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 Approa
hVersion 1.2Mar
o Nehmeier, Jürgen Wol� von GudenbergUniversity of WürzburgJune 29, 20111 The Motion (Draft)1.1 De�nitionsIntervals are sets of real numbers (motion 3). As su
h sets they are 
omparablewith respe
t to 
ontainment.De
orations are properties that 
arry information on the history of the inter-val. They are a measure of 
on�den
e of intervals.A de
oration is determined when a fun
tion f is applied on an interval (box) x.P1788 shall provide the following 4 de
orations :De�nition 1 .name abbrev de�nitionsafe saf x ⊆ Df f 
ontinuous on xde�ned def x ⊆ Df f not 
ontinuous on xen
losing en
 x ∩Df 6= ∅ and x ∩ (R \Df ) 6= ∅nowhere de�ned ndf x ∩Df = ∅Here Df denotes the domain of f .De�nition 2 De
orations are ordered with respe
t to the 
on�den
e level:
ndf < enc < def < safDe�nition 3 A de
orated interval is a pair of an interval and a de
oration. Theset of all de
orated intervals is 
alled DIR1



Remark 1 We emphasize, that the de
oration does not 
ontain information aboutthe 
ontents of the interval but only tra
ks properties of the environment in whi
hthe interval has been 
omputed. Nevertheless it is reasonable to put an intervaltogether with a de
oration.If it is appropriate we denote the interval part of a de
orated interval a �bareinterval� and the de
oration part is 
alled a �bare de
oration�.In the following we assume that every interval is de
orated. Neverthelessappli
ations may totally ignore de
orations, sin
e for ea
h operation the resultingbare interval depends only on the bare input intervals, see the next subse
tion.1.2 Assertions in IRFor bare intervals we have the fundamental assertions:De�nition 4 Interval ExtensionA total fun
tion F : IR
k
⇒ IR is 
alled an interval extension of a (partial)fun
tion f : Rk ⇒ R, if for all possible intervals xi and values xi ∈ xi we have

f(x1, . . . , xk) ∈ F(x1, . . . ,xk)Proposition 1 An interval extension F(x) of an expression f en
loses the rangeover x of the point fun
tion de�ned by the expression f .Theorem 1 Subset Property or Isotoni
ityLet x,y ∈ IR and an interval extension F : IR ⇒ IR of a 
ontinuous fun
-tion f . Then
x ⊆ y =⇒ F(x) ⊆ F(y)Theorem 2 En
losure Property or FTIAThe parti
ular interval fun
tion F that results from applying straight-forwardinterval 
omputation onto the expression f is an interval extension.If every variable xi o

urs only on
e in an expression for a 
ontinuous fun
-tion, and if all subexpressions 
ompute their range, then F 
omputes the exa
trange.We are going to transfer these theorems to the spa
e of de
orated inter-vals DIR.1.3 Arithmeti
 in DIRRemark 2 The arithmeti
 of bare intervals is de�ned in motion 5 and 10.2 (nowrepla
ed by Table 5.6.2 of draft 03.2).In parti
ular applying an arithmeti
 fun
tion to an empty argument produ
esan empty set: f(∅) = ∅De�nition 5 The interval parts are 
omputed like bare intervals, the results donot depend on any de
orations. 2



1.3.1 Generation and Propagation of De
orationsWe model the 
omputation of a de
orated interval expression with a de
oratedexpression tree (DET).De�nition 6 InitializationA literal interval 
onstant is given the de
oration saf . A 
onstru
tor builds ade
orated interval with default de
oration saf .De�nition 7 De
orated Expression TreeA de
orated interval is a de
orated expression tree. If (ti, di), i = 1, . . . k areDETs and f is a k-ary de
orated fun
tion then t = ((f, df), (t1, d1), . . . (tk, dk))is a DET where df is the de
oration that is generated by the 
all f(t1, . . . tk)a

