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/A To the P1788 reader.

Passages in this color are my (JDP's) comments: mostly noting a blank that needs filling; or asking
for answers to, and debate on, a question; or giving my opinion; or noting changes made.

| have tried to respond to all comments | have received that are directly about the Version 01 text.
Also, George Corliss has collated comments made during voting on each motion. | have responded
to some of these but much remains to be looked at.

Change tracking is somewhat informal. Previous versions can henceforth be extracted from the
P1788 Subversion repository. | have marked most changes between V01 and V02.1 with a marginal
note like the one shown, which indicates the author, and date of the email containing the comment
that led to the change, in this case “Dan Zuras, 2010 Jan 20". The abbreviations are RBK =
Kearfott, JWG = Wolff von Gudenberg, AN = Neumaier, DZ = Dan Zuras.

Traceability is not supported at all yet. That is, a 2-way mapping between decisions in motions
and text in the standard. | believe we need such a system.
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0. OVERVIEW

/N Scope and Purpose taken word for word from the Project Authorization Request (PAR), but
changed from future to present tense. Other IEEE front-matter, such as list of participants, to be
included in due course.

0.1. Scope. This standard specifies basic interval arithmetic (TIA) operations selecting and fol-
lowing one of the commonly used mathematical interval models and at least one floating-point
type defined by the IEEE-754/2008 standard. Exception conditions are defined and standard
handling of these conditions are specified. Consistency with the model is tempered with practical
considerations based on input from representatives of vendors and owners of existing systems.

The standard provides a layer between the hardware and the programming language levels.
It does not mandate that any operations be implemented in hardware. It does not define any
realization of the basic operations as functions in a programming language.

0.2. Purpose. The standard’s aim is to improve the availability of reliable computing in modern
hardware and software environments by defining the basic building blocks needed for performing
interval arithmetic. There are presently many systems for interval arithmetic in use, and lack of
a standard inhibits development, portability, and ability to verify correctness of codes.

0.3. Inclusions. This standard specifies

— Formats for interval data based on underlying floating-point formats.

— Constructors for intervals from floating-point and character sequence data.

— Addition, subtraction, multiplication, division, fused multiply add, square root, compare, and
other interval-valued operations for intervals.

— Midpoint, radius and other numeric functions of intervals.

— Mandatory elementary functions.

— Data type and operations for the calculation of exact sums or dotproducts.

— Conversions between different interval formats.

— Conversions between interval formats and external representations as character sequences.

— Interval-related exceptions and their handling.

0.4. @lusions. This standard does not specify

— Which floating-point formats supported by the underlying system shall have an associated
interval format.

— Details of how an implementation represents intervals internally by floating-point numbers.
However interchange formats for intervals are specified.

/\ To be revised later.

0.5. The meaning of conformance. This standard specifies interval arithmetic in terms of
an underlying floating-point system. An implementation, to conform to this standard, shall
support at least one interval format associated with a floating-point format of the underlying
system. It probably will support several such formats. The standard does not require the
underlying floating-point system to be 754-conforming. However it introduces the notion of a
754-conforming implementation, having more stringent requirements, mainly concerning support
for mixed-format interval operations.

0.6. Programming environment considerations.
/N This is taken from 754§1.5 and will surely need modification. | believe we MUST in due course
include language requirements in P1788.
This standard does not define all aspects of a conforming programming environment. Such
behavior should be defined by a programming language definition supporting this standard, if
3
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available, and otherwise by a particular implementation. Some programming language specifica-
tions might permit some behaviors to be defined by the implementation.

Language-defined behavior should be defined by a programming language standard supporting
this standard. Then all implementations conforming both to this interval standard and to that
language standard behave identically with respect to such language-defined behaviors. Standards
for languages intended to reproduce results exactly on all platforms are expected to specify
behavior more tightly than do standards for languages intended to maximize performance on
every platform. Because this standard requires facilities that are not currently available in
common programming languages, the standards for such languages might not be able to fully
conform to this standard if they are no longer being revised. If the language can be extended by
a function library or class or package to provide a conforming environment, then that extension
ould define all the language-defined behaviors that would normally be defined by a language
standard> Implementation-defined behavior is defined by a specific implementation of a specific
programming environment conforming to this standard. Implementations define behaviors not
specified by this standard nor by any relevant programming language standard or programming
language extension. Conformance to this standard is a property of a specific implementation of a
specific programming environment, rather than of a language specification. However a language
standard could also be said to conform to this standard if it were constructed so that every
conforming implementation of that language also conformed automatically to this standard.

0.7. Word usage.

A (Lifted from 754.%thi8 standard three words are used to differentiate between different
levels of requirements #nd optionality, as follows:

— may indicates a course of action permissible within the limits of the standard with no implied
preference (“may” means “is permitted to”);

— shall indicates mandatory requirements strictly to be followed in order to conform to the
standard and from which no deviation is permitted (“shall” means “is required to”);

— should indicates that among several possibilities, one is recommended as particularly suitable,
without mentioning or excluding others; or that a certain course of action is preferred but not
necessarily required; or that (in the negative form) a certain course of action is deprecated but
not prohibited (“should” means “is recommended to”).

Further:

— might indicates the possibility of a situation that could occur, with no implication of the
likelihood of that situation (“might” means “could possibly”);

— see followed by a number is a cross-reference to the clause or subclause of this standard
identified by that number;

— Note introduces text that is informative (that is, is not a requirement of this standard).
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1. INTRODUCTION

This introduction explains some of the alternative interpretations, and sometimes competing
objectives, that influenced the design of this standard, but is not part of the standard.

1.1. Mathematical context. Interval computation is a collaboration between human program-
mer and machine infrastructure which, correctly done, produces mathematically proven numer-
ical results about continuous problems—for instance, rigorous bounds on the global minimum
of a function or the solution of a differential equation. It is part of the discipline of “construc-
tive real analysis”. In the long term, the results of such computations may become sufficiently
trusted to be accepted as contributing to legal decisions. The machine infrastructure acts as a
body of theorems on which the correctness of an interval algorithm relies, so it must be made as
reliable as is practical. In its logical chain are many links—hardware, underlying floating-point
system, etc.—over which this standard has no control. The standard aims to strengthen one
specific link, by defining interval objects and operations that are theoretically well-founded and
practical to implement. There are several mathematical bases of interval computation, which are
not wholly compatible with each other. Thus it was necessary to make a choice for the purposes
of this standard. The working group generally agreed that a high priority should be given to
making the mathematical basis easy to grasp, easy to teach, and easy to interpret in the context
of real-world applications. We believe the one we have chosen is the best match for those aims.
In this theory

e Intervals are sets.

e They are subsets of the real numbers R.

e An interval operation is defined algebraically, in contrast to topologically. The interval
version of an elementary function such as sin z is essentially the natural extension to sets
of the corresponding pointwise function on real numbers.

This contrasts on the one hand with Kaucher or modal interval theory, where an interval is a
formal object, an ordered pair of real numbers x, %, of which those having z < T are interpretable
as intervals in the set sense; and on the other hand with containment set (cset) theory, where
intervals are subsets of the extended reals R*, and operations are defined topologically, in terms
of limits. In this standard, the set IR of intervals comprises precisely the closed and connected
(in the topological sense) subsets of R. This includes the empty set, as well as intervals that are
unbounded on one or both sides.

