputs.

The only freedom of choice in the decorated version is how the local decoration, denoted duvg
in of is computed. dvg shall be the strongest possible (and is thus uniquely defined)
if the accuracy mode of the corresponding bare interval operation is “tightest”, but otherwise is

only required to obey .

C4.7.3. Set operations. An implementation shall provide an interval version of each of the
operations intersection and convexHull in Its inputs and output are intervals. These
operations should return the interval hull of the exact result. If either input to intersection is
Empty, or both inputs to convexHull are Empty, the result shall be Empty.

These operations shall have “trivial” decorated versions, as described in

C4.7.4. Constructors. For the bare and decorated interval types there shall be a constructor.
It returns a T- or DT-datum, respectively.

Bare interval constructors. A bare interval constructor call either succeeds or fails. This notion is
used to determine the value returned by the corresponding decorated interval constructor.

For the constructor numsToInterval(l,u), the inputs [ and u are b64 datums. If neither !
nor v is NaN, and [ < u, [ < 400, u > —00, the result is [[,u]. Otherwise the call fails, and the
result is Empty.

For the constructor textToInterval(s), the input s is a string. If s is a valid interval literal
with Level 1 value @, the result shall be the hull of « (the constructor succeeds). If s is not a valid
interval interval, this constructor fails, and the result is Empty.

Decorated interval constructors. Each bare interval constructor shall have a corresponding decorated
constructor, taking the same input(s) as the bare constructor. The decorated constructor succeeds
if and only if the bare interval constructor succeeds. The decorated constructor fails returning Nal
if and only if the bare interval constructor fails.

If the bare interval constructor numsToInterval(l,u) succeeds, returning y, the decorated
form returns newDec(y), see

If the bare interval constructor textToInterval(s) succeeds, returning y, the decorated form
returns y,,,, where dy is determined as follows:

— when s is [I,u], then dy shall equal com, except if y is unbounded because of overflow. Then
dy shall equal dac.

— when s is [I,u] _dx, then dy shall equal dzx, except if y is unbounded because of overflow. Then
dy shall equal dac.

Exception behavior. Exception UndefinedOperation is signaled by both the bare and the decorated
constructor when the input is such that the bare constructor fails.

[Note. When signaled by the decorated constructor it will normally be ignored since returning Nal gives
sufficient information.]
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C4.7.5. Numeric functions of intervals. An implementation shall provide an interval version
of each numeric function in Table[C2.3|of The mapping of a Level 1 value to a b64-number
is defined in terms of the following rounding methods:

— Round toward positive: x maps to the smallest b64-number not less than x; 0 maps to +0.

— Round toward negative: x maps to the largest b64-number not greater than x; 0 maps to —0.

— Round to nearest: x maps to the b64-number (possibly +00) closest to z; 0 maps to +0.

[Note. These functions help define operations of the standard but are not themselves operations of the
standard.

A Level 1 value of 0 shall be returned as —0 by inf, and 40 by all other functions in this
subclause.

— inf () returns the Level 1 value rounded toward negative.
— sup(x) returns the Level 1 value rounded toward positive.

— mid(x): the result is defined by the following cases, where x,Z are the exact (Level 1) lower and
upper bounds of x.

x = Empty NaN.

x = Entire 0.

x = —00, T finite | The finite negative b64 number of largest magnitude.
x finite, T = 400 | The finite positive b64 number of largest magnitude.
x,T both finite The Level 1 value rounded to nearest.

The implementation shall document how it handles the last case.

— rad(x) returns NaN if « is empty, and otherwise the smallest F-number r such that @ is contained
in the exact interval [m — r,m + r|, where m is the value returned by mid(x).
[Note. rad(x) is finite for all bounded nonempty intervals.]

— wid(x) returns NaN if @ is empty. Otherwise it returns the Level 1 value rounded toward +oo.

— mag(x) returns NaN if @ is empty. Otherwise it returns the Level 1 value rounded toward
positive.

— mig(x) returns NaN if @ is empty. Otherwise it returns the Level 1 value rounded toward
negative, except that 0 maps to +0.

Each bare interval operation in this subclause shall have a decorated version, where each input
of bare interval type is replaced by one of the corresponding decorated interval type, and the result
format is that of the bare operation. Following if any input is Nal, the result is NaN.
Otherwise the result is obtained by discarding the decoration and applying the corresponding bare
interval operation.

C4.7.6. Boolean functions of intervals. An implementation shall provide the functions isEmpty(x)
and isEntire(z) in and functions implementing the comparison relations in Table
of

There shall be a function isNaI(x) for input x of the decorated type, that returns true if
is Nal, else false.

Each bare interval operation in this subclause shall have a decorated version. Following
if any input is Nal, the result is false (in particular equal(Nal, Nal) is false). Otherwise the
result is obtained by discarding the decoration and applying the corresponding bare interval oper-
ation.

C4.7.7. Operations on/with decorations. An implementation shall provide the operations of
dC3.51 These comprise the comparison operations =, #,>, <, >, < for decorations; and, for the
decorated type, the operations newDec, intervalPart, decorationPart and setDec.

A call intervalPart(Nal), whose value is undefined at Level 1, shall return Empty at Level 2,
and shall signal the IntvlPart0fNal exception to indicate that a valid interval has been created
from the ill-formed interval.
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C5. Input and output (I/O) of intervals

C5.1. Overview. This clause of the standard specifies conversion from a text string that
holds an interval literal to an interval internal to a program (input), and the reverse (output).
The methods by which strings are read from, or written to, a character stream are language- or
implementation-defined, as are variations in some locales (such as specific character case matching).

Containment is preserved on input and output so that, when a program computes an enclosure
of some quantity given an enclosure of the data, it can ensure this holds all the way from text data
to text results.

