
AuguST 2012 | vOL. 55 | NO. 8 | CoMMuniCAtionS oF thE ACM 107

Doi:10.1145/2240236.2240262

Continuity and Robustness
of Programs
By Swarat Chaudhuri, Sumit Gulwani, and Roberto Lublinerman

Abstract
Computer scientists have long believed that software is
 different from physical systems in one fundamental way:
while the latter have continuous dynamics, the former do
not. In this paper, we argue that notions of continuity from
mathematical analysis are relevant and interesting even
for software. First, we demonstrate that many everyday
programs are continuous (i.e., arbitrarily small changes to
their inputs only cause arbitrarily small changes to their
outputs) or Lipschitz continuous (i.e., when their inputs
change, their outputs change at most proportionally).
Second, we give an mostly-automatic framework for veri-
fying that a program is continuous or Lipschitz, showing
that traditional, discrete approaches to proving programs
correct can be extended to reason about these properties.
An immediate application of our analysis is in reasoning
about the robustness of programs that execute on uncer-
tain inputs. In the longer run, it raises hopes for a toolkit
for reasoning about programs that freely combines logical
and analytical mathematics.

1. intRoDuCtion
It is accepted wisdom in computer science that the dynam-
ics of software systems are inherently discontinuous, and
that this fact makes them fundamentally different from
physical systems. More than 25 years ago, Parnas15 attrib-
uted the difficulty of engineering reliable software to the
fact that “the mathematical functions that describe the
behavior of [software] systems are not continuous.” This
meant that the traditional analytical calculus—the math-
ematics of choice when one is analyzing the dynamics of,
say, fluids—did not fit the needs of software engineering
too well. Logic, which can reason about discontinuous
systems, was better suited to being the mathematics of
programs.

In this paper, we argue that this wisdom is to be taken
with a grain of salt. First, many everyday programs are con-
tinuous in the same sense as in analysis—that is, arbitrarily
small changes to its inputs lead to arbitrarily small changes
to its outputs. Some of them are even Lipschitz continuous—
that is, perturbations to the program’s inputs lead to at
most proportional changes to its outputs. Second, we show
that analytic properties of programs are not at odds with
the classical, logical methods for program verification, giv-
ing a logic-based, mostly-automated method for formally
verifying that a program is continuous or Lipschitz contin-
uous. Among the immediate applications of this analysis
is reasoning about the robustness of programs that execute
under uncertainty. In the longer run, it raises hopes for a

unified theory of program analysis that marries logical and
analytical approaches.

Now we elaborate on the above remarks. Perhaps the
most basic reason why software systems can violate continu-
ity is conditional branching—that is, constructs of the form
“if B then P1 else P2.” Continuous dynamical systems arising
in the physical sciences do not typically contain such con-
structs, but most nontrivial programs do. If a program has
a branch, then even the minutest perturbation to its inputs
may cause it to evaluate one branch in place of the other.
Thus, we could perhaps conclude that any program contain-
ing a branch is ipso facto discontinuous.

To see that this conclusion is incorrect, consider the
problem of sorting an array of numbers, one of the most
basic tasks in computing. Every classic algorithm for sort-
ing contains conditional branches. But let us examine the
specification of a sorting algorithm: a mathematical func-
tion Sort that maps arrays to their sorted permutations.
This specification is not only continuous but Lipschitz
 continuous: change any item of an input array A by ±, and
each item of Sort(A) changes at most by ±. For example,
 suppose A and A′ are two input arrays as below, with A′
obtained by perturbing each item of A at most by ±1. Then
Sort(A′) can be obtained by perturbing each item of Sort(A)
at most by ±1.