1.2. Specification Levels. The 754-2008 standard describes itself as layered into four Specifi-
cation Levels. To manage complexity, P1788 uses a corresponding structure: level 1, of mathe-
matical interval theory; level 2, the finite set of interval datums in terms of which finite-precision
interval computation is defined; level 3, of representations of intervals by floating-point numbers;
level 4, of bit strings and memory.

There is another important player: the programming language. We acknowledge the experi-
ence of the 754-2008 working group, who recognized a serious defect of the 754-1985 standard,
namely that it specified individual operations but not how they should be used in expressions.
Over the years, compilers made clever transformations so that it became impossible to know
the precisions used and the roundings performed while evaluating an expression, or whether the
compiler had even “optimized away” (1.0 + x) — 1.0 to become simply z.

This is also a problem for intervals. Thus the standard makes requirements and recom-
mendations on language implementations, thereby defining the notion of a standard-conforming
implementation of intervals within a language.

The language does not constitute a fifth level in some linear sequence; from the user’s viewpoint
it sits above datum level 2, alongside theory level 1, as a practical means to implement interval

5
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algorithms by manipulating level 2 entities (though most languages have influence on levels 3
and 4 also).

1.3. The Fundamental Theorem. Ramon Moore’s Fundamental Theorem of Interval Arith-
metic (FTTA) is central to interval computation. Roughly, it says that if f is an explicit expression
defining a real function f(x1,...,x,), then evaluating f “in interval mode” over any interval in-
puts (x1,...,x,) is guaranteed to give an enclosure of the range of f over those inputs. A
version of the FTIA holds in all variants of interval theory, but with varying hypotheses and
conclusions. A standard must adhere to one theory, for if ambiguities or inconsistencies exist,
a user may believe the FTIA holds in a case where it does not, with possibly serious results
in applications. As stated, the FTIA is about the mathematical level. Moore’s achievement
was to see that “outward rounding” makes the FTIA hold also in finite precision, and to follow
through the consequences. An advantage of the level structure used by the standard is that the
mapping between levels 1 and 2 defines a framework where it is easily proved—indeed almost
obvious—that

A conforming implementation obeys the finite-precision FTIA.
This holds also for mixed-format computation, which is supported by the standard.

1.4. Operations.

There are several interpretations of evaluation outside an operation’s domain and operations
as relations rather than functions. This includes classical alternative meanings of division by an
interval containing zero. Consider y = \/x where & = [—1,4].

1. In optimization, when computing lower bounds on the objective function, it is generally ap-
propriate to return the result y = [0,2], and ignore the fact that /- has been applied to
negative elements of x.

2. In applications where one must check the hypotheses of a fized point theorem are satisfied
(such as solving differential equations):

(a) one may need to be sure that the function is defined and continuous on the input and,
hence, throw an illegal argument exception when, as in the above case, this fails; or

(b) one may need the result y = [0, 2], but must flag the fact that /- has been evaluated at
points where it is undefined or not continuous.

3. In constraint propagation, the equation is often to be interpreted as: find all y such that
y? = x for some = € [—1,4]. In this case the answer is [—2,2].

The standard provides means to meet these diverse needs, hopefully without compromising

clarity and efficiency. It also aims to give limited support for alternative interval theories, such

as Kaucher arithmetic, for which none of the above three interpretations is appropriate.

1.5. More to be added?
/N | guess we need something on exception handling.
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2. NOTATION, ABBREVIATIONS, DEFINITIONS

2.1. Notation and abbreviations.

754 IEEE-Std-754-2008 “IEEE Standard for Floating-Point Arithmetic”.
R the set of real numbers.

R* the set of extended real numbers, R U {—o0, +00}}.

IR the set of bounded, nonempty closed real intervals.

IR the set of closed real intervals, including unbounded intervals and the empty set.
F the subset of R* representable in a given floating point format.

IF the intervals of IR whose bounds are in F.

IF the intervals of IR whose bounds are in F.

Nal Not an Interval.

NaN Not a Number.

gNaN quiet NaN.

sNaN signaling NaN.

x,y,... [resp. f,g,...] generic notation for a numeric value [resp. numeric function].

x,y,... [resp. f,g,...] generic notation for an interval value [resp. interval function].

f.g,... generic notation for an expression, producing a function by evaluation.

/N\ Some of these may not be used.

2.2. Definitions.

& Following comments from DZ | have rewritten this subclause to be self-contained, i.e. one does
not need to look at forward references to understand the definitions. One or two definitions have
been removed since V01, sevaral added, but more will no doubt need adding.

2.2.1. 754-conforming system (754 system for short). A programming environment that
provides floating point arithmetic conforming to IEEE754- 2008. [Note. A hardware processor
(e.g. the Cell processor) may not be 754-conforming in itself, bu 54-conforming system may be
built on it with software assistance.]

2.2.2. basic 754 format. One of the five 754 floating point formats binary3
nary128, decimal64, decimall28.

WJIRT[J GQI

2.2.3. basic (arithmetic) operation. One of the five elementary functions +, —, X, =, /- .

2.2.4. ci-format (concrete interval format). An interval format associated with a specific
number representation. Usually the inf-sup format associated with a specific floating point

format. Details in[5.1] 5.2}

2.2.5. fma. Fused multiply-add operation. IWVG
20091209

2.2.6. hull. The (interval) hull of a subset s of R is the tightest interval containing s. When F

is a number format, the F-hull of s is the tightest F-interval containing s.

2.2.7. implementation. When used without qualification, means an implementation of this

standard.

2.2.8. inf-sup. Describes a representation of an interval based on its lower and upper bounds.

2.2.9. interval datum [respectively, F-interval datum]. A member of the finite set of in- 2DOZ1 00120

tervals representable in a specific (inf-sup unless said otherwise) interval format [resp. the one
associated with the number format F]. Details in
7
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2.2.10. interval elementary function. An interval version of a point elementary function, that
is provided by an implementation. The set of these is the implementation’s interval elementary
function library (interval library for short). These terms may be qualified by a format, e.g.
“binary64 interval library”.

2.2.11. interval extension. An interval extension of a point function f is a function f from
intervals to intervals such that f(z) belongs to f(x) whenever x belongs to « and f(z) is defined.

Details in .41

2.2.12. i-format, interval format, radix of i-format. The interval format associated with a
number format F means the set of interval datums (F-intervals for short) associated with F in
a particular representation. When used without qualification, inf-sup representation is assumed
— by contrast with, say, mid-rad representation. The radix of an i-format means the radix of
its n-format. Details in

2.2.13. interval function, interval mapping. A function from intervals to intervals is called
an interval function if it is an interval extension of a point function, and an interval mapping
otherwise. Details in 471

2.2.14. interval library. See Definition [2.2.10)

2.2.15. interval version. Interval version of a point function means the same as interval ex-
tension; often used with an indication of its operand and destination formats, as in “binary64
SRMF interval version”.

2.2.16. mathematical interval of constructor. The arguments of an interval constructor, if
valid, define a mathematical interval . The actual interval returned by the constructor is the
tightest interval of the destination format that contains x. Details in [5.4.1

2.2.17. mid-rad. Describes a representation of an interval based on its midpoint and radius.

2.2.18. mixed-format. Describes an interval arithmetic operation where the formats of the
operand interval(s) and the destination interval may not all be the same.

[Note. Mixed-format does not mean that the lower and upper bounds of an individual interval
object can have different number formats.]

2.2.19. MRMF. Mixed-radix, mixed-format. Describes a level of arithmetic support where
operand(s) and destination of an interval operation may be an arbitrary mix of supported formats,
not necessarily of the same radix. Details in

2.2.20. multiple-format. Multiple-format interval arithmetic means support for arithmetic in
more than one interval format, and for conversions between these formats.