ording to table 1.De�nition 8 Propagation RuleFor the de
orated expression tree t = ((f, df), (t1, d1), . . . (tk, dk)) we use the fol-lowing evaluation rule:
(y, dy) = (f(t1, . . . tk),min{df , d1, . . . dk}) (1)Usually, we trust our input intervals, but then we always tra
k the worstpossible de
oration.Theorem 3 Obviously we will 
ompute a lower bound of the de
oration, if weonly apply rule (1).There is no 
han
e to overlook a 
ase where we in
orre
tly promise an unstainedpath.1.3.2 Determining the De
orationContinuous fun
tionsThe generated de
oration is always saf even in the 
ase of over- or under�ow.Hen
e, the minimal de
oration of the inputs is propagated.Fun
tions with isolated singularitiesIf x does not 
ontain a singularity, set df = saf , else if x is a point intervalprodu
e ndf , in this 
ase the bare interval result has to be ∅. Otherwise return

enc.
1/[0, 0] = (∅, ndf) = 1/∅

1/[0, 1] = ([1,∞], enc)

1/[ε, 1] = ([1, 1/ε], saf)

1/[ε2, 1] = ([1,∞], saf)3



Non-
ontinuous fun
tionsGenerate def or saf a

ording to the overlapping situation of x and dis
on-tinuity points.
floor([1, 9], saf) = ([1, 9], def)

floor([1, 9.5], saf) = ([1, 9], def)

floor([1, 1], saf) = ([1, 1], def)

floor([1.25, 1.5], saf) = ([1, 1], saf)

Partial fun
tionsGenerate de
orations a

ording to the overlapping situation of x and Df .
sqrt(∅) = sqrt([−4,−1]) = sqrt([−4,−1], saf) = (∅, ndf)

sqrt([−4,+1]) = sqrt([0, 1], enc) = ([0, 1], enc)

sqrt([0, 1], saf) = ([0, 1], saf)

sqrt(floor([0, 1])) = sqrt([0, 1], def) = ([0, 1], def)whi
h implies
∅ ⊆ [−4,−1] ⊆ [−4, 1] =⇒ ∅ ⊆ (∅, ndf) ⊆ ([0, 1], enc)

∅ ⊆ [0, 1] ⊆ [−4, 1] =⇒ ∅ ⊆ ([0, 1], saf) ⊆ ([0, 1], enc)

∅ ⊆ ([0, 1], def) ⊆ ([0, 1.5], def)

∅ ⊆ ([0, 1], def) ⊆ ([0, 1], def)1.3.3 Treatment of ∅Remark 3 The empty set may get all de
orations. The interse
tion of safe,disjoint intervals is a safe empty set e.g. if that set is input to an additon anowhere de�ned empty set is generated.De�nition 9 Propagation of ∅All k-ary arithmeti
 fun
tions deliver the result f(∅) = (∅, ndf), if one 
omponentof the inbut box is empty. 4



Proposition 2 The same has to hold for minimum/maximum.Proof: We show by a 
ounter example given by Vin
ent Lefevre thatmin(x, ∅) =
x leads to a 
ontradi
tion.Let a = [−2,−1] ⊂ b = [−2, 0] but for f(x) = min(sqrt(x), [3, 4]) we havethat f(a) = [3, 4] 6⊂ f(b) = [0, 0].But if we use a min that returns the empty set we have:

f(a) = ∅ ⊂ f(b) = [0, 0].
�1.3.4 Additional fun
tionsAdditionally interse
tion, union, interval hull and max, min 
an be used as latti
eoperations de�ned in motion 13.4.Interse
tion with an empty set delivers the empty set, as usual, the de
orationis ndf . Interse
tion of two non-empty intervals also propagates the minimum ofthe input de
orations. Note that we have (∅, saf) for disjoint intervals.Union and hull are not propagating the empty set. Sin
e union is de�ned ev-erywhere, it does not alter the de
orations of its input arguments whose minimumis appropriately 
hosen.The interval hull of 2 numbers or intervals, however, is 
onsidered to 
onstru
ta new safe interval, i.e. the de
oration is always saf .Note that in 
ontrast to the 754 standard, we require max(x, ∅) = ∅.Pie
ewise 
ontinuous fun
tions like floor are also allowed.User de�ned fun
tions may be 
alled, if they belong to one of the 4 
ategoriesintrodu
ed in the pre
eding subse
tion. There is no problem, if the new fun
tionuses welll known fun
tions.1.3.5 ComparisonsIntervals 
an be 
ompared with the overlapping relation or the 
omparisons pro-vided by motion 13.4De
orated intervals are 
ompared by their bare intervals only, the de
orationshave no in�uen
e. They give information on the history of the exe
uton path,not on the interval itself.Hen
e, we 
an easily repeat the 2 fundamental theorems for de
orated inter-vals.1.3.6 Bare de
orationsDe�nition 10 Bare de
orations d are promoted to the interval ([−∞ , +∞], d)Bare de
orations have lost all information of the interval. In this form all therules de�ned above are valide. 5



