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Abstract:1

This standard is a simplified version and a subset of the IEEE Std 1788TM-2015 for Interval Arithmetic and2

includes those operations and features of the latter that in the the editors’ view are most commonly used in3

practice. IEEE P1788.1 specifies interval arithmetic operations based on intervals whose endpoints are IEEE 7544

binary64 floating-point numbers and a decoration system for exception-free computations and propagation of5

properties of the computed results.6

A program built on top of an implementation of IEEE P1788.1 should compile and run, and give identical output7

within round off, using an implementation of IEEE Std 1788TM-2015, or any superset of the former.8

Compared to IEEE Std 1788TM-2015, this standard aims to be minimalistic, yet to cover much of the functionality9

needed for interval computations. As such, it is more accessible and will be much easier to implement, and thus10

will speed up production of implementations.11
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Important Notices and Disclaimers Concerning IEEE Standards Documents1

IEEE documents are made available for use subject to important notices and legal disclaimers. These notices2

and disclaimers, or a reference to this page, appear in all standards and may be found under the heading3

“Important Notice” or “Important Notices and Disclaimers Concerning IEEE Standards Documents.”4

Notice and Disclaimer of Liability Concerning the Use of IEEE Standards Documents5

IEEE Standards documents (standards, recommended practices, and guides), both full-use and trial-use,6

are developed within IEEE Societies and the Standards Coordinating Committees of the IEEE Standards7

Association (“IEEE-SA”) Standards Board. IEEE (“the Institute”) develops its standards through a consen-8

sus development process, approved by the American National Standards Institute (“ANSI”), which brings9

together volunteers representing varied viewpoints and interests to achieve the final product. Volunteers10

are not necessarily members of the Institute and participate without compensation from IEEE. While IEEE11

administers the process and establishes rules to promote fairness in the consensus development process, IEEE12

does not independently evaluate, test, or verify the accuracy of any of the information or the soundness of13

any judgments contained in its standards.14

IEEE does not warrant or represent the accuracy or content of the material contained in its standards,15

and expressly disclaims all warranties (express, implied and statutory) not included in this or any other16

document relating to the standard, including, but not limited to, the warranties of: merchantability; fitness17

for a particular purpose; non-infringement; and quality, accuracy, effectiveness, currency, or completeness of18

material. In addition, IEEE disclaims any and all conditions relating to: results; and workmanlike effort.19

IEEE standards documents are supplied “AS IS” and “WITH ALL FAULTS.”20

Use of an IEEE standard is wholly voluntary. The existence of an IEEE standard does not imply that there21

are no other ways to produce, test, measure, purchase, market, or provide other goods and services related22

to the scope of the IEEE standard. Furthermore, the viewpoint expressed at the time a standard is approved23

and issued is subject to change brought about through developments in the state of the art and comments24

received from users of the standard.25

In publishing and making its standards available, IEEE is not suggesting or rendering professional or other26

services for, or on behalf of, any person or entity nor is IEEE undertaking to perform any duty owed by any27

other person or entity to another. Any person utilizing any IEEE Standards document, should rely upon28

his or her own independent judgment in the exercise of reasonable care in any given circumstances or, as29

appropriate, seek the advice of a competent professional in determining the appropriateness of a given IEEE30

standard.31

IN NO EVENT SHALL IEEE BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,32

EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO: PROCURE-33

MENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS34

INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-35

TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN36

ANY WAY OUT OF THE PUBLICATION, USE OF, OR RELIANCE UPON ANY STANDARD, EVEN37

IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE AND REGARDLESS OF WHETHER SUCH38

DAMAGE WAS FORESEEABLE.39

Translations40

The IEEE consensus development process involves the review of documents in English only. In the event41

that an IEEE standard is translated, only the English version published by IEEE should be considered the42

approved IEEE standard.43

Official statements44

A statement, written or oral, that is not processed in accordance with the IEEE-SA Standards Board Oper-45

ations Manual shall not be considered or inferred to be the official position of IEEE or any of its committees46

and shall not be considered to be, or be relied upon as, a formal position of IEEE. At lectures, symposia,47

seminars, or educational courses, an individual presenting information on IEEE standards shall make it clear48



IEEE P1788.1/D9.8, March 2017
IEEE Draft Standard for Interval Arithmetic (Simplified)

that his or her views should be considered the personal views of that individual rather than the formal1

position of IEEE.2

Comments on standards3

Comments for revision of IEEE Standards documents are welcome from any interested party, regardless4

of membership affiliation with IEEE. However, IEEE does not provide consulting information or advice5

pertaining to IEEE Standards documents. Suggestions for changes in documents should be in the form of a6

proposed change of text, together with appropriate supporting comments. Since IEEE standards represent a7

consensus of concerned interests, it is important that any responses to comments and questions also receive8

the concurrence of a balance of interests. For this reason, IEEE and the members of its societies and Standards9

Coordinating Committees are not able to provide an instant response to comments or questions except in10

those cases where the matter has previously been addressed. For the same reason, IEEE does not respond11

to interpretation requests. Any person who would like to participate in revisions to an IEEE standard is12

welcome to join the relevant IEEE working group.13

Comments on standards should be submitted to the following address:14

Secretary, IEEE-SA Standards Board15

445 Hoes Lane16

Piscataway, NJ 08854 USA17

Laws and regulations18

Users of IEEE Standards documents should consult all applicable laws and regulations. Compliance with19

the provisions of any IEEE Standards document does not imply compliance to any applicable regulatory20

requirements. Implementers of the standard are responsible for observing or referring to the applicable21

regulatory requirements. IEEE does not, by the publication of its standards, intend to urge action that is22

not in compliance with applicable laws, and these documents may not be construed as doing so.23

Copyrights24

IEEE draft and approved standards are copyrighted by IEEE under U.S. and international copyright laws.25

They are made available by IEEE and are adopted for a wide variety of both public and private uses. These26

include both use, by reference, in laws and regulations, and use in private self-regulation, standardization,27

and the promotion of engineering practices and methods. By making these documents available for use28

and adoption by public authorities and private users, IEEE does not waive any rights in copyright to the29

documents.30

Photocopies31

Subject to payment of the appropriate fee, IEEE will grant users a limited, non-exclusive license to photocopy32

portions of any individual standard for company or organizational internal use or individual, non-commercial33

use only. To arrange for payment of licensing fees, please contact Copyright Clearance Center, Customer34

Service, 222 Rosewood Drive, Danvers, MA 01923 USA; +1 978 750 8400. Permission to photocopy portions of35

any individual standard for educational classroom use can also be obtained through the Copyright Clearance36

Center.37

Updating of IEEE Standards documents38

Users of IEEE Standards documents should be aware that these documents may be superseded at any time39

by the issuance of new editions or may be amended from time to time through the issuance of amendments,40

corrigenda, or errata. An official IEEE document at any point in time consists of the current edition of the41

document together with any amendments, corrigenda, or errata then in effect.42

Every IEEE standard is subjected to review at least every ten years. When a document is more than ten years43

old and has not undergone a revision process, it is reasonable to conclude that its contents, although still of44

some value, do not wholly reflect the present state of the art. Users are cautioned to check to determine that45

they have the latest edition of any IEEE standard.46
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In order to determine whether a given document is the current edition and whether it has been amended1

through the issuance of amendments, corrigenda, or errata, visit the IEEE-SA Website at http://ieeexplore.2

ieee.org/xpl/standards.jsp or contact IEEE at the address listed previously. For more information about3

the IEEE SA or IEEEs standards development process, visit the IEEE-SA Website at http://standards.4

ieee.org.5

Errata6

Errata, if any, for all IEEE standards can be accessed on the IEEE-SA Website at the following URL:7

http://standards.ieee.org/findstds/errata/index.html. Users are encouraged to check this URL for8

errata periodically.9

Patents10

Attention is called to the possibility that implementation of this standard may require use of subject matter11

covered by patent rights. By publication of this standard, no position is taken by the IEEE with respect12

to the existence or validity of any patent rights in connection therewith. If a patent holder or patent13

applicant has filed a statement of assurance via an Accepted Letter of Assurance, then the statement is listed14

on the IEEE-SA Website at http://standards.ieee.org/about/sasb/patcom/patents.html. Letters of15

Assurance may indicate whether the Submitter is willing or unwilling to grant licenses under patent rights16

without compensation or under reasonable rates, with reasonable terms and conditions that are demonstrably17

free of any unfair discrimination to applicants desiring to obtain such licenses.18

Essential Patent Claims may exist for which a Letter of Assurance has not been received. The IEEE is not re-19

sponsible for identifying Essential Patent Claims for which a license may be required, for conducting inquiries20

into the legal validity or scope of Patents Claims, or determining whether any licensing terms or conditions21

provided in connection with submission of a Letter of Assurance, if any, or in any licensing agreements are22

reasonable or non-discriminatory. Users of this standard are expressly advised that determination of the23

validity of any patent rights, and the risk of infringement of such rights, is entirely their own responsibility.24

Further information may be obtained from the IEEE Standards Association.25

http://ieeexplore.ieee.org/xpl/standards.jsp
http://ieeexplore.ieee.org/xpl/standards.jsp
http://ieeexplore.ieee.org/xpl/standards.jsp
http://standards.ieee.org
http://standards.ieee.org
http://standards.ieee.org
http://standards.ieee.org/findstds/errata/index.html
http://standards.ieee.org/about/sasb/patcom/patents.html
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Introduction1