[Note. SRSF, SRMF and MRMF interval support are all multiple-format (if more than one interval
format is supported). SRMF and MRMF, but not SRSF, are mixed-format.]

2.2.21. n-format, number format. A subset of the extended reals R*, containing +oc. In
practice, it is usually the finite set of numbers representable in a specific floating point format
and is then the n-format associated with that format. Details in [5.11

2.2.22. point elementary function. A point function, in the sense of [{.4] that is provided by
an implementation. The set of these is the implementation’s point elementary function library
(point library for short). These terms may be qualified by a format, e.g. “binary64 point library”.
The basic operations count as elementary functions.

8
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2.2.23. sharpness measure. A way to describe the quality of an interval version of a function.

See

2.2.24. SRMF. Single-radix, mixed-format. Describes a level of arithmetic support where
operand(s) and destination of an interval operation may be an arbitrary mix of supported for-
mats, but must be of the same radix. Details in [6.4]

2.2.25. SRSF. Single-radix, single-format. Describes a level of arithmetic support where operand
and destination of an interval operation must all be of the same (supported) format. Details in
0.4

2.2.26. support.

— An implementation supports an abstract interval format IF if it provides a concrete interval
format that represents IF. Details in

— A function f is interval-supported in an interval format IF if there is an interval version of
f whose destination format is IF. For levels of interval support (MRMF, SRMF and SRSF)

see Definition [2.2.19] [2.2.24] [2.2.25]

2.2.27. tightest. Smallest in the set sense. The tightest set (unique, if it exists) with a given
property is contained in every other set with that property.
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Relationships between specification levels for interval arithmetic
(for a given format)
Number system R.
Level 1 Set IR of allowed intervals over R. Mathematical
Principles of how + — X -+ and standard Model level.
functions are extended to intervals.
dinterval hull identity map T
total, many-to-one® total, one-to-one®
Level 2 The set IF of “machine intervals” in IR Interval
datum level.
“represents” T
partial, many-to-one, onto®?
Level 3 Representation of nonempty [z, 7| as two FP | Representations
numbers z, T, or alternative. Repres’n of (. of interval data.
“encodes” T
partial, many-to-one, onto®
Level 4 Encodings 0111000. .. Bit strings.

TABLE 1. Specification levels for interval arithmetic

/N Made more precise since VO1. Someone suggested there should be well-defined mappings Level
2 — 3 — 4. Seems to me this represents either an unenforceable requirement, or a severe
performance penalty. Could whoever it was, please clarify?

3. STRUCTURE OF THE STANDARD IN LEVELS

3.1. Specification levels overview.

The standard is structured into four levels, summarized in Table [I} that match the levels
defined in the 754 standard, see 754 Table 3.1.

Level 1, in Clause 4} defines the mathematical theory underlying the standard. The entities
at this level are mathematical intervals and operations on them. Conforming implementations
shall implement this theory.

Level 2, in Clause [5] is the central part of the standard. Here the mathematical theory is
approximated by an implementation-defined finite set of entities and operations. A level 2 entity
is called a datum (plural “datums” in this standard, since “data” is often misleading). In addition
to an ordinary (bare) interval, this level defines a decorated interval, comprising a bare interval
and a decoration. Decorations implement the P1788 exception handling mechanism.

Level 3, in Clause [6] defines the representation of interval datums in terms of underlying
floating-point datums. A level 3 entity is an interval object.

Level 4, in Clause [7] is concerned with the encoding of interval objects. A level 4 entity is a
bit string, though it may be broken into non-contiguous parts in memory.

The arrows denote mappings between levels. The phrases in italics name these mappings.
Each phrase “total, many-to-one”, etc., labeled with a letter ¢ to ¢, is descriptive of the mapping
and is equivalent to the corresponding labeled fact below.

a. Not every interval encoding necessarily encodes an interval object, but when it does, that
object is unique. Each interval object has at least one encoding, and may have more than
one.

10
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b. Not every interval object necessarily represents an interval datum, but when it does, that
datum is unique. Each interval datum has at least one representation, and may have more
than one.

c. Each interval datum is a mathematical interval.

d. For a given format F, each mathematical interval (indeed each subset of R) has a unique
interval datum as its F-hull.

3.2. Conformance requirements.

— Implementations shall be based on the mathematical model in Clause [

— An implementation shall specify which interval formats it supports (it is permitted to support

only one). Support consists of the following two items.

(a) For each supported interval format, operations as specified in shall be provided, to at
least single-radix single-format (SRSF) level—see

(b) Conversions as defined in shall be provided between any two supported interval
formats.

An implementation shall be 754-conforming (for a specified set of formats) if: (i) its underlying

system is 754-conforming (Definition for this set of formats, and the implementation

supports the corresponding interval format to at least SRSF level; or (ii) it is functionally

indistinguishable from case (i). [Note. The reason for case (ii) is that it seems feasible to code

an efficient 754-conforming interval system using only a subset of 754 features. If so, a floating-

point system that behaves differently from 754 outside this subset can be used. For example, a

system that has only one kind of zero.

A 754-conforming implementation shall provide single-radix multiple-format (SRMF) support

to the same extent that the underlying floating-point provides formatOf operations, see It

may support interval formats outside the five basic 754 formats, such as extended or extendable,

see 75483.7.

An implementation shall document:

(a) Which interval formats are supported.

(b) Which interval versions of elementary functions are provided in a given format.

(c) For each such version: (i) a sharpness measure as defined in 5.6} (ii) the level of mixed-
format support, SRSF or SRMF; and which operand interval formats are supported in the
SRMF case.

11
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4. LEVEL 1 DESCRIPTION

This clause describes the theory of mathematical intervals and operations, on which this
standard is based.

4.1. Numbers. Following the terminology of 754 (§2.1.25 and elsewhere), any member of the
extended reals R U {—o0, 400} is called a number: it is a finite number if it is in the reals R,
else an infinite number.

4.2. Intervals. The set of mathematical intervals in R, denoted IR, comprises the empty set
together with all closed nonempty intervals of real numbers

=27 ={zeR|z<z<T},

where —00 < x <7 < +o0.
[Note.

— The above definition implies —0o and +o0o can be bounds of an interval, but are never members
of it. The requirement that x be nonempty implies x cannot be +o0o, and T cannot be —oco,; the
notations [—0o0, —00| and [+00, +00| are regarded as semantically invalid (rather than denoting the
empty set) at the mathematical level.

— Following the traditional notation (z,Z] = {x | x < x <}, and so on, the round bracket notation
for closed intervals with an infinite end point may be used; e.g. [2,+00) is the same as [2, +00].

]

4.3. Hull. The (interval) hull of an arbitrary subset s of R, written hull(s), is the tightest
member of IR that contains s. (The tightest set with a given property is the intersection of all
other sets having that property, provided the intersection itself has this property.)

4.4. Functions. A point function is a (possibly partial) multivariate real function: that is,
a mapping f from a subset D of R™ to R™ for some integers n > 0,m > 0. When n = 0 and
m = 1, we have a named real constant. When not otherwise specified, a scalar function is
assumed, i.e. m = 1. If m > 1, the function is called a vector function. D is the domain of f,
also written Dy . To specify n, call f an n-variable point function, or denote f as

flzy, ... zy).
The range of f over an arbitrary subset s of R” is the set

range(f;s) ={ f(z) |z € sand x € Dy }.