1.4 Asssertions in DIRDe�nition 11 Interval ExtensionA total fun
tion F : DIR
k
⇒ DIR is 
alled a de
orated interval extension ofa (partial) fun
tion f : Rk ⇒ R, if for all possible intervals xi and values xi ∈ xiwe have f(x1, . . . , xk) ∈ F(x1, . . . ,xk)Proposition 3 The interval part of a de
orated interval extension F(x) of anexpression f en
loses the range over x of the point fun
tion de�ned by the ex-pression f .Theorem 4 Subset Property or Isotoni
ity for DIRLet x,y ∈ DIR and a de
orated interval extension F : DIR ⇒ DIR of a
ontinuous fun
tion f . Then

x ⊆ y =⇒ F(x) ⊆ F(y)Theorem 5 En
losure Property for De
orated Intervals or FTDIAThe parti
ular de
orated interval fun
tion F that results from applying straight-forward interval 
omputation onto the expression f is a de
orated interval exten-sion.If every variable xi o

urs only on
e in an expression for a 
ontinuous fun
-tion, and if all subexpressions 
ompute their range, then F 
omputes the exa
trange.Sin
e the interval part does not depend on de
orations, and sin
e the 
om-parisons also do not depend on de
orations the theorems are the 2 well-knowntheorems for bare intervals.2 RationaleIn the beginning of the motion, we des
ribed de
orated intervals as relativelyindependent pie
es of information. That is similar to the global dis
ontinuitybit used in �lib++. Of 
ourse we do not want to sti
k with global �ags, we are
learly in favor of the de
oration system des
ribed in motions 8 and 15 and in the
urrently dis
ussed motions 25-A1 and 26. This position paper is our 
ontributionto that dis
ussion.Our main 
on
ern is that the de
oration systems of motion 25 and , evenmore that of 26 are to sophisti
ated and 
ompli
ated to be broadly applied orimplemented.Therefore we propose a pragmati
 approa
h, relatively simple, and with un-derstandable implementation rules.
6



2.1 De
orationsIntervals are sets of real numbers (motion 3) de
orated with 1 of the 4 to 7 values.Formally a de
oration is a pair of a fun
tion f and an interval x for whi
h thelisted property is valid.Alternative views on de
orations1. de
orations are 
lasses of fun
tions (or fun
tion spa
es) whose membersmay be 
alled when evaluating an expression.2. de
orations are predi
ates related to a fun
tion and an interval.3. de
orations are properties that 
arry information on the history of the in-terval.4. de
orations are properties of the 
alled fun
tion.5. de
orations are a measure of 
on�den
e of intervals6. de
orations and intervals are equivalent parts of a de
orated interval7. de
orations signal ex
eptions8. de
orations are global �agsThe se
ond and 3rd variant are used in motion 26 or 25, respe
tively. togetherwith 6.Our approa
h also favors 3, together with 5.De
orations are linearly ordered by strength, quality or trustworthiness.In the two 
urrent approa
hes de
orations additionally form a partial orderwith respe
t to 
ontainment. We don't need that order.Arithmeti
 operations and latti
e operations have to be extended for de
o-rated intervals.2.2 The essen
e of our motion:Remark 4 We emphasize again, that the de
oration does not 
ontain informa-tion about the 
ontents of the interval but only gives some hints on the environ-ment in whi
h the interval has been 
omputed. Nevertheless it is reasonable toput an interval together with a de
oration.Proposition 4 Therefore, en
losure of intervals has nothing to do with de
ora-tions.We do NOT need a version of the FTIA 
on
erning de
orations.
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