Similar observations hold for many of the classic computa-
tions in computer science, for example, shortest path and
minimum spanning tree algorithms. Our program analysis
extends and automates methods from the traditional analyt-
ical calculus to prove the continuity or Lipschitz continuity
of such computations. For instance, to verify that a condi-
tional statement within a program is continuous, we gener-
alize the sort of insight that a high-school student uses to
prove the continuity of a piecewise function like

This paper is based on two previous works: “Continuity
Analysis of Programs,” by S. Chaudhuri, S. Gulwani, and
R. Lublinerman, published in POPL (2010), 57–70, and
“Proving Programs Robust,” by S. Chaudhuri, S. Gulwani,
R. Lublinerman, and S. Navidpour, published in FSE
(2011), 102–112.

108 CoMMuniCAtionS oF thE ACM | AuguST 2012 | vOL. 55 | NO. 8

research highlights

Intuitively, abs(x) is continuous because its two “pieces” x
and −x are continuous, and because x and −x agree on val-
ues in the neighborhood of x = 0, the point where a small
perturbation can cause abs(x) to switch from evaluating
one piece to evaluating the other. Our analysis uses the
same idea to prove that “if B then P1 else P2” is continuous:
it inductively verifies that P1 and P2 are continuous, then
checks, often automatically, that P1 and P2 become seman-
tically equivalent at states where the value of B can flip on a
small perturbation.

When operating on a program with loops, our analysis
searches for an inductive proof of continuity. To prove that
a continuous program is Lipschitz continuous, we induc-
tively compute a collection of Lipschitz matrices that contain
numerical bounds on the slopes of functions computed
along different control paths of the program.

Of course, complete software systems are rarely continu-
ous. However, verification technique like ours allows us to
identify modules of a program that satisfy continuity prop-
erties. A benefit of this is that such modules are amenable
to analysis by continuous methods. In the longer run, we
can imagine a reasoning toolkit for programs that combines
continuous analysis techniques, for example, numerical
optimization or symbolic integration, and logical methods
for analyzing code. Such a framework would expand the
classical calculus to functions encoded as programs, a rep-
resentation worthy of first-class treatment in an era where
much of applied mathematics is computational.

A more immediate application of our framework is
in the analysis of programs that execute on uncertain
inputs, for example noisy sensor data or inexact scien-
tific measurements. Unfortunately, traditional notions
of functional correctness do not guarantee predictable
program execution on uncertain inputs: a program may
produce the correct output on each individual input, but
even small amounts of noise in the input could change its
output radically. Under uncertainty, traditional correct-
ness properties must be supplemented by the property
of robustness, which says that small perturbations to pro-
gram’s inputs do not have much effect on the program’s
output. Continuity and Lipschitz continuity can both serve
as definitions of robustness, and our analysis can be used
to prove that a program is robust.

The rest of the paper is organized as follows. In Section 2,
we formally define continuity and Lipschitz continuity of pro-
grams and give a few examples of computations that satisfy
these properties. In Section 3, we give a method for verifying
a program’s continuity, and then extend it to an analysis for
Lipschitz continuity. Related work is presented in Section 4;
Section 5 concludes the paper with some discussion.

2. Continuity, LiPSChitz Continuity,
AnD RoBuStnESS
In this section, we define continuity2 and Lipschitz continu-
ity3 of programs and show how they can be used to define
robustness. First, however, we fix the programming lan-
guage Imp whose programs we reason about.

Imp is a “core” language of imperative programs,
meaning that it supports only the most central features of

imperative programming—assignments, branches, and
loops. The language has two discrete data types—integers
and arrays of integers—and two continuous data types—
reals and arrays of reals. Usual arithmetic and comparisons
on these types are supported. In conformance with the
model of computation under which algorithms over reals
are typically designed, our reals are infinite-precision, and
elementary operations on them are assumed to be given by
unit-time oracles.

Each data type in Imp is associated with a metric.a This
metric is our notion of distance between values of a given
type. For concreteness, we fix, for the rest of the paper, the
following metrics for the Imp types:

• The integer and real types are associated with the
Euclidean metric d(x, y) = |x − y|.

• The metric over arrays (of reals or integers) of the same
length is the L∞-norm: d(A1, A2) = maxi{|A1[i] − A2[i]|}.
Intuitively, an array changes by  when its size is kept
fixed, but one or more of its items change by . We
define d(A1, A2) = ∞ if A1 and A2 have different sizes.