Equivalently, for the case where f has separate arguments si,...,s,, each being a subset of
R, the range is written as range(f;s1,...,8,). This is an alternative notation when s is the
cartesian product of the s;.

[Note.

~

Here, f is a mapping, not an expression.

2. For instance range(y/- ;|—1,1]) = [0,1]. This follows the usual mathematical convention that
when evaluating over sets, points outside the domain of a function are simply ignored.

3. For the 754 policy on evaluating point functions outside the domain, see 75459.1.1.

]
12
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4.4.1. Interval mappings and functions. Unless otherwise specified, an interval mapping is a
mapping f from IR" to IR™ for some n > 0,m > 0. To specify n, call f an “n-variable interval
mapping”, or denote f as f(x1,...,@,). As with point functions, m = 1 is assumed unless said
otherwise.

An interval mapping is called an interval function if it is an interval version of some point
function, as defined next. Examples of interval mappings that are not interval functions are the
interval intersection and union operations, (x,y) — Ny and (x,y) — hull(z U y).

Given an n-variable point function f, an interval extension of f, also called an interval
version of f, is an interval mapping f such that

f(x) 2 range(f; x)
for any « € IR", regarded as a subset of R™. The sharp interval extension of f is defined by

f(s) = hull(range(f; s))
for any subset s of R™. Equivalently, using multiple-argument notation for f, an interval exten-
sion satisfies
f(s1,...,8,) Drange(f;s1,...,8n),
and the sharp interval extension satisfies
f(s1,...,8,) = hull(range(f; s1,...,8,)).

When f is a binary operator e written in infix notation, this gives the usual definition of its

(sharp) interval extension as

zey=hull({zey|xz€x,yecy, and x ey is defined }).

[Note.

— Example. With these definitions, the sharp interval extensions of multiplication and division satisfy
x x {0} = {0} for any nonempty interval z, and /0 = (), for any interval x.

— All interval functions used here are automatically defined for all arguments—e.g. for the sharp
extension of ‘“point square root”, \/|—1,4] = [0,2], \/[-2,—1] = 0. At level 2, the exception
handling mechanism gives a specific way to diagnose when a function has been evaluated outside
its domain, but no specific method is defined at level 1.

]
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5. LEVEL 2 DESCRIPTION

The general level 2 interval datum is a decorated interval—an ordered pair (interval, dec-
oration). Decorations implement exception handling. An interval without decoration may be
called a bare interval to emphasize the distinction. Bare intervals are described in and the
exception handling mechanism in This clause defines interval formats, which are used to
represent a finite subset of the set IR of mathematical intervals. Each format is derived from
an associated number format, usually a floating-point format, which characterizes it uniquely.
The choice of which of this standard’s formats to support is language-defined or, if the relevant
language standard is silent or defers to the implementation, implementation-defined. The names
used for formats in this standard are not necessarily those used in programming environments.

5.1. Number formats. A number format (n-format) is a finite subset F of the extended reals
R*, containing —o0o and +0o. A floating-point format in the 754 sense, such as binary64, is iden-
tified with the n-format comprising those extended-real numbers that are exactly representable
in that format, where -0 and +0 both represent the mathematical number 0.

When it is necessary to distinguish, the floating-point format is called a concrete n-format, and
the subset of R* is the abstract n-format associated to it. An n-format need not be associated
to a 754 format. It may come from the numbers of some floating-point system that is not
754-conforming, or from a fixed-point number representation, etc.

[Note. In view of this definition, 754's —0 and +0 are considered identical. Also, in 754 decimal
formats, representations in the same cohort are considered identical.)

5.2. Interval formats.

5.2.1. F-intervals.

Let F be an n-format. An F-interval is either the empty set, or a mathematical interval whose
endpoints are in F. It may be referred to as an F-interval datum to emphasize that it is a level
2 object. The interval format (i-format) associated with F means the set of F-interval datums.
It is denoted by IF.

[Note.

— This definition implies an inf-sup (infimum-supremum) representation of intervals, or an equivalent,
at level 3.

— A level 2 interval, being a set of reals, does nor “know” what format it belongs to. E.g., x = [1,2],
which is exactly representable in binary32, binary64 and decimal64, is the same datum whichever
format it derives from. At level 3 however, it would be represented by three different objects, of
the corresponding concrete interval formats (§6.1).

— An n-format uniquely determines an i-format (also vice versa), and a 754 concrete format uniquely
determines an n-format.

— An example of a possibly useful n-format that is not associated to a concrete format (but is derived
from one), is an “underflow flushed to zero” system. Say the concrete format is binary64. Then F
is defined to consist of all binary64 numbers that are not subnormal. Interval arithmetic based on
such an F may give speed advantages on some architectures.

— Since F-intervals are sets of reals, it is meaningless to speak of an interval datum that has NaN
as an endpoint, or has its lower bound greater than its upper bound. Such notions make sense at
level 3 but not at level 2.

]

5.2.2. Finite precision hull. The (interval) F-hull of an arbitrary subset s of R, written hullg(s),
is the tightest F-interval that contains s.
[Note.
14
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— The set hully(s) always exists, because I is finite and contains +1.
— Always, hullg(8) contains hull(s). If n-format G (as a subset of R*) contains n-format F —
equivalently, if G is wider than F in the sense of 75482.1.36—then hullz(s) contains hullg(s).

]

5.2.3. Interval format conversion. If F is an n-format, the conversion to format F is the oper-
ation that maps an interval x of any supported format to its F-hull,

y = hullp(x).

5.3. Exception handling.

/N\ This subclause is JDP's interpretation of Motion 8. | have made many changes in response to
Neumaier's comments, to clarify various points, but it is time for motions to decide others. References
to nonstandard intervals have been removed pending a decision on these. | have made assumptions
about the supported trits and how trits are set by operations, based on discussions on Motion 8.

Exceptional events in a P1788 implementation are recorded by means of decorations that are
added to interval datums in sections of a program where such recording is needed, and removed
in sections where it is safe to do so and speed is essential. The general aim, as in 754, is that
exceptions do not interrupt the flow of computation. In contrast with 754, there are no global
flags in the standard P1788 exception model, though an implementation may add such flags.

5.3.1. Definitions. A trit is a quantity taking three values interpreted as “certainly false”, “un-
certain = possibly false = possibly true” and “certainly true”, and denoted by the symbols —, 0
and + or the numbers —1,0, 1.

A decoration is a list of trits (more precisely, of named trit-valued attributes). The values
+ and — of a trit make opposite certainty claims about the associated attribute; the value 0
indicates the lack of certainty about the attribute. A “new” interval created from a constructor
has a no-0 decoration of the appropriate form. The all-0 decoration is least informative.

A decorated interval consists of one interval and one decoration. Decorations are a level 2
concept, hence the interval part of a decorated interval is always a machine interval. However,
in examples, it is convenient to assume exact arithmetic on arbitrary mathematical intervals.

An interval or decoration is called a bare interval or bare decoration when the bareness is to
be emphasized.

5.3.2. Interval types. Implementations shall provide:

e a bare interval type, for each supported number format;

e a bare decoration type as defined in which is independent of the number format;

e a decorated interval type, for each supported number format: this is made up of the
corresponding bare interval type, and the bare decoration type.

Every constructor for intervals creates a decorated interval with the most informative decoration
consistent with the interval part.

An implementation may support other decoration types which carry extra information such
as other trits, or traceback data for debugging, etc.

