
The following are well established mathematical concepts and results:
A non empty set M with an associative operation ∗ : M × M → M

(a ∗ b) ∗ c = a ∗ (b ∗ c)

is called a semigroup. A semigroup is called regular if the cancellation law holds

a ∗ x = b ∗ x ⇒ a = b.

Theorem: A commutative, regular semigroup M can uniquely be embedded into a
smallest group G with M ⊆ G. For each b ∈ M , G contains its inverse b−1.

Applications:

I. The natural numbers {N, +} are a commutative, regular semigroup. Embedding it
into a group leads to the whole numbers {Z, +}. Every element a ∈ N has an inverse
−a ∈ Z.
II. The set {IR, +} is a commuatative, regular semigroup. For intervals a , b,x ∈ IR

the cancellation law holds: a + x = b + x ⇒ a = b. So {IR, +} can be embedded
into a group {I∗R, +} such that each element a ∈ IR has an unique additive inverse
inva in {I∗R, +} with the property a + inva = [0, 0].

For an element a = [a1, a2] ∈ I
∗
R the inverse is inva = [−a1,−a2]. For each

element a ∈ a its additive inverse −a is an element of inva and vice versa. The set
I
∗
R consissts of the closed and bounded real intervals of IR and their additive inverses.

They are called proper and improper intervals. Thus I
∗
R is just a set of ordered pairs

of real numbers

I
∗
R := {[a, b]|a ∈ R, b ∈ R}.

In his theses (1973) Edgar Kaucher shows that and how operations and concepts
like addition, subtraction, multiplication, division, membership, subset, less or equal,
union, intersection, continuity, metric, and norm can be extended to the new elements
of I

∗
R. The result is what in the literature now frequently is called Kaucher arithmetic.

Arithmetics in IR and I
∗
R silently assume that division by an interval that contains

zero is not permitted.
The arithmetic of IR, however, can be extended in such a way that division by

an interval that contains zero is permitted. This leads to closed, but unbounded real
intervals. Explicit formulas for operations for unbounded intervals can be obtained from
those for bounded intervals by continuity considerations. This leads to an algebraically
closed calculus that is free of exceptions with the only irregularity that division by
an interval that contains zero as an interior point leads to two separate closed but
unbounded intervals. But this case also can easily be handled by computers. For details
see my book: Computer Arithmetic and Validity, De Gruyter 2008. The extended set is
denoted by IR. Arithmetic of IR has been accepted by the IEEE standards committee
P1788 for interval arithmetic. It allows useful applications. The extended interval
Newton method for computing all zeros of a function in a given interval is one of
them. On the computer arithmetic of IR is approximated by arithmetic of IF. Since
unbounded real intervals are regular elements of IR and IF there is no underflow and
no overflow in the calculus of IF.

While arithmetic in IR allows unbounded intervals, arithmetic in I
∗
R has to avoid

them. For unbounded intervals the cancellation law does not hold which is necessary
for the proof and for application of the above theorem, for instance:



[a1, a2] + (−∞, +∞) = [b1, b2] + (−∞, +∞) ⇒ a1 −∞ = b1 −∞, a2 + ∞ = b2 + ∞
6⇒ a1 = b1 and a2 = b2.

On the computer, of course, arithmetic of I
∗
R has to be approximated by arithmetic

of I
∗
F. To avoid underflow and overflow attempts have been undertaken extending

arithmetic of I
∗
R by unbounded intervals in a similar manner than arithmetic of IR

to IR. While the latter extension can be done with no exceptions the new attempt
leads to unreasonable arithmetic operations like ∞−∞ or ∞/∞ which like in IEEE
754 arithmetic only can be set to NaN. Nevertheless, surprisingly the extended interval
Newton method has been programmed and successfully executed in the extended set
I∗R. The reason for this effect is that the entire calculation only uses arithmetic of
IR which is free of exceptions. Since arithmetic of IR is contained in the arithmetic
of I