The syntax of arithmetic expressions E, Boolean expressions
B, and programs Prog is as follows:

Here x is a typed variable, c is a typed constant, A is an array
variable, i an integer variable or constant, + and · respec-
tively represent addition and multiplication over scalars
(reals or integers), and the Boolean operators are as usual.
We assume an orthogonal type system that ensures that
all expressions and assignments in our programs are well-
typed. The set of variables appearing in P is denoted by
Var (P) = {x1,…, xn}.

As for semantics, for simplicity, let us restrict our focus to
programs that terminate on all inputs. Let Val be a universe
of typed values. A state of P is a vector s ∈ Valn. Intuitively, for
all 1 ≤ i ≤ n, s (i) is the value of the variable xi at state s. The
set of all states of P is denoted by ∑(P).

The semantics of the program P, an arithmetic expression
e occurring in P, and a Boolean expression b in P are now
respectively given by maps P: ∑(P) ® ∑(P), e: ∑(P) ® Val,
and b: ∑(P) ® {true, false}. Intuitively, for each state s of
P, e(s) and b(s) are respectively the values of e and b at
s, and P(s) is the state at which P terminates after starting
execution from s. We omit the inductive definitions of these
maps as they are standard.

Our definition of continuity of programs is an adaptation
of the traditional -d definition of continuous functions. As
a program can have multiple inputs and outputs, we define
continuity with respect to an input variable xi and an output

a Recall that a metric over a set S is a function d: S × S → R È {∞} such that
for all x, y, z, we have (1) d(x, y) ≥ 0, with d(x, y) = 0 iff x = y; (2) d(x, y) = d(y, x);
and (3) d(x, y) + d(y, z) ≥ d(x, z).

AuguST 2012 | vOL. 55 | NO. 8 | CoMMuniCAtionS oF thE ACM 109

variable xj. Intuitively, if P is continuous with respect to
input xi and output xj, then an arbitrarily small change to
the initial value of any xi, while keeping the remaining vari-
ables fixed, must only cause an arbitrarily small change to
the final value of xj. Variables other than xj are allowed to
change arbitrarily.

Formally, consider states s, s¢ of P and any  > 0. Let xi be
a variable of type t, and let dt denote the metric over type t.
We say that s and s¢ are -close with respect to xi, and write
s ≈,i s¢, if dt(s (i), s¢(i)) < . We call s¢ an -perturbation of s with
respect to xi, and write s ≡,i s¢, if s and s¢ are -close with
respect to xi, and further, for all j π i, we have s (j) = s¢(j).
Now we define:

Definition 1 (Continuity). A program P is continuous at
a state s with respect to an input variable xi and an output
variable xj if for all  > 0, there exists a d > 0 such that for all
s¢  S(P),

s ≡d,i s¢ ⇒ P(s) ≈, j P(s ′)

An issue with continuity is that it only certifies program
behavior under arbitrarily small perturbations to the inputs.
However, we may often want a definition of continuity that
establishes a quantitative relationship between changes to
a program’s inputs and outputs. Of the many properties in
function analysis that accomplish this, Lipschitz continu-
ity is perhaps the most well known. Let K > 0. A function
f : R → R is K-Lipschitz continuous, or simply K-Lipschitz, if a
±-change to x can change f (x) by at most ±K. The constant
K is known as the Lipschitz constant of f. It is easy to see that
if f is K-Lipschitz for some K, then f is continuous at every
input x.

We generalize this definition in two ways while adapting
it to programs. First, as for continuity, we define Lipschitz
continuity with respect to an input variable xi and an out-
put variable xj. Second, we allow Lipschitz constants that
depend on the size of the input. For example, suppose xi is
an array of length N, and consider -changes to it that do not
change its size. We consider P to be N-Lipschitz with respect
to xi if on such a change, the output xj can change at most
by N · . In general, a Lipschitz constant of P is a function K :
N → R≥0 that takes the size of xi as an input.