This introduction is not part of P1788/D9.8, Draft Standard for Interval Arithmetic (Simplified).2

This standard is a simplified version of the (full) IEEE Std 1788TM-2015 for Interval Arithmetic. As such,3

IEEE P1788.1 features4

a) set-based intervals,5

b) the inf-sup interval type based on the IEEE 754 binary64 floating-point format,6

c) the decoration system, and7

d) simplified I/O.8

The full standard extends this standard with extra features, aimed at current applications of interval com-9

putation and at anticipated future developments, such as the following.10

– Finite-precision intervals of different kinds are supported, e.g. one can build a system where interval11

endpoints are numbers from an arbitrary-precision floating-point system such as MPFR.12

– Besides the model in 1788.1, where a mathematical interval is any closed connected subset of the real13

numbers, other foundational models are supported in a controlled way by the concept of flavors. For14

instance a flavor may support half-open and open real intervals; or Kaucher/modal intervals like [4,3] as15

well as [3,4].16

IEEE P1788.1 satisfies all General Requirements of IEEE Std 1788TM-2015 and can be considered a flavor17

of that standard.18

– The set of required operations is extended by operations useful in specialized applications, such as reverse-19

mode functions for constraint programming, and two-output division used in the interval Newton root-20

finding method.21

This document consists of two parts. Part 1 contains general requirements: overview, scope and purpose of22

this standard and various definitions and abbreviations. Part 2 is the actual standard, presented in four levels.23

Level 1 summarizes the theory of set-based intervals including decorations; Level 2 is about representing Level24

1 entities in finite precision and the corresponding operations; Level 3 represents Level 2 entities, and Level25

4 specifies interchange encodings. Annex A lists the features of IEEE Std 1788TM-2015 that are not required26

in IEEE P1788.1.27

vii
Copyright c© 2017 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.



IEEE P1788.1/D9.8, March 2017
IEEE Draft Standard for Interval Arithmetic (Simplified)

Contents1

Part 1. General Requirements 22

1. Overview 23

1.1. Scope 24

1.2. Purpose 25

1.3. Word usage 26

1.4. Structure of the standard in levels 37

1.5. The meaning of conformance 38

2. Normative references 39

3. Special terms, abbreviations, and notation 310

3.1. Frequently used notation and abbreviations 311

3.2. Special terms 312

Part 2. Interval Standard (Simplified) 713

4. Level 1 description 714

4.1. Level 1 entities 715

4.2. Intervals 716

4.3. Hull 817

4.4. Functions 818

4.5. Required operations 919

5. The decoration system at Level 1 1420

5.1. Overview 1421

5.2. Definitions and properties 1422

5.3. The ill-formed interval 1523

5.4. Permitted combinations 1524

5.5. Operations on/with decorations 1525

5.6. Decorations and arithmetic operations 1626

5.7. Decoration of non-arithmetic operations 1627

6. Level 2 description 1828

6.1. Introduction 1829

6.2. Naming conventions for operations 1830

6.3. Level 2 hull operation 1931

6.4. Level 2 interval extensions 1932

6.5. Accuracy of operations 1933

6.6. Number and interval literals 2034

6.7. Required operations 2135

6.8. Input and output (I/O) of intervals 2536

7. Levels 3 and 4 description 2637

7.1. Representation 2638

7.2. Operations and representation 2639

7.3. Interchange representations and encodings 2640

Annex A. Features of the full standard IEEE Std 1788TM-2015 not required in the IEEE P1788.141

standard (informative) 2842

viii
Copyright c© 2017 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.



IEEE P1788.1/D9.8, March 2017
IEEE Draft Standard for Interval Arithmetic (Simplified)

P1788.1TM/D9.81
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3

IMPORTANT NOTICE: IEEE Standards documents are not intended to ensure safety, secu-4

rity, health, or environmental protection, or ensure against interference with or from other5

devices or networks. Implementers of IEEE Standards documents are responsible for determin-6

ing and complying with all appropriate safety, security, environmental, health, and interference7

protection practices and all applicable laws and regulations.8

This IEEE document is made available for use subject to important notices and legal dis-9

claimers. These notices and disclaimers appear in all publications containing this document10

and may be found under the heading Important Notice or Important Notices and Disclaimers11

Concerning IEEE Documents. They can also be obtained on request from IEEE or viewed at12

http: // standards. ieee. org/ IPR/ disclaimers. html .13

1
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PART 1

General Requirements1

1. Overview2

1.1 Scope3

This standard is a simplified version and a subset of the IEEE Std 1788TM-2015 for Interval Arithmetic4

and includes those operations and features of the latter that in the the editors’ view are most commonly5

used in practice. IEEE P1788.1 specifies interval arithmetic operations based on intervals whose endpoints6

are IEEE 754 binary64 floating-point numbers and a decoration system for exception-free computations and7

propagation of properties of the computed results.8

A program built on top of an implementation of IEEE P1788.1 should compile and run, and give identi-9

cal output within round off, using an implementation of IEEE Std 1788TM-2015, or any superset of the10

former.11

1.2 Purpose12

Compared to IEEE Std 1788TM-2015, this standard aims to be minimalistic, yet to cover much of the13

functionality needed for interval computations. As such, it is more accessible and will be much easier to14

implement, and thus will speed up production of implementations.15

1.3 Word usage16

In this document three words are used to differentiate between different levels of requirements and optionality,17

as follows:18

– may indicates a course of action permissible within the limits of the standard with no implied preference19

(“may” means “is permitted to”);20

– shall indicates mandatory requirements strictly to be followed to conform to the standard and from which21

no deviation is permitted (“shall” means “is required to”);22

– should indicates that among several possibilities, one is recommended as particularly suitable, without23

mentioning or excluding others; or that a certain course of action is preferred but not necessarily required;24

or that (in the negative form) a certain course of action is deprecated but not prohibited (“should” means25

“is recommended to”).26

Further:27

– optional indicates features that may be omitted, but if provided shall be provided exactly as specified;28

– can is used for statements of possibility and capability (“can” means “is able to”);29

– might indicates the possibility of a situation that could occur, with no implication of the likelihood of30

that situation (“might” means “could possibly”);31

– comprise indicates members of a set or list are exactly those objects having some property. An unqualified32

consist of merely asserts all members of a set have some property, e.g., “a binary floating-point format33

consists of numbers with a terminating binary representation”. “Comprises” means “consists exactly of”.34

– Example introduces text that is informative (is not a requirement of this standard). Such text is set in35

sanserif font within brackets. [Example. Like this.]36

2
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1.4 Structure of the standard in levels1

This standard is structured into four levels.2

Level 1, mathematics (Clause 4), defines the underlying theory. The entities at this level are set-based3

intervals and operations on them. This level defines a decorated interval, comprising a (bare) interval and a4

decoration (Clause 5).5

Level 2, discretization (Clause 6), approximates the mathematical theory by intervals with upper and lower6

bounds that are IEEE 754 binary64 numbers and operations on such intervals. A level 2 entity is called a7

datum.18

Level 3, representation (Clause 7), represents interval datums in terms of binary64 values. A level 3 entity is9

called an interval object. Representation of decorated intervals is also defined at this level.10

Level 4, encoding (Clause 7), specifies encoding of interval objects into bit strings.11

1.5 The meaning of conformance12

An implementation of this standard shall satisfy the following requirements:13

– provide the decorations specified in 5.2;14

– provide implementations of the required operations in 6.7; required and recommended accuracies for these15

operations are in 6.5;16

– provide input and output functions to convert intervals from and to strings as specified in 6.8.2 and 6.8.3;17

and18

– provide an interchange representation as specified in 7.3.19

2. Normative references20

The following referenced documents are indispensable for the application of this document (i.e., they must21

be understood and used, so each referenced document is cited in text and its relationship to this document22

is explained).23

IEEE Std 754TM-2008, IEEE Standard for Floating-Point Arithmetic2324

IEEE Std 1788TM-2015, IEEE Standard for Interval Arithmetic25

3. Special terms, abbreviations, and notation26

3.1 Frequently used notation and abbreviations27

Frequently used notation and abbreviations are given in Table 3.1.28

3.2 Special terms29

accuracy mode A way to describe the quality of an interval version of a function. See also tightness.30

NOTE—Details in 6.5.31

arithmetic operation A version of a point operation.32

NOTE—Details in 4.4.1.33

bare interval Same as interval; used to emphasize it is not decorated.34

NOTE—Details in 5.2.35

1Plural “datums” in this standard, since “data” is often misleading.
2IEEE publications are available from The Institute of Electrical and Electronics Engineers at http://standards.ieee.org.
3The IEEE standards or products referred to in this clause are trademarks of The Institute of Electrical and Electronics

Engineers, Inc.