5.3.3. Forgetful operations. Implementations shall provide operations

intervalPart(x)
decorationPart(x)

that return the interval or decoration part of the input, respectively.
There shall be operations
15
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Name Values.
+ 0 -
valid isValid X notValid
defined isDefined possiblyDefined notDefined
continuous | isContinuous possiblyContinuous X
bounded isBounded possiblyBounded notBounded

FIGURE 1. Mnemonic for each trit value. An x marks a value that is not used,
as explained in the text.

valid(z)
defined(x)
continuous(x)
bounded(x)

that act on either a decorated interval or a bare decoration, and return the value of the indicated
trit. These four operations shall also act on bare intervals, in which case the result is the least
informative among the possible results for all decorated intervals consistent with the input.
[Exzample. For the bare interval & = [0, 4oo], valid(), defined(), continuous() and bounded()
etlirn 0, 0, 0 and — respectively. For « = () they return 0, +, + and +.]

5.3.4. Decorated-interval functions. Implementations shall provide the same set of elementary
functions (this includes the basic arithmetic operations) for decorated intervals as for bare inter-
vals. This applies to both required and recommended functions, see [5.4

An elementary function applied to decorated intervals returns, by definition, a decorated
interval whose interval is the result of the operation on the argument intervals, and whose
decorations are computed from the arguments such that they retain the most informative and
valid information about the result, as specified in [5.3.5] Hence

e The interval part of the result depends only on the interval part of the inputs.

e The decoration part of the result depends, in general, on both interval and decoration
parts of the inputs. A\ Oh dear. Also the result of comparisons such as containedIn(x, y)
(Vienna 5.4) depends on both interval part and bounded attribute. I'm not sure | like this
because. . .

Motion 8§2.2 says “An arithmetic operation on standard decorated intervals returns a stan-
dard decorated interval whose interval is the result of the operation on the argument intervals,
and whose decorations are computed from the arguments such that ...”

The intent of this is surely that the interval part of an output depends only on the interval
parts of the inputs. Should we relax this generally? Should we make a special exception for
bounded since this aims to fill a hole in the 754 standard? Should comparisons obey different
rules from arithmetic operations? Shoulkd we dump bounded?

An operation on bare decorations returns, by definition, a bare decoration representing the
least informative case of all possible results of the operation on all decorated intervals consistently
decorated according to the bare input decorations.

5.3.5. Supported attributes. The decoration type shall support the four attributes
valid, defined, continuous, bounded.
It may support others.
Figure [I] gives mnemonics for attribute values. Their usage is that “interval z is notValid”

means the valid attribute of x has the value —, and so on.
16
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5.3.6. Attribute semantics. The attributes are used to guarantee certain properties of an indi-
vidual interval or of the computational history that produced it. By the nature of interval com-
putation one cannot, except for valid, state simple necessary and sufficient conditions for an
attribute to have a given value, but the positive values—isValid, isDefined, isContinuous,
isBounded—give sufficient conditions for properties needed in application algorithms, as de-
scribed below.

Care has been taken in this standard to make the semantics implementable. Interval operations
are specified in such a way that: (a) they have required semantic properties; (b) they can be
realized in software with good efficiency on modern architectures.

AN Implementability is an important feature! But is this appropriate to state in the standard? @

valid. An interval is isValid if, and only if, it is the result of a valid constructor call, or of an
operation whose inputs were isValid. Otherwise it is notValid. The possiblyValid value
is not used.

[Note. An isValid interval is one that “makes sense” at the code level, irrespective of whether

the algorithm that produced it is correct.
All notValid intervals originate from invalid constructions, e.g. * = doublesTolnterval(3, NaN)
(meaningless bound) and y = stringTolnterval("[0.2.0.4]") (syntax error: the second period
should be a comma) are notValid, as are-x + z for any z, sin(y), etc. Real-valued functions
of a notValid interval, such as its bounds, radius, etc., return NaN. Relational operations with
a notValid input always return False. All other decoration trits of a notValid interval have the
value 0.]

defined, continuous. These have meaning in the context of the Fundamental Theorem of In-
terval Arithmetic (FTIA). Suppose f is a function of real variables z1,...,z, defined by an
explicit expression f(x1,...,x,) built of elementary functions, and that the decorated inter-
val y = f(a1,...,x,) is computed by applying f to decorated intervals @i,...,x,, using
decorated-interval versions of the elementary functions. Let X be the input box &1 X ... X @,
(meaning the cartesian product of the interval parts of the @;, dropping the decorations). The
FTIA asserts that y contains range(f, X), irrespective of whether f is everywhere defined, or
continuous, on X . Further:
(i) y being isDefined guarantees that the mathematical function f is defined everywhere
on X: that is, X is contained in the natural domain Dy of f.
(ii) y being isContinuous guarantees that the restriction to X of the mathematical function
f is defined and continuous everywhere (on X).

[Notes.

1. A common use of these attributes is to let an algorithm verify the mathematical hypotheses
of a fixed-point theorem, e.g., during the validated solution of a differential equation problem.

2. For brevity, the wording “f is continuous on X" is used to mean ‘the restriction of f to
X is continuous”. This is sufficient for fixed-point theorems, but note it is not the same as
“the whole function f is continuous at each point of X". For instance, if f(x) = floor(z),
the restriction of f to @ = [0, 3] is continuous, but the whole function f is discontinuous at
0€x.

3. To make these features useful it must be ensured that on entry to f, each x; is an isDefined
[respectively isContinuous | decorated interval.

4. The above are sufficient conditions for f to be defined, or continuous, on X. They are in
general not necessary because of overestimation due to three factors, of which only the last
can be controlled by the implementation:

(a) Dependencies within the expression f.
17
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5.

)

(b) Effects of outward rounding.

(c) The tightness with which the interval elementary functions are implemented.
The operations making up f above are, by definition, point elementary functions (for f)
or their interval versions (for f). The theory allows f to contain logical branches in some
circumstances, /N reference? but f may not use non-point operations such as intersection or
hull of two intervals. /N Sometimes to prove f is defined or continuous on X one covers X
with smaller boxes and proves the property on each such box. The standard does not directly
support such methods but | guess the way intersection, hull and other set operations handle
defined and continuous, should aim to be convenient for such methods. Comments please.

bounded. This attribute aims to record whether endpoints of an interval are finite, including cases
where they are finite but too large to be representable. An interval is set isBounded i can be
determined from the operation that produced it, and the latter’s inputs, that it is bounded.
Similarly, it is set notBounded if can be determined that it is definitely unbounded. Otherwise
it is set possiblyBounded.

[Notes.

The valid, defined and continuous attributes have sticky behaviour. This means that

their values are regarded as ordered 4+, 0, — from “best” to ‘worst”, and for most (but not all)
operations, the result value is the worst of (a) the input values and (b) the value set by the operation
itself. In this way they record past computation history. The bounded attribute is not sticky. |

5.3.7. Allowed combinations. Only certain combinations of property valyes are logically possible,
as shown below, where v means valid, and so on. An implementation shell ensure this.

v d ¢ b ‘no.ofcases
+ — 0 0 1
+ 0 0 0— |2

++ +0 40— |6

The completeness of this table depends on the following conventions adopted in this standard.

— A function can be continuous only at a point where it is defined. (E.g., the function f(z) =«

(x #

0), undefined (z = 0) is not continuous at « = 0. This convention is not universal.)