Formally, to each value v, let us associate a size v > 0. If
v is an integer or real, then v = 1; if v is an array of length N,
then v = N. We have:

Definition 2 (Lipschitz continuity). Let K : N → R≥0. The
program P is K-Lipschitz with respect to an input xi and an
output xj if for all s, s¢  S(P) and  > 0,

s ≡,i s¢ ∧ (s (i) = s¢(i)) ⇒ P(s) ≈m, j P(s ′)

where m = K(s (i)) · .

More generally, we could define Lipschitz continuity of
P within a subset S¢ of its state space. In such a definition,
s and s¢ in Definition 2 are constrained to be in S¢, and no
assertion is made about the effect of perturbations on states

outside S¢. Such a definition is useful because many realistic
programs are Lipschitz only within certain regions of their
input space, but for brevity, we do not consider it here.

Now we note that many of the classic computations in
computer science are in fact continuous or Lipschitz.

Example 1 (Sorting). Let Sort be a sorting program that
takes in an array A of reals and returns a sorted permutation
of A. As discussed in Section 1, Sort is 1-Lipschitz in input A and
output A, because any -change to the initial value of A (defined
using our metric on arrays) can produce at most an -change to
its final value. Note that this means that Sort is continuous in
input A and output A at every program state.

What if A was an array of integers? Continuity still holds in
this case, but for more trivial reasons. Since A is of a discrete
type, the only arbitrarily small perturbation that can be made
to A is no perturbation at all. Obviously, the program output
does not change in this case. However, reasoning about conti-
nuity turns out to be important even under these terms. This is
apparent when we try to prove that Sort is 1-Lipschitz when A is
an array of integers. The easiest way to do this is to “cast” the
input type of the program into an array of reals and prove that
the program is 1-Lipschitz even after this modification, and this
demands a proof of continuity.

Example 2 (Shortest paths). Let SP be a correct implementa-
tion of a shortest path algorithm. We view the graph G on which
SP operates as an array of reals such that G[i] is the weight of
the i-th edge. An -change to G thus amounts to a maximum
change of ± to any edge weight of G, while keeping the node and
edge structure intact.

The output of SP is the array d of shortest path distances in
G—that is, d[i] is the length of the shortest path from the source
node to the i-th node ui of G. We note that SP is N-Lipschitz
in input G and output d (N is the number of edges in G). This
is because if each edge weight in G changes by an amount ,
a shortest path weight can change at most by N · .

On the other hand, suppose SP had a second output: an array p
whose i-th element is a sequence of nodes forming a minimal-weight
path between src and ui. An -change to G may add or subtract ele-
ments from p—that is, perturb p by the amount ∞. Therefore, SP is
not K-Lipschitz with respect to the output p for any K.

Example 3 (Minimum spanning trees). Consider any algo-
rithm MST for computing a minimum-cost spanning tree in a
graph G with real edge weights. Suppose MST has a variable c
that holds, on termination, the cost of the minimum spanning
tree. MST is N-Lipschitz (hence continuous everywhere) in the
input G and the output c.

Example 4 (Knapsack). Consider the Knapsack problem from
combinatorial optimization. We have a set of items {1,…, N},
each item i associated with a real cost c[i] and a real value v[i].
We also have a nonnegative, real-valued budget. The goal is
to identify a subset Used ⊆ {1,…, N} such that the constraint
SjŒUsed c[i] ≤ Budget is satisfied, and the value of totv = SjŒUsed v[i]
is maximized.

Let our output variable be totv. As a perturbation can turn a
previously feasible solution infeasible, a program Knap solving

110 CoMMuniCAtionS oF thE ACM | AuguST 2012 | vOL. 55 | NO. 8

research highlights

Therefore, to make the problem more interesting, we
assume that the input to Bubble Sort is an array of reals. As
before, we model graphs by arrays of reals where each item
represents the weight of an edge.