∗
R the exception free arithmetic of IR naturally is contained in a corresponding

arithmetic of I∗R. In its entirety the latter is no longer free of exceptions.
IEEE 754 arithmetic recommends rounding an overflow to +∞ or −∞ and continue

the computation. This might end in a useful answer. But this is just speculation. In
most cases the result is NaN. All this is not mathematics and it must be kept out of
interval arithmetic and of arithmetic in I

∗
R. Since both are aiming for guaranteed

results they must strictly be kept on mathematical grounds.
It may well be that many applications of arithmetic in I

∗
R also can be solved by

using interval arithmetic of IR or by analysing the expression and computing the lower
and the upper bound of an enclosure by case distinctions in floating-point arithmetic.
By two reasons, however, this is not a desirable goal:
1. Interval arithmetic can be interpreted as an automatic calculus to deal with inequal-
ities. An algorithm or method described in interval arithmetic in closed form (without
the left and right bounds) automatically transforms otherwise necessary case distinc-
tions to the preprogrammed interval operations. The calculus of interval arithmetic
thus develops its own dynamics.
2. It can be expected that interval arithmetic will be supported by the computers
hardware as soon as the standard IEEE 1788 is generally accepted. Nearly everything
that is needed for it is already available on current Intel X86 or AMD processors for
multimedia applications. Hardware for interval arithmetic computes the lower and
the upper bound of the result of an operation by parallel units simultaneously. With
these circuits interval arithmetic is almost as fast as simple floating-point arithmetic.
With slightly different control signals for selecting bounds from the operands arith-
metic of I

∗
R could be performed with more or less the same circuitry that is available

for the arithmetic of IR. This means a great speed advantage for arithmetic of I
∗
R

in comparison with an analysis of the expression by hands on methods and a separate
computation of the lower and the upper bound in floating-point arithmetic.

The operands of I
∗
R are closed and bounded real intervals of IR and their addi-

tive inverses. On the computer proper and improper floating-point intervals are used
instead. The operations for computing the bounds of the result are performed with
directed roundings. From an algebraic point of view there is no room for unbounded
improper intervals in I

∗
R. Now the question remains how to continue computing in

I
∗
F in case of an overflow? An answer is: Not at all in case of an improper interval.

Mathematically an overflow means that the available range of numbers does not suffice
to solve the given problem. The situation can only be cured mathematically by scaling
the problem. This is always possible. (On an analog computer during a computation

2



all data must be kept between −1 and +1!). Another solution could be: Use a larger
data format for instance.

The mathematical structure of arithmetic in I
∗
R is much more powerful and closer

to spaces (a field) which are otherwise used in mathematics. So it would be worth
integrating arithmetic of I

∗
R into a future standard for interval arithmetic. This should

not be too complicated. A definition of arithmetic in I
∗
R should just present the tables

for the arithmetic operations (16 cases instead of nine in case of multiplication, for
instance) and briefly mention how other concepts are extended to the new elements
of I

∗
R as level 1 operations and it should explain how the operations of I

∗
F with

directed roundings as level 2 operations are to be performed. A much more powerful
mathematical structure makes this development very attractive. All this might lead to
many new applications of interval arithmetic. Thus we present the following

Motion

The Basic Operations of Kaucher Arithmetic

Here we sketch the basic operations of Kaucher-arithmetic. The formulas look very
similar to those for the corresponding operations of IR. The operands, however, are no
longer only intervals of real numbers. They now can be proper or improper intervals.
Arithmetic in I

∗
R is just an arithmetic for pairs of real numbers with many desirable

properties. The result of an operation can or can not be a real interval. Arithmetic
for intervals of IR can be performed by arithmetic of I

∗
R if only operands are used

where the second component is greater or equal to the first one. With these remarks
the following formulas widely speak for themselves. The operands [a1, a2], [b1, b2] are
elements of I

∗
R.