C5.2. Input. Input is provided by textToInterval(s); see §C4.7.4
C5.3. Output. An implementation shall provide an operation
intervalToText(X), cs)

where cs is optional. X is a bare or decorated interval, and cs is a string, the conversion specifier.
The operation converts X to a valid interval literal string s, see§C4.7.1] which shall be related to
X as follows, where Y is the Level 1 value of s.
(i) If X is a bare interval, then Y shall contain X, and shall be empty if X is empty.
(ii) Let X be a decorated interval. If X is Nal then Y shall be Nal. Otherwise, write X = @,
Y =yg4,. Then
— y shall contain @, and shall be empty if  is empty.
— dy shall equal dz, except in the case that dr = com and overflow occurred, that is, « is
bounded and vy is unbounded. Then dy shall equal dac.

The tightness of enclosure of X by the value Y of s is language- or implementation-defined.

If present, cs controls the layout of the string s. The implementation shall document the
possible values of c¢s and their effect. The standard does not specify c¢s but among the user-
controllable elements should be the following.

(i) For I and u, it should be possible to specify the field width, and the number of places after
the decimal point or the number of significant figures.

(ii) It should be possible to specify the preferred overall field width (the length of s).

(iii) It should be possible to specify how Empty, Entire and Nal are output, e.g., whether lower
or upper case, and whether Entire becomes [Entire] or [-Inf, Inf].

(iv) cs should provide an option to output the bounds of an interval without punctuation, e.g.
1.234 2.345 instead of [1.234, 2.345]. For instance this might be a convenient way to
write intervals to a file for use by another application.

If ¢s is absent, output should be in a general-purpose layout (analogous, e.g., to the %g specifier
of fprintf in C). There should be a value of c¢s that selects this layout explicitly.
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C6. Level 3 description

Level 3 is where Level 2 datums are represented, and operations on them described. Level 3
entities are here called objects; they represent Level 2 datums and may be referred to as concrete,
while the datums are abstract. Each Level 2 (abstract) library operation is implemented by a
corresponding Level 3 (concrete) operation, whose behavior shall be consistent with the abstract
operation.

C6.1. Representation. The property that defines a representation is:

Each interval datum shall be represented by at least one object. Each object
, ; : (58)
shall represent at most one interval datum.

[Examples. Three possible representations are:

— inf-sup form. Any interval x is represented at Level 3 by the object (inf(z),sup(x)) of two b64
numbers. All intervals have only one Level 3 representation because operations inf and sup are
uniquely defined at Level 2 {C4.7.5 interval [0,0] has representation (=0, +0), interval Empty has
representation (+00, —00).

— inf-sup-nan form. The objects are defined to be pairs (I, u) where |, u are b64 datums. A nonempty
interval x = [z, ] is represented by an object (I, u) such that the values of | and u are x and T, and
Empty is represented by (NaN, NaN).

— neginf-sup-nan form. This is as the previous, except that for a nonempty interval the value of | is
—X.

If, in these descriptions I, uw and NaN are viewed as Level 2 datums, then interval [0,0] has four repre-
sentatives in inf-sup-nan and neginf-sup-nan forms: (-0,40), (-0, =0), (+0,40), (40, —-0). Each
nonempty interval with nonzero bounds has only one representative: there are unique | and u. Empty
has also only one representative: there is an unique NaN. However, NaN itself has representatives, and
from this viewpoint Empty has more than one representative: there are many NaNs, quiet or signaling
and with different payloads, to use in Empty = (NaN, NaN). ]

C6.2. Interchange representations. The purpose of interchange representations is to allow
the loss-free exchange of Level 2 interval data. This is done by imposing a standard Level 3
representation using Level 2 number datums.

The standard Level 3 representation of an interval datum x is an ordered pair (inf(x), sup(z))
of two b64 numbers. For example, the only representative of Empty is the pair (400, —00), and the
only representative of [0, 0] is the pair (-0, 40).

The standard Level 3 representation of a decorated interval datum xg4, is an ordered triple
(inf(2z4z), sup(x4y ), decorationPart (x4, )) of two b64 datums and a decoration. For example, the
only representative of Empty,,, is the triple (400, —00, trv), and the only representative of Nal is
the triple (NaN, NaN, i11).

Interchange Level 4 encoding of an interval datum is a bit string that comprises the interchange
encodings of the fields of the ordered pair/triple above (in the order given). The b64 datums are
encoded as in the IEEE 754 interchange format: a sign bit, followed by 11 exponent bits that
describe the exponent offset by a bias, and 52 bits that describe the significand (the least significant
bit is last). The decoration is encoded in an 8-bit string as specified below:

Decoration | Encoding
i1l 00000000
trv 00100000
def 01000000
dac 01100000
com 10000000

[Example. The interchange encoding of [—1, 3]con are the concatenated bit strings below (without the
spaces)
—1 10111111 11110000 00000000 00000000 00000000 00000000 00000000 GO000000
3 01000000 00001000 00000000 00000000 00000000 00000000 00000000 00000000
com 10000000
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C7. Not Required
The following functions and literals are not required in the basic standard.

Integer functions
RoundTiesToEven (x)
RoundTiesAway (x)

Two-output division
divToPair(x,y)

Cancellative addition and subtraction
cancelMinus(x, y)
cancelPlus(x,y)

All the required reverse functions

Boolean functions of intervals
less(a,b)
precedes(a, b)
strictLess(a,b)
strictPrecedes(a,b)

Ezact text representation
intervalToExact(x)
exactToInterval(s)

Literals
hexadecimal
rational
uncertain form

The exception PossiblyUndefinedOperation is not required.
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