3
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Table 3.1. Frequently used notation and abbreviations

IA Interval Arithmetic
R the set of real numbers
R the set of extended real numbers, R ∪ {−∞,+∞}
IR the set of closed real intervals, including unbounded intervals and the empty set
T generic notation for an interval type

∅, Empty the empty set
Entire the whole real line

NaI Not an Interval
NaN Not a Number

x, y, . . . [resp. f, g, . . .] typeface/notation for a numeric value [resp. numeric function]
x,y, . . . [resp. f , g, . . .] typeface/notation for an interval value [resp. interval function]

f, g, . . . typeface/notation for an expression, producing a function by evaluation
Dom(f) the domain of a point-function f

Rge(f | s) the range of a point-function f over a set s; the same as the image of s under f

bounds If x is an interval then x = inf x and x = supx, its lower bound and upper bound respectively,1

are extended-real numbers that for a nonempty interval satisfy x ≤ x, x < +∞ and x > −∞. By convention2

the empty set has lower bound +∞ and upper bound −∞. Note ±∞ can be bounds of an interval but never3

members of it.4

box A box or interval vector is an n-dimensional interval, i. e. a tuple (x1, . . . ,xn) where the xi are5

intervals. When an interval may be regarded as a set of points, it may be identified with the cartesian6

product x1 × . . .× xn.7

constant A real constant at Level 1 is defined to be a scalar point function with no arguments; this8

includes the constant NaN.9

datum One of the entities manipulated by finite precision (Level 2) operations. It can be a boolean, a10

decoration, a (bare) interval, a decorated interval, a number or a string datum.11

NOTE—Details in 6.1.12

decoration Decorations are used to record events in interval operations: e.g., evaluating a function at points13

where it is undefined. One of the five values com, dac, def, trv and ill.14

NOTE—Details in Clause 5.15

decorated interval A pair (interval, decoration).16

NOTE—Details in Clause 5.17

domain For a function with arguments taken from some set, the domain comprises those points in the set18

at which the function has a value. The domain of a point operation is part of its definition. E.g., the (point)19

operation of division x/y, in this standard, has arguments (x, y) in R2, and its domain is { (x, y) ∈ R2 |20

y 6= 0 }.21

elementary function Synonymous with arithmetic operation.22

exception An exception is an event that occurs, and may be signaled, when an operation on some partic-23

ular operands has no outcome suitable for every reasonable application. Exceptions may occur in interval24

constructors and in the intervalPart operation.25

NOTE—Details in 6.1.4, 6.7.8.26

expression A symbolic form used to define a function. An arithmetic expression is one whose operations27

are all arithmetic operations.28

NOTE—Details in Clause 6 of IEEE Std 1788TM-2015.29

fma Fused multiply-add operation that computes x× y + z.30

FTIA, FTDIA For a real function f defined by an arithmetic expression:31

4
Copyright c© 2017 IEEE. All rights reserved.
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– The Fundamental Theorem of Interval Arithmetic (FTIA) gives relations between the result y of evaluating1

the expression in interval mode over an input box and the behavior of f on the box. The basic property2

is that y contains the range of f over the box; various extra conditions can give extra conclusions, such as3

that f is continuous on the box.4

– The Fundamental Theorem of Decorated Interval Arithmetic (FTDIA) describes how evaluating the ex-5

pression in decorated interval mode enables the various conditions of the FTIA to be verified, making the6

corresponding conclusions computable.7
8

NOTE—Details in 6.4 of IEEE Std 1788TM-2015.9

function Has the usual mathematical meaning of a (possibly partial, i.e., not everywhere defined) function.10

Synonymous with map, mapping.11

hull (or interval hull) The hull of a subset s of R is the tightest interval containing s.12

implementation When used without qualification, means a realization of an interval arithmetic conforming13

to the specification of this standard.14

inf-sup Describes a representation of an interval based on its lower and upper bounds.15

interval At Level 1, a (bare) interval x is a closed connected subset of R. At Level 2 a T-interval is a16

member of the bare interval type T, or a non-NaI member of the decorated interval type T.17

NOTE—Details in 4.2, 6.18

interval extension At Level 1, an interval extension of a point function f is a function f from intervals to19

intervals such that f(x) belongs to f(x) whenever x belongs to x and f(x) is defined. It is the natural (or20

tightest) interval extension, if f(x) is the interval hull of the range of f over x, for all x.21

NOTE—Details in 4.4.4, for Level 2 interval extension, see 6.4.22

decorated interval extension of f is a function from decorated intervals to decorated intervals, whose23

interval part is an interval extension of f , and whose decoration part propagates decorations as specified in24

5.6.25

NOTE—Details in Clause 5.26

interval vector See box.27

library The set of Level 1 operations (Level 1 library) or those provided by an implementation (Level 228

library). Further classification may be made into the point library, bare interval library and decorated29

interval library.30

map, mapping See function.31

mathematical interval of constructor The arguments of an interval constructor, if valid, define a math-32

ematical interval x. The actual interval returned by the constructor is the tightest interval that contains x.33

NOTE—Details in 6.7.5.34

NaI, NaN At Level 1 NaN is the function R0 → R with empty domain. NaI is the natural interval extension35

of NaN, the map from subsets of R0 to subsets of R whose value is always the empty set. At Level 2 NaN is36

the Not a Number datum. NaI is the Not an Interval datum.37

NOTE—Details in 5.3.38

no value A mathematical (Level 1) operation evaluated at a point outside its domain is said to have no39

value. Used instead of “undefined”, which can be ambiguous. E.g., in this standard, real number division40

x/y has no value when y = 0.41

NOTE—Details in 6.1.4.42

non-arithmetic operation An operation on intervals that is not an interval version of a point function;43

includes intersection and convex hull of two intervals.44

NOTE—Details in 5.7.45

number Any member of the set R ∪ {−∞,+∞} of extended reals: a finite number if it belongs to R, else46

an infinite number.47

5
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octet Bit string of length 8, equivalently 8-bit byte.1

An octet-encoding is a mapping from the conceptual bit string encodings of floating-point datums and of2

decorations into an octet sequence.3

NOTE—Details in 7.3.4

point function A mathematical (Level 1) function of real variables.5

NOTE—Details in 4.4.1.6

range The range, Rge(f | s), of a function f over a set s is the set of values f(x) at those points of s where7

f is defined.8

NOTE—Details in 4.4.2.9

string, text A text string, or just string, is a finite character sequence belonging to some alphabet. The10

term text is also used to mean strings generally.11

tightest Smallest in the partial order of set containment. The tightest set (unique, if it exists) with a given12

property is contained in every other set with that property.13

Also denotes one of the accuracy modes, see tightness.14

tightness The strongest accuracy mode (in these are tightest, accurate, valid) that a given operation achieves15

for some input box, or uniformly over some set of inputs.16

NOTE—Details in 6.5.1.17

type (or interval type) One of the sets into which bare and decorated interval datums are organized at18

Level 2, usually regarded as a finite set T of Level 1 intervals, (a bare type) in the bare case; and of Level19

1 decorated intervals together with the value NaI (a decorated type).20

If T is a type, a T-datum means a member of T. A T-interval for bare interval types means the same as a21

T-datum, and for decorated types means a non-NaI member of T.22

NOTE—Details in 6.1.23

6
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PART 2

Interval Standard (Simplified)1

4. Level 1 description2

In this clause, subclauses 4.1 to 4.4 describe the theory of set-based intervals and interval functions. Sub-3

clause 4.5 lists the required arithmetic operations (also called elementary functions) with their mathematical4

specifications.5

4.1 Level 1 entities6

Set-based intervals deal with entities of the following kinds.7

– The set R = R ∪ {−∞,+∞} of extended reals.8

– The set of (text) strings, namely finite sequences of characters chosen from some alphabet.9

– The set of integers.10

– The boolean values false and true.11

– The set of decorations (defined in 5).12

Any member of R is called a number. It is a finite number if it belongs to R, else an infinite number.13

An interval’s members are finite numbers, but its bounds can be infinite. Finite or infinite numbers can be14

inputs to interval constructors, as well as outputs from operations, e.g., the interval width operation.15

Since Level 1 is primarily for human communication, there are no Level 1 restrictions on the alphabet used.16

Strings may be inputs to interval constructors, as well as inputs/outputs of read/write operations.17

4.2 Intervals18

The set of mathematical intervals is denoted by IR. It consists of exactly those subsets x of the real line
R that are closed and connected in the topological sense. Thus, it comprises the empty set (denoted ∅ or
Empty) together with all the nonempty intervals, denoted [x, x] and defined by

[x, x] = {x ∈ R | x ≤ x ≤ x }, (1)

where x and x, the bounds of the interval, are extended-real numbers satisfying x ≤ x, x < +∞ and19

x > −∞.20

This definition implies −∞ and +∞ can be bounds of an interval, but are never members of it. In particular,21

[−∞,+∞] is the set of all real numbers satisfying −∞ ≤ x ≤ +∞, which is the whole real line R—not the22

whole extended real line R. Another name for the whole real line is Entire.23

NOTE 1—The set of intervals IR could be described more concisely as comprising all sets {x ∈ R | x ≤ x ≤ x } for24

arbitrary extended-real x, x. However, this obtains Empty in many ways, as [x, x] for any bounds satisfying x > x,25

and also as [−∞,−∞] or [+∞,+∞]. The description (1) was preferred as it makes a one-to-one mapping between valid26

pairs x, x of bounds and the nonempty intervals they specify.27

A box or interval vector is an n-tuple (x1, . . . ,xn), whose components xi ∈ IR. The box x is empty if28

(and only if) any of its components xi is empty.29

7
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4.3 Hull1

The (interval) hull of an arbitrary subset s of Rn, written hull(s), is the tightest member of IRn
that contains2

s. Here the tightest set with a given property is the intersection of all sets having that property, provided3

the intersection itself has this property.4

4.4 Functions5

4.4.1 Function terminology6

The terms operation, function and mapping are broadly synonymous. The following summarizes usage, with7

references in parentheses to precise definitions of terms.8

– A point function (4.4.2) is a partial mathematical real function of real variables. Otherwise, function is9

usually used with its general mathematical meaning.10

– An arithmetic operation (4.4.3) is a point function for which an implementation provides versions in the11

implementation’s library (4.4.3).12

– A version of a point function f means a function derived from f ; typically a bare or decorated interval13

extension (4.4.4) of f .14

– An interval arithmetic operation is an interval extension of a point arithmetic operation (4.4.4).15

– An interval non-arithmetic operation is an interval-to-interval library function that is not an interval16

arithmetic operation (4.4.4).17

– A constructor is a function that creates an interval from non-interval data (4.5.5).18

4.4.2 Point function19

A point function is a (possibly partial) multivariate real function: that is, a mapping f from a subset D of20

Rn to Rm for some integers n ≥ 0,m > 0. It is a scalar function if m = 1, otherwise a vector function. When21

not otherwise specified, scalar is assumed.22

The set D where f is defined is its domain, also written Dom f . To specify n, call f an n-variable point
function, or denote values of f as

f(x1, . . . , xn).