— A function is taken to be possiblyContinuous at each point where it is undefined. (The
choice between this and notContinuous is arbitrary.)
— If a function is not everywhere defined, it cannot be known to be bounded. /N Arnold Neu-

maie
— Itis

r, whose table this is, takes this view. | find it shaky but adopt it for simplicity.
mathematically possible for a function to be everywhere defined and nowhere continuous,

but such functions do not occur in practical interval computation, so this case is excluded.

Row 1:

Row 2:

Row 3:

If an interval is notValid, then as said above it is given the value 0=possibly for all
other decoration properties.

If a valid interval is notDefined, it results from interval-evaluation of a function f
which is undefined everywhere on its input box X. [Ezample. /[—2, —1] or [0, 0]/[0, 0].]
Its interval part is the empty set; however by the above conventions this is classified
possiblyBounded..

If a valid interval is possiblyDefined, the underlying f is known to be somewhere
but not everywhere defined on the input box. The above conventions imply: it cannot
be isContinuous; in practice it is not notContinuous; and it cannot be known to be

isBounded.
18
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Row 4: For a valid, isDefined interval, by the above conventions, notContinuous is excluded
but any other combination of continuous and bounded status is possible.

5.3.8. Other operations on decorated intervals. /N It needs to be decided how intersection, hull
and similar non-arithmetic operations handle decorations.

Also how decorations affect comparison functions: e.g. ([1, 400, notBounded) presumably cannot
be a subset of ([1, +o¢], isBounded).

/N We need to specify how the interval part of a notValid interval behaves w.r.t. real-valued
functions like radius (always NaN?) and “forget decoration” (gives Empty?).

5.4. Required operations.

5.4.1. Constructors and conversions.

& This has not been voted on but | assume, for now, a subset of the operations in Vienna§2.5, §6.
Implementations shall provide, for each supported i-format, the following operations. Their

names in this standard do not necessarily correspond to those that any particular language would

use. The prefix fmt indicates some textual way to show the destination format of the operation.

fmtfloats2interval(z, 7). If 2 < T this returns the smallest interval of the given i-format containing
the two floating point numbers z,T, flagged as isValid. If it is not true that x < T (in
particular if either of z, T is NaN) it returns the empty interval flagged as notValid.
The n-formats of  and T need not be the one associated with the destination i-format, and
need not be the same.

fimtfloat2interval(z) has the same effect as fmtfloats2interval(z, ).

fimttext2interval(s) returns the smallest interval of the given i-format containing the mathemat-
ical interval defined by the text string s, and flagged as isValid. If s does not define an
interval, it returns the empty interval flagged as notValid.
/N\ A motion is needed to decide the details. Vienna§6 has a specification we may like to follow.
Meantime | assume, in examples, that things like text2interval("[1.2, 3.4]") have the natural effect.

When a newly constructed interval is flagged as isValid, it is also flagged as isDefined and
isContinuous. The bounded attribute is set as follows.

5.4.2. Forward-mode elementary functions.

/N The following issues are outstanding:

- Accuracy model—still to be defined, e.g. Vienna “tightest, accurate, valid”.

- Details on evaluation of functions outside their domain—handled by the common exception handling
scheme, which currently means decorated intervals as in motion 8 and

/N Jiirgen: | have taken the liberty of changing the “rough” interval-oriented domains and ranges,
in the tables in your motion, to precise domain and range of each point function. Reason: this, plus
the requirement to be an interval extension, sufficiently specifies the interval function.

The term operation includes functions normally written in function notation f(z,y,...), as
well as those normally written in binary operator notation. The names of operations in this
standard do not necessarily correspond to those that any particular language would use. Table
lists operations that are required in the sense that:

e A programming-language-specific implementation shall provide an interval version of
each function in the table that is provided by the underlying floating-point implementa-
tion in that language.

e An implementation that is not language-specific shall provide interval versions of all
functions in the table.

19
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point function point function accuracy
name definition domain range mode note
add
{sub +, —, X R? R t
mul
div + {(z,y) eR?ly#0} R t
sqr z? R [0, 00) t
R if p > 0 odd ]
. [0,00) if p > 0 even
pown 2P, peZ {ﬁ\lfég}i(; <0 {1} ifp=0 ? 1
R\{0} if p < 0 odd
(0,00) if p < 0 even
pow xY see see ? D)
sqrt N3 [0, 00 [0, 00 t :
exp
{epr b* R (0, 0) ? 3
expl0
log i
{1og2 log, © (0, 0) R ? 3
logl0 |
expml
{eprml b*—1 R (—1,00) ? 3
expl10mil
logpl i
{10g2p1 log, (z+1) (=1, 00) R ? 3
logi0Op1l
sin R [—1,1] ?
cos R [—1,1] ?
tan R\{(k+im)|k €Z} R ?
asin [=1,1] [—7/2,7/2 t
acos [—1,1] [0, 7] t
atan R (—=7/2,7/2) ?
atan2 R\ {(0,0)} (=, 7] ?
sinh R R ?
cosh R [1,00) ?
tanh R (-1,1) ?
asinh R R ?
acosh [1,00) [0, 00) ?
atanh (-1,1) R ?
abs || R [0, 00) t
rSqrt 1/Vx (0, 00) (0, 00) t
hypot Va? +y? R? [0, 00) t
compoundmi (1+2)" —1 (—1,00) {Eig}l’lfojz);fg 70 ?
TABLE 2. Required elementary functions. The interval version is required to be
an interval extension of the point function and to be of the specified accuracy.
Notes to Table 2
1. The integer argument selects the proper function out of a parameterized family.
2. Defined in
3. b=e,2 or 10, respectively 20
4. The ranges shown are the mathematical range of the point function. To ensure containment,

5.

/N | have included a column “accuracy mode” which assumes the Vienna scheme: t=tight,

a=accurate, v=valid. | put ‘t’ against those that obviously must be ‘tight’. We need a motion to

the interval result may include values just outside the mathematical range.

atan2(y, x) is the principal value of the argument (polar angle) of (z,y) in the plane.

decide how to complete this.
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[Note. The list includes all general-computational operations in 75455.4 except convertFromlInt,
and many of the recommended functions in 754§9.2.)

Proving the correctness of interval computations relies on the Fundamental Theorem of In-
terval Arithmetic, which in turn relies on the relation between a point-function and its interval
version. Therefore, for each point-function e, care is taken to define its domain D, and its
value at each point of D.. This is mostly straightforward but needs care for functions with
discontinuities, such as pow() and atan2().

Each interval version shall be an interval extension, see of the corresponding point
function. Table [2|lists the name of the function, its mathematical definition where not obvious,

and its domain and range. AN

5.4.3. General Power Function. Usually the interval power function z¥ is defined as extension 20100129
of the real function e?'(®) Hence, = has to be positive.
But actually 2P/¢ with 2 < 0 is definable for rational exponents, if gis odd. If p is odd the
result is negative otherwise positive. Since the rationals are dense in the reals, we can find a
rational number with odd denominator and odd or even numerator in each neighborhood of a
negative real number. Hence, we can define an interval version of the power function that directly
delivers the interval between the 2 values.
The general interval power function called pow() is definable as follows (Let U compute the
interval hull of its 2 operands.)

pow : IR x IR — IR.
(1) If £ > 0: pow(x,y) = exp(y - In(x))
If z <0: pow(z,y) = —exp(y - In(|z)[) Uexp(y - In(|z)])
If0 € z : pow(z,y) = pow([z,0),y) Upow([0, 0], ) Upow((0,7],y)

where pow([0,0], %) = [0,0], if 30 < y € y. /N and pow([0,0],y) is empty otherwise?
/N 1 have a problem with compoundm1(), as well as the 754-2008 function compound(). Namely
you often want to convert monthly interest rate r to annual rate R, which is given by

R = compoundml(r, 12)
but equally often want to convert from annual rate to monthly, given by
r = compoundml (R, 1/12).