Given a program P, our task is to derive a syntactic con-
tinuity judgment for P, defined as a term b  Cont(P, In, Out),
where b is a Boolean formula over Var, and In and Out are
sets of variables of P. Such a judgment is read as “For each
xi  In and xj  Out and each state s where b is true, P is
 con tinuous in input xi and output xj at s.” We break down
this task into the task of deriving judgments b  Cont(P¢,
In, Out) for programs P¢ that are syntactic substructures of
P. For example, if P is of the form “if b then P1 else P2,” then
we recursively derive continuity judgments for P1 and P2.

Continuity judgments are derived using a set of syntactic
proof rules—the rules can be converted in a standard way
into an automated program analysis that iteratively assigns
continuity judgments to subprograms. Figure 1 shows the
most important of our rules; for the full set, see the original
reference.2 To understand the syntax of the rules, consider
the rule Base. This rule derives a conclusion b  Cont(P, In,
Out), where b, In, and Out are arbitrary, from the premise that
P is either “skip” or an assignment.

The rule Sequence addresses sequential composition
of programs, generalizing the fact that the composition of
two continuous functions is continuous. One of the prem-
ises of this rule is a Hoare triple of the form {b1}P{b2}. This
is to be read as “For any state s that satisfies b1, P(s) satis-
fies b2. (A standard program verifier can be used to verify this
premise.) The rule In-Out allows us to restrict or generalize
the set of input and output variables with respect to which a
continuity judgment is made.

The next rule—Ite—handles conditional statements,
and is perhaps the most interesting of our rules. In a con-
ditional branch, a small perturbation to the input variables
can cause control to flow along a different branch, leading
to a syntactically divergent behavior. For instance, this hap-
pens in Lines 3–4 in the Bubble Sort algorithm in Figure 2—
perturbations to items in A can lead to either behaviors

this problem is discontinuous with respect to the input c and
also with respect to the input Budget. At the same time, Knap is
N-Lipschitz with respect to the input v: if the value of each item
changes by ±, the value of totv can change by ±N.

Continuity and Lipschitz continuity can be used as defi-
nitions of robustness, a property that ensures that a program
behaves predictably on uncertain inputs. Uncertainty, in
this context, can be modeled by either nondeterminism (the
value of x has a margin of error ±) or a probability distribu-
tion. For example, a robust embedded controller does not
change its control decisions abruptly because of uncertainty
in its sensor-derived inputs. The statistics computed by a
robust scientific program are not much affected by mea-
surement errors in the input dataset.

Robustness has benefits even in contexts where a pro-
gram’s relationship with uncertainty is not adversarial.
The input space of a robust program does not have iso-
lated “peaks”—that is, points where the program output is
very different from outputs on close-by inputs. Therefore,
we are more likely to cover a program’s behaviors using
random tests if the program is robust. Also, robust com-
putations are more amenable to randomized and approxi-
mate program transformations20 that explore trade-offs
between a program’s quality of results and resource con-
sumption. Transformations of this sort can be seen to
deliberately introduce uncertainty into a program’s opera-
tional semantics. If the program is robust, then this extra
uncertainty does not significantly affect its observable
behavior, hence such a transformation is “safer” to per-
form. More details are available in our conference paper
on robustness analysis.3

Now, if a program is Lipschitz, then we can give quantita-
tive upper bounds on the change to its behavior due to uncer-
tainty in its inputs, and further, this bound is small if the
inputs are only slightly uncertain. Consequently, Lipschitz
continuity is a rather strong robustness property. Continuity
is a weaker definition of robustness—a program computing
ex is continuous, even though it hugely amplifies errors in its
inputs. Nonetheless, it captures freedom from a common
class of robustness violations: those where uncertainty in
the inputs alters a program’s control flow, and this change
leads to a significant change in the program’s output.

3. PRoGRAM VERiFiCAtion
Now we present our automated framework for proving a
program continuous2 or Lipschitz.3 Our analysis is sound—
that is, a program proven continuous or Lipschitz by our
analysis is indeed continuous. However, as the analysis
targets a Turing-complete language, it is incomplete—for
example, a program may be continuous even if the analysis
does not deem it so.