The range of f over an arbitrary subset s of Rn is the set Rge(f | s) defined by

Rge(f | s) = { f(x) | x ∈ s and x ∈ Dom f }.

Thus mathematically, when evaluating a function over a set, points outside the domain are ignored—e.g.,23

Rge(sqrt | [−1, 1]) = [0, 1].24

Equivalently, for the case where f takes separate arguments s1, . . . , sn, each being a subset of R, the range25

is written as Rge(f | s1, . . . , sn).26

4.4.3 Point arithmetic operation27

A (point) arithmetic operation is a function for which an implementation provides versions in a collection28

of user-available operations called its library. This includes functions normally written in operator form29

(e.g., +, ×) and those normally written in function form (e.g., exp, arctan). It is not specified (at Level 1)30

how an implementation provides library facilities.31

8
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4.4.4 Interval-valued functions1

Let f be an n-variable scalar point function. An interval extension of f is a (total) mapping f from2

n-dimensional boxes to intervals, that is f : IRn → IR, such that f(x) ∈ f(x) whenever x ∈ x and f(x) is3

defined, equivalently4

f(x) ⊇ Rge(f |x)

for any box x ∈ IRn
, regarded as a subset of Rn.5

The tightest interval extension of f is the mapping f defined by6

f(x) = hull
(
Rge(f |x)

)
.

Equivalently, using multiple-argument notation for f , an interval extension satisfies7

f(x1, . . . ,xn) ⊇ Rge(f |x1, . . . ,xn),

and the tightest interval extension is defined by8

f(x1, . . . ,xn) = hull
(
Rge(f |x1, . . . ,xn)

)
for any intervals x1, . . . ,xn.9

When f is a binary operator • written in infix notation, its tightest interval extension is10

x • y = hull({x • y | x ∈ x, y ∈ y, and x • y is defined }).

[Example. With these definitions, the relevant tightest extensions satisfy
√

[−1, 4] = [0, 2] and
√

[−2,−1] = ∅; also11

x× [0, 0] = [0, 0] for any nonempty x, and x/[0, 0] = ∅, for any x.]12

When f is a vector point function, a vector interval function with the same number of inputs and outputs as13

f is called an interval extension of f , if each of its components is an interval extension of the corresponding14

component of f .15

An interval-valued function in the library is called an16

– interval arithmetic operation, if it is an interval extension of a point arithmetic operation, and an17

– interval non-arithmetic operation otherwise.18

Examples of the latter are interval intersection and convex hull, (x,y) 7→ x∩y and (x,y) 7→ hull(x∪y).19

4.4.5 Constants20

A real scalar function with no arguments—a mapping Rn → Rm with n = 0 and m = 1—is a real constant.21

An interval extension of a real constant is any zero-argument interval function that returns an interval22

containing c. The tightest extension returns the interval [c, c].23

4.5 Required operations24

4.5.1 Interval constants25

The constant functions empty() and entire() have value Empty and Entire respectively.26

4.5.2 Arithmetic operations27

Table 4.1 lists required arithmetic operations, including those normally written in function notation f(x, y, . . .)28

and those normally written in unary or binary operator notation, •x or x • y.29

Each one is continuous at each point of its domain, except where stated in the footnotes after this table.30

Square and round brackets are used to include or exclude an interval bound, e.g., (−π, π] denotes {x ∈ R |31

−π < x ≤ π }.32

33
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Table 4.1. Required forward elementary functions.

Table
Name Definition Point function domain Point function range Footnotes
Basic operations

neg(x) −x R R
add(x, y) x+ y R2 R
sub(x, y) x− y R2 R
mul(x, y) xy R2 R
div(x, y) x/y R2 \ {y = 0} R a
recip(x) 1/x R \ {0} R \ {0}
sqr(x) x2 R [0,∞)
sqrt(x)

√
x [0,∞) [0,∞)

fma(x, y, z) (x× y) + z R3 R
Power functions

pown(x, p) xp, p ∈ Z
{
R if p ≥ 0
R\{0} if p < 0


R if p > 0 odd
[0,∞) if p > 0 even
{1} if p = 0
R\{0} if p < 0 odd
(0,∞) if p < 0 even

b

pow(x, y) xy {x>0} ∪ {x=0, y>0} [0,∞) a, c
exp, exp2, exp10(x) bx R (0,∞) d
log, log2, log10(x) logb x (0,∞) R d
Trigonometric/hyperbolic

sin(x) R [−1, 1]
cos(x) R [−1, 1]
tan(x) R\{(k + 1

2 )π|k ∈ Z} R
asin(x) [−1, 1] [−π/2, π/2] e
acos(x) [−1, 1] [0, π] e
atan(x) R (−π/2, π/2) e
atan2(y, x) R2 \ {〈0, 0〉} (−π, π] e, f, g
sinh(x) R R
cosh(x) R [1,∞)
tanh(x) R (−1, 1)
asinh(x) R R
acosh(x) [1,∞) [0,∞)
atanh(x) (−1, 1) R
Integer functions

sign(x) R {−1, 0, 1} h
ceil(x) R Z i
floor(x) R Z i
trunc(x) R Z i
roundTiesToEven(x) R Z j
roundTiesToAway(x) R Z j
Absmax functions

abs(x) |x| R [0,∞)
min(x, y) R2 R k
max(x, y) R2 R k

10
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Footnotes to Table 4.1
a. In describing the domain, notation such as {y = 0} is short for { (x, y) ∈ R2 | y = 0 }, etc.
b. Regarded as a family of functions of one real variable x, parameterized by the integer argument p.
c. Defined as ey ln x for real x > 0 and all real y, and 0 for x = 0 and y > 0, else has no value. It is continuous

at each point of its domain, including the positive y axis which is on the boundary of the domain.
d. b = e, 2 or 10, respectively.
e. The ranges shown are the mathematical range of the point function. To ensure containment, an interval

result may include values outside the mathematical range.
f. atan2(y, x) is the principal value of the argument (polar angle) of (x, y) in the plane. It is discontinuous on

the half-line y = 0, x < 0 contained within its domain.
g. To avoid confusion with notation for open intervals, in this table coordinates in R2 are delimited by angle

brackets 〈 〉.
h. sign(x) is −1 if x < 0; 0 if x = 0; and 1 if x > 0. It is discontinuous at 0 in its domain.
i. ceil(x) is the smallest integer ≥ x. floor(x) is the largest integer ≤ x. trunc(x) is the nearest integer to

x in the direction of zero. ceil and floor are discontinuous at each integer. trunc is discontinuous at each
nonzero integer.

j. roundTiesToEven(x), roundTiesToAway(x) are the nearest integer to x, with ties rounded to the even integer
or away from zero, respectively. They are discontinuous at each x = n + 1

2
where n is an integer.

k. Smallest, or largest, of its real arguments.

1

4.5.3 Cancellative addition and subtraction2

For intervals x and y, cancellative subtraction, cancelMinus(x,y), determines the tightest interval z such3

that4

y + z ⊇ x,

if such a z exists.5

At Level 1,6

z =

{
∅ if x = ∅ and y is bounded

[x− y, x− y] if x and y are both nonempty and bounded and y − y ≤ x− x,
(2)

and z has no value in the cases when7 
either of x or y is unbounded, or

x 6= ∅ and y = ∅, or,

x and y are both nonempty and bounded and y − y > x− x.
(3)

The operation cancelPlus(x,y) is equivalent to cancelMinus(x,−y), and therefore not considered sepa-8

rately.9

4.5.4 Set operations The intersection and convex hull operations shall be provided as in Table 4.2.

Table 4.2. Set operations.

Name Value
intersection(a, b) intersection a ∩ b of the intervals a and b

convexHull(a, b) interval hull of the union a ∪ b of the intervals a and b

10

4.5.5 Constructors11

An interval constructor is an operation that creates a bare or decorated interval from non-interval data. The
constructors numsToInterval and textToInterval shall be provided with values as defined below:

numsToInterval(l, u) =

{
[l, u] = {x ∈ R | l ≤ x ≤ u } if l ≤ u, l < +∞ and u > −∞
no value otherwise,

where l and u are extended-real values; and12

textToInterval(s) =

{
interval denoted by s if s is a valid interval literal (see 6.6)

no value otherwise.