Negation −[a1, a2] = [−a2,−a1].

Addition [a1, a2] + [b1, b2] = [a1 + b1, a2 + b2].

Subtraction [a1, a2] − [b1, b2] = [a1 − b2, a2 − b1].

Multiplication [b1, b2] [b1, b2] [b1, b2] [b1, b2]
[a1, a2] ∗ [b1, b2] b1 ≤ 0 ∧ b2 ≤ 0 b1 < 0 < b2 b1 ≥ 0 ∧ b2 ≥ 0 b2 < 0 < b1

a1 ≤ 0 ∧ a2 ≤ 0 [a2 ∗ b2, a1 ∗ b1] [a1 ∗ b2, a1 ∗ b1] [a1 ∗ b2, a2 ∗ b1] [a2 ∗ b2, a2 ∗ b1]
a1 < 0 < a2 [a2 ∗ b1, a1 ∗ b1] [min(a1 ∗ b2, a2 ∗ b1), [a1 ∗ b2, a2 ∗ b2] 0

max(a1 ∗ b1, a2 ∗ b2)]
a1 ≥ 0 ∧ a2 ≥ 0 [a2 ∗ b1, a1 ∗ b2] [a2 ∗ b1, a2 ∗ b2] [a1 ∗ b1, a2 ∗ b2] [a1 ∗ b1, a1 ∗ b2]
a2 < 0 < a1 [a2 ∗ b2, a1 ∗ b2] 0 [a1 ∗ b1, a2 ∗ b1] [max(a1 ∗ b1, a2 ∗ b2),

min(a1 ∗ b2, a2 ∗ b1)]

Division [a1, a2]/[b1, b2] = [a1, a2] ∗ 1/[b1, b2], 1/[b1, b2] = [1/b2, 1/b1], 0 /∈ [b1, b2].

Additive Inverse inv[a1, a2] = [−a1,−a2].

Square Root sqrt([a1, a2]) = [sqrt(a1), sqrt(a2)], defined iff a1 ≥ 0 ∧ a2 ≥ 0.

Meet meet([a1, a2], [b1, b2]) = [max(a1, b1),min(a2, b2)].

Join join([a1, a2], [b1, b2]) = [min(a1, b1)],max(a2, b2)].
3



Minimum min([a1, a2], [b1, b2]) = [min(a1, b1),min(a2, b2)].

Maximum max([a1, a2], [b1, b2]) = [max(a1, b1),max(a2, b2)].

Comparison Relations
[a1, a2] = [b1, b2] := (a1 = b1 ∧ a2 = b2),

[a1, a2] ⊆ [b1, b2] ∨ [b1, b2] ⊇ [a1, a2] := (b1 ≤ a1 ∧ a2 ≤ b2),

[a1, a2] ≤ [b1, b2] ∨ [b1, b2] ≥ [a1, a2] := (a1 ≤ b1 ∧ a2 ≤ b2).

Membership

a ∈ [b1, b2] :⇔

{

b1 ≤ a ≤ b2, if [b1, b2] ∈ IR

b2 ≤ a ≤ b1, otherwise.

In these formulas the operands are just pairs of real numbers. On a computer,
however, only subsets of real numbers, floating-point numbers for instance, are repre-
sentable. So the question remains how to approximate these formulas on a computer.

For this purpose we define the outward rouding ♦ : I
∗
R → I

∗
F by ♦[a, b] = [▽a, △b],

i.e., the rounding ♦ rounds the first component of an element [a, b] ∈ I
∗
R downwards

and the second component upwards. With this rounding the result of an operation
with two pairs [a1, a2], [b1, b2] ∈ I

∗
F can be summarized by

[a1, a2]♦◦ [b1, b2] := ♦([a1, a2] ◦ [b1, b2]), for ◦ ∈ {+,−, ∗, /} with 0 6∈ [b1, b2] for ◦ = /.

This is in full accordance with the arithmetic in IR.

4