So isn't it pretty pointless if y must be an integer?

/N The position paper notes that interval pow() is not an extension of any point-function version
of pow(). My view is that to preserve the FTIA, it must be so.

In fact | believe is an extension of the function

pow : R xR — R.

If 2 >0 : pow(z,y) = exp(y - In(z))

If =0, y>0: pow(xz,y) =0

If z <0, y rational = p/q in lowest terms :
if p odd: pow(z,y) = —exp(y - In(|z)|)
if p even: pow(x,y) = exp(y - In(|x)])

else pow(x,y) undefined.

Two aspects need care about Jirgen's interval pow(). (i) It seems to have pow([0,0],[0,0]) =

Empty, which is why | made pow(0,0) = undefined for the point version. (ii) For z < 0, it

doesn’t take any notice of whether y, if a singleton, is rational, so e.g. pow([—3, —3],[2,2]) seems

to be [—(3%),+(3%)] = [-9,9] (I would expect [9,9]); while pow([—3,—3],[0.5,0.5]) seems to be
21


keil
Highlight
As I read it, according to 4.4.1 interval version is equivalent to interval extension... Probably "Each interval function shall be..."?

keil
Cross-Out
"q "
missing space


IEEE Std P1788
IEEE Standard For Interval Arithmetic §5.6

[—(39%), +(3°%)] = [~V/3,v/3] (I would expect Empty). | find both of these strange. Jiirgen, did
you mean this? Or have | mis-read the definition?

5.4.4. Reverse-mode elementary functions.
A The list from a revised Motion 11 will go here.

5.4.5. Comparison operations.
/N No motion about these yet.

5.4.6. Other operations.
/N | expect intersection, midpoint, etc., will go here.

5.4.7. Reduction operations. Implementations shall provide an exact dot product operation.
/\ Details TBW

5.5. Recommended operations (informative).

5.5.1. Forward-mode elementary functions.

Language standards should define interval versions of as many of the functions in Table [3| as
is appropriate to the language.
/N Should we include a recommended accuracy mode in this table?

5.5.2. Reverse-mode elementary functions.
A The list from a revised Motion 11 will go here.

5.5.3. Other operations.
A The list from a revised Motion 11 will go here.

5.6. Sharpness measures.
A E.g. Vienna's tight, accurate, valid. No motion about these yet!
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name definition domain range notes
sign R {-1,0,1}
ceil, floor R 7
nint, trunc R 7

R if ¢ > 0 odd
t zt/1 g e z\ {0} 0,00) if g > 0 even same as domain 1
rootn ' 4 R\{0} if ¢ < 0 odd
(0,00) if ¢ < 0 even |
R if p >0, ¢ odd lep.>0,pqodd
fp> 0. g even [0, oo) if p > 0, pq even
powr xP/a ][lg’oo) np 4 {1} ifp=0 1
\{0} if p <0, ¢ odd R\L0V if 0 ad
(0,00) if p <0, g even \{}1p< » P3O
(0,00) if p < 0, pq even
p,q € Z, normalized by (¢ > 0, p/q in lowest terms, i.e. HCF(p,q) = 1.)
sinPi sin(mx) R [-1,1]
cosPi cos(mx) R [—1,1]
atanPi arctan x/m R [—1/2,1/2]
atan2Pi atan2(y, x)/m R xR [-1,1] 2
explx (e* —1)/x R R -
exp2x (e —1-x)/2> R (0, 00)
cos2 (cosx —1)/a? R (—00,0
sin3 3(sinx — x) /a3 R [—1/2,00)
cosh2 (coshz —1)/22 R (0, 00)
sinh3 3(sinhz —z)/2® R [1/2,00)
gamma I(x) R R
lgamma log |T'(z)| R R
erf error function R (-1,1)
erfc complementary R (0,2)

error function

TABLE 3. Recommended elementary functions

Notes to Table B

1. The integer arguments p, g select the proper function out of a parameterized family.

2. These functions avoid the behavior noted in Table [2] note

A Query: ceil, floor, trunc are names used in C standard. If nint is ‘round to nearest
integer’ shouldn’t it be called round, as in C standard?

/N This list is probably controversial: other functions may have a stronger claim for inclusion than
some of the present members.
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6. LEVEL 3 DESCRIPTION

6.1. Representation of intervals by lower/upper bounds.

An implementation may choose any means to represent a level 2 interval datum @, provided
that it shall be possible to retrieve the bounds of x exactly. This is captured by the following
definition.

A concrete interval format (ci-format) is a surjective mapping from a set C' of instances
of a data structure to an associated level 2 i-format.

[Note. Typical choices are

— inf-sup representation. The data structure is an ordered pair (f1, f2) of floatingpoint datums. A
nonempty F-interval x = [z, T| is represented by (xz,T). The empty set may be represented by
(NaN, NaN).

- neginf-sup representation. As the previous, but x = [z, T] is represented by (—z,%).

The above two ci-formats use essentially the same data structure, and represent the same i-format,

but the mappings are different.

Multi-precision interval packages may represent an interval x = [, T

some point in x, and § and & are very small numbers, and x = [%

ways. |

| by a triple (&,8,0) where & is
+ 0,2 + 0] exactly; or in other

6.2. Format conversion.

On 754 systems, level 2 interval format conversion (the hull operation) should be implemented
in terms of the floating-point operations formatOf-convertFormat defined in 754§5.4.2, with
the appropriate outward rounding.

6.3. Interchange formats.
/N\ We need a motion on this subclause, which was my invention.

The purpose of interchange formats is to allow the loss-free exchange of level 2 interval data
between 754-conforming implementations. This is done by imposing a standard level 3 (and hence
level 4) representation. Let F be a 754 format and « a (bare) F-interval datum, so that its lower
bound z and upper bound T are F-numbers. An interchange format of « is the concatenation of
the bit strings of the F-representations of z and T in that order, where:

e 0 shall be represented as +0.

e For decimal formats, any member of the number’s cohort is permitted. The choice is
implementation-defined.

e When « is the empty set, x and T are taken as NaN. Whether qNaN or sNaN is used,
and any payload, are implementation-defined.

[Note. The above rules imply an interval has a unique interchange representation if it is nonempty
and in a binary format, but not generally otherwise. The reason for the rules is that the sign of a zero
endpoint cannot convey any information relevant to intervals; but an implementation may potentially
use cohort information, or a NaN payload.|

The interchange format for a decoration comprises the bit strings for each trit, concatenated
in the order valid, defined, continuous, bounded. The bit string values for a trit are 11, 00,
01 for —, 0, + respectively (the twos-complement representations of —1,0, 1 in two bits). Thus a
decoration occupies one byte.

The interchange format for a decorated interval is the concatenation of those for its interval
and decoration parts, in that order.

A 754-conforming implementation shall provide an interchange format for each supported 754
interval format. Interchange formats for non-754 interval formats, and on non-754 systems, are
implementation-defined.
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6.4. Support levels for interval elementary functions. The Fundamental Theorem of In-
terval Arithmetic (FTIA) relies on each point elementary function e in a real expression being
replaced by an interval version e. Mathematically, e may be an arbitrary interval extension of
e, and its arguments and result are not limited by any concrete interval format.