11
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4.5.6 Numeric functions of intervals1

The operations in Table 4.3 shall be provided, the argument being an interval and the result a number, which2

for some of the operations may be infinite.3

Implementations should provide an operation that returns mid(x) and rad(x) simultaneously.4

Table 4.3. Required numeric functions of an interval x = [x, x].
Note: inf can have value −∞; each of sup, wid, rad and mag can have value +∞.

Name Definition

inf(x)

{
lower bound of x, if x is nonempty

+∞, if x is empty

sup(x)

{
upper bound of x, if x is nonempty

−∞, if x is empty

mid(x)

{
midpoint (x+ x)/2, if x is nonempty bounded

no value, if x is empty or unbounded

wid(x)

{
width x− x, if x is nonempty

no value, if x is empty

rad(x)

{
radius (x− x)/2, if x is nonempty

no value, if x is empty

mag(x)

{
magnitude sup{ |x| | x ∈ x }, if x is nonempty

no value, if x is empty

mig(x)

{
mignitude inf{ |x| | x ∈ x }, if x is nonempty

no value, if x is empty

4.5.7 Boolean functions of intervals5

The six boolean functions in Tables 4.4 and 4.5 shall be provided. In this document, the boolean values true6

and false are given numeric values 1 and 0 respectively, but a language may have a different mapping of7

booleans to numbers, or no such mapping.8

Table 4.4. The isEmpty and isEntire functions.

Name Returns
isEmpty(x) 1 if x is the empty set, 0 otherwise
isEntire(x) 1 if x is the whole line, 0 otherwise

In Table 4.5, column three gives the set-theoretic definition, and column four gives an equivalent specification9

when both intervals are nonempty. Table 4.6 shows what the definitions imply when at least one interval is10

empty.11

12
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Table 4.5. Comparisons for intervals a and b. Notation ∀a means “for all a in a”, and so
on. In column 4, a=[a, a] and b=[b, b], where a, b may be −∞, and a, b may be +∞; and <′

is the same as < except that −∞ <′ −∞ and +∞ <′ +∞ are true.

Name Symbol Definition For a, b 6= ∅ Description

equal(a, b) a = b ∀a ∃b a = b ∧ ∀b ∃a b = a a = b ∧ a = b a equals b

subset(a, b) a ⊆ b ∀a ∃b a = b b ≤ a ∧ a ≤ b a is a subset of b

interior(a, b) a⊂◦ b ∀a ∃b a < b ∧ ∀a ∃b b < a b <′ a ∧ a <′ b a is interior to b

disjoint(a, b) a∩/ b ∀a ∀b a 6= b a < b ∨ b < a a and b are disjoint

Table 4.6. Comparisons with empty intervals.

a = ∅ a 6= ∅ a = ∅
b 6= ∅ b = ∅ b = ∅

a = b 0 0 1

a ⊆ b 1 0 1

a⊂◦ b 1 0 1

a∩/ b 1 1 1

13
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5. The decoration system at Level 11

5.1 Overview2

An implementation makes the decoration system available by providing:3

– a decorated version of each interval extension of an arithmetic operation, of each interval constructor, and4

of some other operations; and5

– various auxiliary functions, e.g., to extract the interval and decoration parts, and to apply a standard6

initial decoration to an interval.7

The decoration system is specified here at a mathematical level, with the finite-precision aspects presented8

in Clause 6. Subclauses 5.2, 5.3, and 5.4 give the basic concepts; 5.5 and 5.6 define how intervals are given9

an initial decoration, and how decorations are bound to library interval arithmetic operations to give correct10

propagation through expressions; 5.7 is about non-arithmetic operations.11

5.2 Definitions and properties12

A decoration d is a property (that is, a boolean-valued function) pd(f,x) of pairs (f,x), where f is a real-13

valued function with domain Dom(f) ⊆ Rn for some n ≥ 0 and x ∈ IRn
is an n-dimensional box, regarded14

as a subset of Rn.15

The notation (f,x) unless said otherwise denotes such a pair, for arbitrary n, f and x. Equivalently, d is
identified with the set of pairs for which the property holds:

d = { (f,x) | pd(f,x) is true }. (4)

The set D of decorations has five members:

Value Short description Property Definition

com common pcom(f,x) x is a bounded, nonempty subset of Dom(f);
f is continuous at each point of x; and the
computed interval f(x) is bounded.

dac defined & continuous pdac(f, x) x is a nonempty subset of Dom(f), and the
restriction of f to x is continuous.

def defined pdef(f,x) x is a nonempty subset of Dom(f).

trv trivial ptrv(f,x) always true (so gives no information).

ill ill-formed pill(f,x) Not an Interval; formally Dom(f) = ∅, see 5.3.

(5)

These are listed according to the propagation order (10), which may also be thought of as a quality-order of16

(f,x) pairs—decorations above trv are “good” and ill is “bad”.17

A decorated interval is a pair, written interchangeably as (u, d) or ud, where u ∈ IR is a real interval and18

d ∈ D is a decoration. (u, d) may also denote a decorated box
(
(u1, d1), . . . , (un, dn)

)
, where u and d are the19

vectors of interval parts ui and decoration parts di, respectively.20

The set of decorated intervals is denoted by DIR, and the set of decorated boxes with n components is21

denoted by DIRn
.22

When several named intervals are involved, the decorations attached to u,v, . . . are often named du, dv, . . .23

for readability, for instance (u, du) or udu, etc.24

An interval may be called a bare interval to emphasize that it is not a decorated interval.25

Treating the decorations as sets as in (4), trv is the set of all (f,x) pairs, and the others are nonempty
subsets of trv. By design, they satisfy the exclusivity rule

For any two decorations, either one contains the other or they are disjoint. (6)

14
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Namely, the definitions (5) give:

com ⊂ dac ⊂ def ⊂ trv ⊃ ill, note the change from ⊂ to ⊃ (7)

com, dac and def are disjoint from ill. (8)

Property (6) implies that for any (f,x) there is a unique tightest (in the containment order (7)) decoration,
such that pd(f,x) is true, called the strongest decoration of (f,x), or of f over x, and written Dec(f |x).
That is,

Dec(f |x) = d ⇐⇒ pd(f,x) holds, but pe(f,x) fails for all e ⊂ d.

NOTE—Like the exact range Rge(f |x), the strongest decoration is theoretically well-defined, but its value for a1

particular f and x may be impractically expensive to compute, or even undecidable.2

5.3 The ill-formed interval3

An ill-formed decorated interval is also called NaI, Not an Interval. Conceptually, there shall be only one4

NaI. Its interval part has no value at Level 1.5

The ill decoration results from invalid constructions and propagates unconditionally through arithmetic6

expressions. Namely, the ill decoration arises as a return value of7

– a constructor when it cannot construct a valid decorated interval, or of8

– a library arithmetic operation if and only if one of its inputs is ill-formed.9

Formally, ill may be identified with the property Dom(f) = ∅ of (f,x) pairs.10

[Example. The constructor call numsToInterval(2, 1) is invalid, so its decorated version returns NaI.]11

Information may be stored in a NaI in an implementation-defined way (like the payload of an IEEE 75412

floating-point NaN), and functions may be provided for a user to set and read this for diagnostic purposes.13

An implementation may provide means for an exception to be signaled when a NaI is produced.14

5.4 Permitted combinations15

A decorated interval ydy shall always be such that16

y ⊇ Rge(f |x) and pdy(f,x) holds, for some (f,x).

If dy = dac, def or com, then by definition x is nonempty, and f is everywhere defined on it, so that Rge(f |x)17

is nonempty, implying y is nonempty. Hence the decorated intervals18

∅dac, ∅def, and xcom if x is empty or unbounded

are contradictory—implementations shall not produce them.19

No other combinations are forbidden.20

5.5 Operations on/with decorations21

5.5.1 Initializing22

A bare interval is initialized with a decoration by the operation

newDec(x) = xd where d =


com if x is nonempty and bounded,

dac if x is unbounded, and

trv if x is empty.
23
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5.5.2 Disassembling and assembling1

For a decorated interval xdx, the operations intervalPart(xdx) and decorationPart(xdx) shall be provided,2

with value x and dx, respectively. For the case of NaI, decorationPart(NaI) has the value ill, but3

intervalPart(NaI) has no value at Level 1.4

Given an interval x and a decoration dx, the operation setDec(x, dx) returns the decorated interval xdx if5

this is an allowed combination. The cases of forbidden combinations are as follows:6

– setDec(∅, dx), where dx is one of def, dac or com, returns ∅trv;7

– setDec(x, com), for any unbounded x, returns xdac; and8

– setDec(x, ill) for any x, whether empty or not, returns NaI.9

5.5.3 Comparisons10

For decorations, comparison operations for equality = and its negation 6= shall be provided, as well as11

comparisons >,<,≥,≤ with respect to the propagation order (10).12

5.6 Decorations and arithmetic operations13

Given a scalar point function ϕ of k variables, a decorated interval extension of ϕ—denoted here by the14

same name ϕ—adds a decoration component to a bare interval extension of ϕ. It has the form wdw = ϕ(vdv),15

where vdv = (v, dv) is a k-component decorated box ((v1, dv1), . . . , (vk, dvk)). By the definition of a bare16

interval extension, the interval part w depends only on the input intervals v; the decoration part dw generally17

depends on both v and dv. In this context, NaI is regarded as being ∅ill.18

The definition of a bare interval extension implies

w ⊇ Rge(ϕ |v) (enclosure).

The decorated interval extension of ϕ determines a dv0 such that

pdv0
(ϕ,v) holds (a “local decoration”). (9)

It then evaluates the output decoration dw by

dw = min{dv0, dv1, . . . , dvk}, (the “min-rule”),

where the minimum is taken with respect to the propagation order:

com > dac > def > trv > ill. (10)

5.7 Decoration of non-arithmetic operations19

5.7.1 Interval-valued operations20

These give interval results but are not interval extensions of point functions.21

– the cancellative operations cancelPlus(x,y) and cancelMinus(x,y) of 4.5.3;22

– the set-oriented operations intersection(x,y) and convexHull(x,y) of 4.5.423

No one way of decorating these operations gives useful information in all contexts. Therefore, a trivial24

decorated interval version is provided as follows. If any input is NaI, the result is NaI; otherwise the25

corresponding operation is applied to the interval parts of the inputs, and its result decorated with trv.26

The user may replace this by an appropriate nontrivial decoration via setDec(), see 5.5, where this can be27

deduced in a given application.28

16
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5.7.2 Non-interval-valued operations1

These give non-interval results:2

– the numeric functions of 4.5.6 and3

– the boolean-valued functions of 4.5.7.4

For each such operation, if any input is NaI, the result has no value at Level 1. Otherwise, the opera-5

tion acts on decorated intervals by discarding the decoration and applying the corresponding bare interval6

operation.7

17
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6. Level 2 description1

6.1 Introduction2

Entities and operations at Level 2 are said to have finite precision. From them, implementable interval3

algorithms may be constructed. Level 2 entities are called datums4.4

6.1.1 Interval type5

The interval type, denoted by T, is the inf-sup type derived from the IEEE 754 binary64 format; we refer6

to the latter as b64. This interval type comprises all intervals whose endpoints are b64 numbers, together7

with Empty. Since ±∞ are in b64, Entire is in T.8

An interval from T is also called a bare interval or a T-interval. We use the term T-datum to refer9

to an entity that can be a bare or decorated interval, including NaI. A T-box is a vector with T-datum10

components.11

6.1.2 Decorated interval type12

The decorated interval type, derived from T, is the set of tuples (x, d), where x ∈ T, and d ∈ D. We denote13

this type by DT.14

DT shall contain a “Not an Interval” datum NaI, which is identified with (∅, ill).15

6.1.3 Operations16

The term T-version of a Level 1 operation denotes one in which any input or output that is an interval is a17

T-datum. For bare interval types this includes the following.18

– An interval extension (see 6.4) of one of the arithmetic operations of 4.5.19

– A set operation, such as intersection and convex hull of T-intervals, returning a T-interval.20

– A function such as the midpoint, whose input is a T-interval and output is numeric.21

– A constructor, whose input is numeric or text and output is a T-datum.22

6.1.4 Exception behavior23

For some operations, and some particular inputs, there might not be a valid result. At Level 1 there are24

several cases when no value exists. However, a Level 2 operation always returns a value. When the Level 125

result does not exist, the corresponding Level 2 operation returns either26

– a special value indicating this event (e.g., NaN for most of the numeric functions in 6.7.6); or27

– a value considered reasonable in practice. For example, mid(Entire) returns 0; a constructor given invalid28

input returns Empty; and one of the comparisons of 6.7.7, if any input is NaI, returns false.29

If intervalPart() is called with NaI as input, the exception IntvlPartOfNaI is signaled (see 6.7.8).30

If a bare or decorated constructor fails (see 6.7.5) the exception UndefinedOperation is signaled.31

If a bare or decorated constructor succeeds on an accuracy-relaxed string argument (see 6.7.5) the exception32

PossiblyUndefinedOperation may be signaled.33

6.2 Naming conventions for operations34

An operation is generally given a name that suits the context. For example, the addition of two interval35

datums x,y may be written in generic algebra notation x+y; or with a generic text name add(x,y).36

4Not “data”, whose common meaning could cause confusion.
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6.3 Level 2 hull operation1

6.3.1 Hull in one dimension2

The interval hull operation3

y = hull(s),

maps an arbitrary set of reals s to the tightest interval y enclosing s.4

6.3.2 Hull in n dimensions5

In n dimensions the hull, as defined mathematically in 6.3.1, is extended to act componentwise. That is, for6

an arbitrary subset s of Rn it is hull(s) = (y1, . . . ,yn), where7

yi = hull(si),

and si = { si | s ∈ s } is the projection of s on the ith coordinate dimension.8

6.4 Level 2 interval extensions9

Let f be an n-variable scalar point function. A T-interval extension of f , also called a T-version of f , is a
mapping f from n-dimensional T-boxes to T-intervals, that is f : Tn → T, such that f(x) ∈ f(x) whenever
x ∈ x and f(x) is defined. Equivalently

f(x) ⊇ Rge(f |x),

for any T-box x ∈ Tn, regarding x as a subset of Rn. Generically, such mappings are called Level 2 interval10

extensions.11

6.5 Accuracy of operations12

This subclause describes requirements and recommendations on the accuracy of operations. Here, operation13

denotes any Level 2 version, provided by the implementation, of a Level 1 operation with interval output and14

at least one interval input. Bare interval operations are described; the accuracy of a decorated operation is15

defined to be that of its interval part.16

6.5.1 Measures of accuracy17

Three accuracy modes are defined that indicate the quality of interval enclosure achieved by an operation:18

tightest, accurate and valid in order from strongest to weakest.19

The term tightness means the strongest mode that holds uniformly for some set of evaluations. For example,20

for some one-argument function, an implementation might document the tightness of f(x) as being tightest21

for all x contained in [−1015, 1015] and at least accurate for all other x.22

Let f exact denote the corresponding Level 1 operation. The weakest mode valid is just the property of
enclosure:

f(x) ⊇ f exact(x). (11)

The strongest mode tightest is the property that f(x) equals f tightest(x), the hull of the Level 1 result:

f tightest(x) = hull
(
f exact(x)

)
. (12)

The intermediate mode accurate asserts that f(x) is valid, (11), and is at most slightly wider than the result
of applying the tightest version to a slightly wider input box:

f(x) ⊆ nextOut
(
f tightest

(
nextOut

(
hull(x)

)))
. (13)

For an interval x,

nextOut(x) =

{
[ nextDown(x), nextUp(x) ] if x = [x, x] 6= ∅,

∅ if x = ∅,
where nextUp and nextDown are equivalent to the corresponding functions in IEEE 754.23
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When x is an interval box, nextOut acts componentwise.1

NOTE—In (13), the inner nextOut() aims to handle the problem of a function such as sinx evaluated at a very large2

argument, where a small relative change in the input can produce a large relative change in the result. The outer3

nextOut() relaxes the requirement for correct (rather than, say, faithful) rounding, which might be hard to achieve4

for some special functions at some arguments.5

6.5.2 Accuracy requirements6

Following the categories of functions in Table 4.1, the accuracy of the basic operations, the integer func-7

tions and the absmax functions shall be tightest. The accuracy of the cancellative addition and subtraction8

operations of 4.5.3 is specified in 6.7.3.9

For all other operations in Table 4.1, the accuracy should be accurate.10

6.5.3 Documentation requirements11

An implementation shall document the tightness of each of its interval operations. This shall be done by12

dividing the set of possible inputs into disjoint subsets (“ranges”) and stating a tightness achieved in each13

range.14

[Example. Sample tightness information for the sin function might be15

Operation Tightness Range

sin
tightest for any x ⊆ [−1015, 1015]

accurate for all other x.

16

]17

Each operation should be identified by a language- or implementation-defined name of the Level 1 operation18

(which might differ from that used in this standard), its output type, its input type(s) if necessary, and any19

other information needed to resolve ambiguity.20

6.6 Number and interval literals21

6.6.1 Number literals22

The following forms of number literal shall be provided.23

a) A decimal number. This comprises an optional sign, a nonempty sequence of decimal digits optionally24

containing a point, and an optional exponent field comprising e and an integer literal.5 The value of a25

decimal number is the value of the sequence of decimal digits with optional point multiplied by ten raised26

to the power of the value of the integer literal, negated if there is a leading - sign.27

b) A number in the hexadecimal-floating-constant form of the C99 standard (ISO/IEC9899, N1256 (6.4.4.2)),28

equivalently hexadecimal-significand form of IEEE Std 754-2008 (5.12.3). This comprises an optional sign,29

the string 0x, a nonempty sequence of hexadecimal digits optionally containing a point, and an exponent30

field comprising p and an integer literal exponent. The value of a hexadecimal number is the value of the31

sequence of hexadecimal digits with optional point multiplied by two raised to the power of the value of32

the exponent, negated if there is a leading minus sign.33

c) A rational literal p / q. This comprises an integer literal p, the / character, and a positive-natural literal34

q. Its value is the value of p divided by the value of q.35

d) Either of the strings inf or infinity optionally preceded by +, with value +∞; or preceded by -, with36

value −∞.37

5An integer literal comprises an optional sign and followed by a nonempty sequence of decimal digits.