A level 2 interval version is implemented at level 3 in terms of concrete formats such as
binary64. The standard defines three levels of mixed format support, below. For each one, e
delivers a result of a specified ci-format F, from operands of a limited number of ci-formats.

Implementations shall give at least SRSF support to all supported elementary functions. 754-
conforming implementations shall give at least SRMF support.

SRSF. Single-radix, single-format. In SRSF support, e has an interval version e that takes
F-interval operand(s) and gives an F-interval result. Thus explicit format conversion is needed
for any operand of a different format from F.

SRMEF. Single-radix, mixed-format. In SRMF support, e has an interval version e that takes
operand(s) of any supported interval format of the same radix as F, and gives an F-interval
result. Thus explicit format conversion is needed for any operand whose format has a different
radix from that of FF.

MRMF. Mixed-radix, mixed-format. In MRMF support, e has an interval version e that takes
operand(s) of any supported interval format, and gives an F-interval result. Thus no explicit
format conversion is required for any operand.

SRMF includes SRSF (SRMF support provides SRSF in particular); and MRMF includes SRMF.

MRMF support, and mixed-format interval expressions of more than one operation, are con-
sidered to be language issues. Recommendations on them are in Appendix [A]

[Note. For a 754 formatOf floating-point operation, for any combination of input and output

formats of the same radix, the correctly rounded result is produced, eliminating the risk of “double
rounding” error in mixed-format operations.
Most algorithms for the basic interval operations, in particular those in can exploit the formatOf
feature. That is, they can be written, in terms of point operations, so that arbitrary mixed formats
of the same radix can be handled by essentially the same code, while remaining optimally tight at
the level of a single interval operation.]

6.5. Operation tables for basic interval operations.
/N\ This was the trickiest part for me to reconstruct after losing all the Latex files of Version 01
when | was burgled. Prof Kulisch: will you or a colleague please check this carefully?

The tables in this subclause are an explicit realization of the general definition of interval
operations given in [4.4.1l They are not normative, but are one possible basis for coding the
interval versions of + — X =+. For fuller details see [1], [2].

Notation. In addition to the notation in this subclause also defines, for a specified
n-format F:

V , A : the roundings downwards and upwards,
¥ , etc. : the operations for elements of F with rounding downwards,

A | etc. : the operations for elements of F with rounding upwards.
s : the same as hullg(s), the F-hull of a subset s of R.

For intervals a, b € IR arithmetic operations are defined as set operations in R by:

(2) aob:={aob|lacaAnbebAaobis defined },

for all @,b € IR and o € {+,—,*,/}. If 0 ¢ b in case of division, then for all a,b € IR also
aobeclR.
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Then binary arithmetic operations in IIF are uniquely defined by:

(3) a®b:= < (aod),

for all a,b € IF and all o € {4, —, %, /}. For division we assume again that 0 ¢ b.

For intervals a = [a1, az2],b = [b1,bs] € IF these operations & ,o € {+,—,x*,/}, in IF have
the property

adb= [,min (a; V' bj), max (a; & bj)] )

ij=1,2 ij=1,

or with the monotone roundings V and A

a®b= [V min (a; 0b;), A max (aiobj)] .
i,j=1,2 i,j=1,2
The above operations, and the unary operation —a, can be expressed by more explicit formulas
as shown in the following tables. There the operator symbols for intervals are simply denoted
by +,—, %, and /.

Minus operator —a = [—ag, —a].
Addition [al,ag] + [b17 bg] = [a1 \4 bl, a2 A bg]
Subtraction [Cbl, CLQ] — [bl, bg} = [a1 W4 bg, a2 A bﬂ
Multiplication [b17 bg] [b17 bg] [b17 bg]
[alaGZ}*[blabZ] by <0 by <0< by by >0
[al,ag},az SO [aQVbQ,alﬁbl] [a1Wb2,a1Ab1] [a1Wb2,a2Ab1]
a1 <0 <as [ag ¥ by, ay &bl] [min(al Y bo, as Wbl), [al Y bo, as &bg]
max(al A bl, as A bg)]
[al,ag],ale [GQWbl,alébg] [G/QWbl,a,QAbQ] [(llel,G,QAbg]
DiViSiOIl, 0 ¢ b [bl, bz] [bl, b2]
la1, az]/[by, bs] by <0 by >0
[CL17CL2],GQ SO [CLQthalAbg] [alvbhagﬁbg]
[al,ag],al <0<as [aQWb2,a1Ab2] [alvbl,agﬁbl]
[al,ag],al 2 0 [ag Wb27a1 &bﬂ [a1 ng,ag Abl]

The general rule for computing the set a/b with 0 € b is to remove its zero from the interval
b and perform the division with the remaining set. Whenever the zero in b coincides with a
bound of the interval b the result of the division can directly be obtained from the above table
for division with 0 ¢ b by the limit process by — 0 or by — 0 respectively. The results are
shown in the following table. Here, the parentheses stress that the bounds —oco and +oo are not
elements of the interval.

Division, 0 € b b= [b1, b2] b1, ba]
[al, ag]/[bl, bg] [070] by <by=0 0=">b; < by
[a1,as] = [0,0] 0 [0,0] [0,0]

a1 <az <0 0 Jaz V by, +00) (—00,az A bs]
la1,a2],a1 <0 <as | 0 (—00, +00) (—00, +00)
0<a <as ] (—oo,a1 A by] a1 V by, +00)
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When zero is an interior point of the denominator, the set [b1, bs] devolves into the two distinct
sets [b1,0) and (0, b2] and division by [b1, be] actually means two divisions. The results of the
two divisions are already shown in the table for division with 0 € b.

In the user’s program, however, the two divisions appear as a single operation, as division
by an interval b = [by,bs] with b; < 0 < by. So an arithmetic operation in the user’s program
delivers two distinct results.

One solution is for the computer to provide a flag for distinct intervals, that is raised if the
divisor is an interval that contains zero as an interior point. The user may then apply a routine
of their choice to deal with the situation as is appropriate for the application.

This routine could be: return the entire set of real numbers (—oco, +00) as result and continue
the computation, or continue the computation with one of the sets and ignore the other one, or
put one of the sets on a list and continue the computation with the other one, or modify the
operands and recompute, or stop computing, or some other action.

An alternative would be to provide a second division which in case of division by an interval
that contains zero as an interior point generally delivers the result (—oo, +00). Then the user can
decide when to use which division in his program.

The above operation tables have assumed that a and b are nonempty and bounded. To extend
them to general intervals, the first rule is that any operation with the empty set () returns the
empty set.

Then, the above tables extend to nonempty, possibly unbounded, intervals of IF by using
the standard formulae for arithmetic operations involving +oo, which are implemented in 754,
together with one rule that goes beyond 754 arithmetic:

0+ (—00) = (—00) * 0 = 0 % (+00) = (+00) * 0 = 0.

This rule is not a new mathematical law, merely a short cut to easily compute the bounds of the
result of multiplication on unbounded intervals.
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7. LEVEL 4 DESCRIPTION
TBW
APPENDIX A. LANGUAGE ISSUES
TBW
APPENDIX B. CONVENTIONS FOR EXAMPLES IN THE STANDARD

To explain how mathematical statements like y = /[—1,4] + 1 are interpreted in terms of
P1788 basic operations.
May become the section on Level 2 semantics. TBW
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/N References to be extended, obviously. These are from Kulisch's operation table position paper.
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