20
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6.6.2 Bare intervals1

The following forms of bare interval literal shall be supported. Below, the number literals l and r are identified2

with their values. Space shown between elements of a literal denotes zero or more space characters.3

– A string [ l , u ] where l and u are optional number literals with l ≤ u, l < +∞ and u > −∞, see 4.2. Its4

bare value is the mathematical interval [l, u]. Any of l and u may be omitted, with implied values l = −∞5

and u = +∞, respectively; e.g. [,] denotes Entire.6

A string [ x ] is equivalent to [ x , x ].7

– Uncertain form: a string m ? r v E where: m is a decimal number literal of form a) in 6.6.1, without8

exponent; r is empty or is a natural-number literal ulp-count or is ?; v is empty or is a direction character,9

either u (up) or d (down); and E is empty or is an exponent field comprising the character e followed by10

an integer literal exponent e. No whitespace is permitted within the string.11

With ulp meaning 10−d, where d is the number of digits after the decimal point in m (or 0 if there is no12

decimal point), the literal m? by itself denotes m with a symmetrical uncertainty of half an ulp, that is13

the interval [m − 1
2ulp,m + 1

2ulp]. The literal m?r denotes m with a symmetrical uncertainty of r ulps,14

that is [m− r× ulp,m+ r× ulp]. Adding d (down) or u (up) converts this to uncertainty in one direction15

only, e.g., m?d denotes [m− 1
2ulp,m] and m?ru denotes [m,m+ r × ulp]. Uncertain form with radius ?16

is for unbounded intervals, e.g., m??d denotes [−∞,m]. The exponent field if present multiplies the whole17

interval by 10e, e.g., m ?ru ee denotes 10e × [m,m+ r × ulp].18

– Special values: the strings [ ] and [ empty ], whose bare value is Empty, and the string [ entire ], whose19

bare value is Entire.20

6.6.3 Decorated intervals21

The following forms of decorated interval literal shall be supported.22

– sx_sd: a bare interval literal sx, an underscore “_”, and a 3-character decoration string sd, where sd is23

one of trv, def, dac or com, denoting the corresponding decoration dx.24

If sx has the bare value x, and if xdx is a permitted combination according to 5.4, then sx_sd has the25

value xdx. Otherwise sx_sd has no value as a decorated interval literal.26

– The string [ nai ], with the bare value Empty and the decorated value Emptyill.27

The alphanumeric characters in the above literals are case-insensitive (e.g., [1,1e3]_com is equivalent to28

[1,1E3]_COM).29

6.7 Required operations30

Operations in this subclause are described as functions with zero or more input arguments and one return31

value. It is language-defined whether they are implemented in this way.32

6.7.1 Interval constants33

There shall be functions empty() and entire() returning an interval with value Empty and Entire, respec-
tively. There shall also be a decorated version of each, returning

newDec(Empty) = Emptytrv and newDec(Entire) = Entiredac,

respectively.34

6.7.2 Elementary functions35

An implementation shall provide an interval version of each arithmetic operation in Table 4.1. Its inputs36

and output are intervals, and it shall be a Level 2 interval extension of the corresponding point function.37

Recommended accuracies are given in 6.5.38

NOTE—For operations, some of whose arguments are of integer type, such as integer power pown(x, p), only the real39

arguments are replaced by intervals.40

21
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Each such operation shall have a decorated version with corresponding arguments of type DT. It shall be a1

decorated interval extension as defined in 5.6—thus the interval part of its output is the same as if the bare2

interval operation were applied to the interval parts of its inputs.3

The only freedom of choice in the decorated version is how the local decoration, denoted dv0 in (9) of 5.6,4

is computed. dv0 shall be the strongest possible (and is thus uniquely defined), if the accuracy mode of the5

corresponding bare interval operation is “tightest”, but otherwise is only required to obey (9).6

6.7.3 Cancellative addition and subtraction7

An implementation shall provide a T-version of each of the operations cancelMinus and cancelPlus in 4.5.3.8

Their inputs and output are T-intervals.9

cancelMinus(x,y) shall return Empty in the first case of (2), the hull of the result in the second, and Entire10

for each of the cases in (3).11

cancelPlus(x,y) shall be equivalent to cancelMinus(x,−y).12

These operations shall have “trivial” decorated versions, as described in 5.7.13

6.7.4 Set operations14

An implementation shall provide an interval version of each of the operations intersection and convexHull15

in 4.5.4. Its inputs and output are intervals. These operations should return the interval hull of the exact16

result. If either input to intersection is Empty, or both inputs to convexHull are Empty, the result shall17

be Empty.18

These operations shall have “trivial” decorated versions, as described in 5.7.19

6.7.5 Constructors20

For the bare and decorated interval types there shall be a constructor. It returns a T- or DT-datum,21

respectively.22

Bare interval constructors. A bare interval constructor call either succeeds or fails. This notion is used to23

determine the value returned by the corresponding decorated interval constructor.24

For the constructor numsToInterval(l, u), the inputs l and u are b64 datums. If neither l nor u is NaN, and25

l ≤ u, l < +∞, u > −∞, the result is [l,u]. Otherwise the call fails, and the result is Empty.26

For the constructor textToInterval(s), the input s is a string. The string of form [ l , u ] where l < +∞27

and u > −∞ are optional number literals is called accuracy-relaxed if either one of the literals is a rational28

number literal of form c) in 6.6.1 or one of them is a decimal number literal of form a) in 6.6.1 and another29

is a hexadecimal number literal of form b) in 6.6.1.30

– If s is a valid interval literal with Level 1 value x and s is not accuracy-relaxed, the result shall be the hull31

of x (the constructor succeeds).32

– If s is not a valid interval interval and s is not accuracy-relaxed, this constructor fails, and the result is33

Empty.34

– If s is accuracy-relaxed and l ≤ u, the result may be any interval containing [l,u] (the constructor35

succeeds).36

– If s is accuracy-relaxed and l > u, the result may be either any interval containing [u,l] (the constructor37

succeeds), or Empty (the constructor fails).38

Decorated interval constructors. Let the prefix b- or d- denote the bare or decorated version of a constructor.39

If b-numsToInterval(l, u) or b-textToInterval(s) succeeds with result y, then d-numsToInterval(l, u) or40

d-textToInterval(s), respectively, succeeds with result y and decoration newDec(y), see 5.5.41
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If s is a decorated interval literal sx sd with Level 1 value xdx, see 6.6.3, and b-textToInterval(sx) succeeds1

with result y, then d-textToInterval(s) succeeds with result ydy, where dy = dx except when dx = com2

and overflow has occurred, that is, x is bounded and y is unbounded. Then dy shall equal dac.3

Otherwise the call fails, and the result is NaI.4

Exception behavior. Exception UndefinedOperation is signaled by both the bare and the decorated con-5

structor when the input is such that the bare constructor fails.6

Exception PossiblyUndefinedOperation is signaled by both the bare and the decorated textToInterval(s)7

constructor with accuracy-relaxed s8

– when l > u and interval constructor succeeds;9

– when l ≤ u and the result is wider than the hull of [l,u];10

– optionally when l ≤ u and the result is the hull of [l,u].11

NOTE—When signaled by the decorated constructor it will normally be ignored since returning NaI gives sufficient12

information.13

NOTE—If the textToInterval(s) constructor does not signal an exception then s is a valid interval literal and the14

result is the hull of Level 1 value of s.15

NOTE—The behavior of the textToInterval(s) constructor is implementation-dependent when s is accuracy-relaxed.16

The least accurate implementation simply returns Entire and signals PossiblyUndefinedOperation. The most ac-17

curate implementation fails with UndefinedOperation exception when l > u and returns the hull of [l,u] without18

exception otherwise.19

6.7.6 Numeric functions of intervals20

An implementation shall provide a T-version of each numeric function in Table 4.3 of 4.5.6 giving a result21

in b64. The mapping of a Level 1 value to a b64 number is defined in terms of the following rounding22

methods:23

Round toward positive: x maps to the smallest b64 number not less than x; 0 maps to +0.24

Round toward negative: x maps to the largest b64 number not greater than x; 0 maps to −0.25

Round to nearest: x maps to the b64 number (possibly ±∞) closest to x as defined by IEEE 754-2008;26

0 maps to +0.27

NOTE—These functions help define operations of the standard but are not themselves operations of the stan-28

dard.29

A Level 1 value of 0 shall be returned as −0 by inf, and +0 by all other functions in this subclause.30

inf(x) returns the Level 1 value rounded toward negative.31

sup(x) returns the Level 1 value rounded toward positive.32

mid(x): the result is defined by the following cases, where x, x are the exact (Level 1) lower and upper33

bounds of x:34

x = Empty NaN

x = Entire 0

x = −∞, x finite the finite negative b64 number of largest magnitude

x finite, x = +∞ the finite positive b64 number of largest magnitude

x, x both finite the Level 1 value rounded to nearest

The implementation shall document how it handles the last case.35

rad(x) returns NaN if x is empty, and otherwise the smallest b64 number r such that x is contained in the36

exact interval [m− r,m+ r], where m is the value returned by mid(x).37
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wid(x) returns NaN if x is empty. Otherwise it returns the Level 1 value rounded toward positive.1

mag(x) returns NaN if x is empty. Otherwise it returns the Level 1 value rounded toward positive.2

mig(x) returns NaN if x is empty. Otherwise it returns the Level 1 value rounded toward negative, except3

that 0 maps to +0.4

Each bare interval operation in this subclause shall have a decorated version, where each input of bare interval5

type is replaced by one of the corresponding decorated interval type, and the result format is that of the6

bare operation. Following 5.7, if any input is NaI, the result is NaN. Otherwise the result is obtained by7

discarding the decoration and applying the corresponding bare interval operation.8

6.7.7 Boolean functions of intervals9

An implementation shall provide the functions10

– isEmpty(x) and isEntire(x) in 4.5.7,11

– the functions implementing the comparison relations in Table 4.5 of 4.5.7, and12

– the function isNaI(x) for input x of the decorated type, which returns true if x is NaI, else false.13

Each bare interval operation in this subclause shall have a decorated version. Following 5.7, if any input14

is NaI, the result is false (in particular equal(NaI,NaI) is false). Otherwise the result is obtained by15

discarding the decoration and applying the corresponding bare interval operation.16

6.7.8 Operations on/with decorations17

An implementation shall provide the operations of 5.5. These comprise the comparison operations =, 6=, >,18

<, ≥, ≤ for decorations; and, for the decorated type, the operations newDec, intervalPart, decorationPart19

and setDec.20

A call intervalPart(NaI), whose value is undefined at Level 1, shall return Empty at Level 2, and shall21

signal the IntvlPartOfNaI exception to indicate that a valid interval has been created from the ill-formed22

interval.23
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6.8 Input and output (I/O) of intervals1

6.8.1 Overview2

This clause specifies conversion from a text string that holds an interval literal to an interval internal to a3

program (input), and the reverse (output). The methods by which strings are read from, or written to, a4

character stream are language- or implementation-defined, as are variations in some locales (such as specific5

character case matching).6

Containment is preserved on input and output so that, when a program computes an enclosure of some quan-7

tity given an enclosure of the data, it can ensure this holds all the way from text data to text results.8

6.8.2 Input9

Input is provided by textToInterval(s); see 6.7.5.10

6.8.3 Output11

An implementation shall provide an operation12

intervalToText(X, cs)

where cs is optional. X is a bare or decorated interval, and cs is a string, the conversion specifier. This13

operation converts X to a valid interval literal string s, see 6.7.1, which shall be related to X as follows,14

where Y below is the Level 1 value of s.15

a) Let X be a bare interval. Then Y shall contain X and shall be empty if X is empty.16

b) Let X be a decorated interval. If X is NaI then Y shall be NaI. Otherwise, write X = xdx, Y = ydy.17

Then18

1) y shall contain x, and shall be empty if x is empty.19

2) dy shall equal dx, except in the case that dx = com and overflow occurred, that is, x is bounded and20

y is unbounded. Then dy shall equal dac.21

The tightness of enclosure of X by the value Y of s is language- or implementation-defined.22

If present, cs lets the user control the layout of the string s in a language- or implementation-defined way.23

The implementation shall document the recognized values of cs and their effect; other values are called24

invalid.25

If cs is invalid, or makes an unsatisfiable request for a given input X, the output shall still be an interval26

literal whose value encloses X. A language- or implementation-defined extension to interval literal syntax27

may be used to make it obvious that this has occurred.28

Among the user-controllable features of cs are the following.29

a) It should be possible to specify the preferred overall field width (the length of s).30

b) It should be possible to specify how Empty, Entire and NaI are output, e.g., whether lower or upper case,31

and whether Entire becomes [Entire] or [-Inf, Inf].32

c) For l and u, it should be possible to specify the field width, and the number of digits after the point or33

the number of significant digits.34

d) It should be possible to output the bounds of an interval without punctuation, e.g., 1.234 2.345 instead35

of [1.234, 2.345]. For instance, this might be a convenient way to write intervals to a file for use by36

another application.37

If cs is absent, output should be in a general-purpose layout (analogous, e.g., to the %g specifier of fprintf38

in C). There should be a value of cs that selects this layout explicitly.39
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7. Levels 3 and 4 description1

This clause is about Level 3, where Level 2 datums are represented, and operations on them described, and2

about Level 4 requirements for interchange representation and encoding.3

Level 3 entities are called objects—they represent Level 2 datums and may be referred to as concrete, while4

the datums are abstract. Each Level 2 (abstract) library operation is implemented by a corresponding Level5

3 (concrete) operation, whose behavior shall be consistent with the abstract operation.6

7.1 Representation7

The property that defines a representation is:

Each interval datum shall be represented by at least one object. Each object shall
represent at most one interval datum.

[Examples. Three possible representations are:8

inf-sup form. Any interval x is represented at Level 3 by the object (inf(x), sup(x)) of two b64 numbers. All intervals9

have only one Level 3 representation because operations inf and sup are uniquely defined at Level 2 (6.7.6): interval10

[0, 0] has representation (−0,+0), interval Empty has representation (+∞,−∞).11

inf-sup-nan form. The objects are defined to be pairs (l, u) where l, u are b64 datums. A nonempty interval x = [x, x]12

is represented by an object (l, u) such that the values of l and u are x and x, and Empty is represented by (NaN,NaN).13

neginf-sup-nan form. This is as the previous, except that for a nonempty interval the value of l is −x.14

If, in these descriptions l, u and NaN are viewed as Level 2 datums, then interval [0, 0] has four representatives in inf-sup-15

nan and neginf-sup-nan forms: (−0,+0), (−0,−0), (+0,+0), (+0,−0). Each nonempty interval with nonzero bounds16

has only one representative: there are unique l and u. Empty has also only one representative: there is a unique NaN.17

However, NaN itself has representatives, and from this viewpoint Empty has more than one representative: there are many18

NaNs, quiet or signaling and with different payloads, to use in Empty = (NaN,NaN). ]19

7.2 Operations and representation20

Each Level 2 (abstract) library operation is implemented by a corresponding Level 3 (concrete) operation,21

whose behavior shall be consistent with the abstract operation.22

When an input Level 3 object does not represent a Level 2 datum, the result is implementation-defined. An23

implementation shall provide means for the user to specify that an InvalidOperand exception be signaled24

when this occurs.25

7.3 Interchange representations and encodings26

The purpose of interchange representations is to allow loss-free exchange of Level 2 interval data. This is27

done by imposing a standard Level 3 representation using Level 2 datums.28

The standard Level 3 representation of an interval datum x is an ordered pair(
inf(x), sup(x)

)
of two b64 datums. For example, the only representative of Empty is the pair (+∞,−∞), and the only29

representative of [0, 0] is the pair (−0,+0).30

The standard Level 3 representation of a decorated interval datum xdx is an ordered triple(
inf(xdx), sup(xdx), decorationPart(xdx)

)
of two b64 datums and a decoration. For example, the only representative of Emptytrv is the triple31

(+∞,−∞, trv), and the only representative of NaI is the triple (NaN,NaN, ill).32

Export and import of interchange formats normally occurs as a sequence of octets (bit strings of length 8,33

equivalently 8-bit bytes), e.g. in a file or a network packet.34

26
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At Level 4, interval objects are encoded as bit strings. We define an octet-encoding that maps the con-1

ceptual Level 3 representation into an octet sequence that comprises, in the order defined above, the inter-2

change octet-encodings of the two b64 datums, and, for decorated intervals, the decoration represented as an3

octet:4

ill 00000000

trv 00000100

def 00001000

dac 00001100

com 00010000

5

NOTE—This encoding of decorations permits future refinements without disturbing the propagation order of the6

decorations.7

The octet-encoding of b64 datums is eight octets obtained from the 64 bits of the IEEE 754 interchange8

format: a sign bit, followed by 11 exponent bits that describe the exponent offset by a bias, and 52 bits that9

describe the significand (the least significant bit is last).10

In Big-Endian octet-encoding, the first octet contains the sign bit and the 7 most-significant exponent bits.11

In Little-Endian octet-encoding, the first octet contains the 8 least-significant bits.12

[Example. The Big-Endian interchange octet-encoding of [−1, 3]com are the concatenated octet sequences below13

−1 10111111 11110000 00000000 00000000 00000000 00000000 00000000 00000000

3 01000000 00001000 00000000 00000000 00000000 00000000 00000000 00000000

com 00010000

14

The Little-Endian interchange octet-encoding of [−1, 3]com are the concatenated octet sequences below15

−1 00000000 00000000 00000000 00000000 00000000 00000000 11110000 10111111

3 00000000 00000000 00000000 00000000 00000000 00000000 00001000 01000000

com 00010000

16

]17

27
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ANNEX A

Features of the full standard IEEE Std 1788TM-2015 not required1

in the IEEE P1788.1 standard (informative)2

This Annex lists all features of the set-based flavor of IEEE Std 1788TM-2015 that are not required in IEEE3

P1788.1. The corresponding subclauses in IEEE Std 1788TM-2015 are given in parentheses.4

The following operations required in the set-based flavor of IEEE Std 1788TM-2015 are not required in IEEE5

P1788.1:6

All reverse-mode elementary functions (10.5.4)

Two-output division (10.5.5)

mulRevToPair

Boolean functions of intervals (10.5.10)

less

precedes

strictLess

strictPrecedes

Reduction operations (12.2.12)

sum

dot

sumSquare

sumAbs

Exact text representation (13.4)

intervalToExact

exactToInterval

7
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