3.1. Verifying continuity
First we show how to verify the continuity of an Imp program.
We use as running examples three of the most well-known
algorithms of computing: Bubble Sort, the Bellman–Ford
shortest path algorithm, and Dijkstra’s shortest path algo-
rithm (Figure 2). As mentioned in Example 1, a program
is always continuous in input variables of discrete types.

Figure 1. key rules in continuity analysis.

AuguST 2012 | vOL. 55 | NO. 8 | CoMMuniCAtionS oF thE ACM 111

of either “swapping A[i] and A[i + 1]” or “leaving A
unchanged.”

The core idea behind the rule Ite is to show that such a
divergence does not really matter, because at the program
states where arbitrarily small perturbations to the program
variables can “flip” the value of the guard b of the condi-
tional statement (let us call the set of such states the bound-
ary of b), the branches of the conditional are arbitrarily close
in behavior.

Precisely, let us construct from b the following formula:

Note that B (b) represents an overapproximation of the
boundary of b. Also, for a set of output variables Out and
a Boolean formula c, let us call programs P1 and P2 Out-
equivalent under c, and write c  (P1 ≡Out P2), if for each
state s that satisfies c, the states P1(s) and P2(s) agree
on the values of all variables in Out. We assume an oracle
that can determine if c  (P1 ≡Out P2) for given c, P1, P2, and
Out. In practice, such equivalence questions can often be
solved fully automatically using modern automatic theo-
rem provers.19 Now, to derive a continuity judgment for a
program “if b then P1 else P2” with respect to the outputs
Out, Ite shows that P1 and P2 become Out-equivalent under
the condition B (b).

The rule Loop derives continuity judgments for while-
loops. The idea here is to prove the body R of the loop
continuous, then inductively argue that the entire loop is
continuous too. In more detail, the rule derives a continu-
ity judgment c  Cont(R, X, X), where c is a loop invariant—
a property that is always true at the loop header—and X is
a set of variables. Now consider any state s satisfying c. An
arbitrarily small perturbation to this state leads to an arbi-
trarily small change in the value of each variable in X at the
end of the first iteration, which only leads to an arbitrarily
small change in the value of each variable in X at the end of
the second iteration, and so on. Continuity follows.

Some subtleties need to be considered, however. An
execution from a slightly perturbed state may terminate
earlier or later than it would in the original execution.
Even if the loop body is continuous, the extra iterations
in either the modified or the original execution may cause
the states at the loop exit to be very different. We rule out
such scenarios by asserting a premise called synchronized
termination. A loop “while b do R” fulfills this property
with respect to a loop invariant c and a set of variables X, if
B (b) ∧ c  R ≡x skip). Under this property, even if the loop
reaches a state where a small perturbation can cause the
loop to terminate earlier (similarly, later), the extra itera-
tions in the original execution have no effect on the pro-
gram state. We can ignore these iterations in our proof.

Second, even if the loop body is continuous in input xi and
output xj for every xi, xj  X, an iteration may drastically change
the value of program variables not in X. If there is a data flow
from these variables to some variable in X, continuity will not
hold. We rule out this scenario through an extra condition.
Consider executions of P whose initial states satisfy a con-
dition c. We call a set of variables X of P separable under c if
the value of each z  X on termination of any such execution
is independent of the initial values of variables not in X. We
denote the fact that X is separable in this way by c  Sep(P, X).

To verify that P is continuous in input xi and output xj at
state s, we derive a judgment b  Cont(P, {xi}, {xj}), where b
is true at s. The correctness of the method follows from the
following soundness theorem:

Theorem 1. If the rules in Figure 1 can derive the judgment
b  Cont(P, In, Out), then for all xi  In, xj  Out, and s such that
b = true, P is continuous in input xi and output xj at s.

Example 5 (Warmup). Consider the program “if (x > 2) then
x := x/2 else x := −5x + 11.” B(x > 2) equals (x = 2) and
(x = 2)  (x := x/2) ≡{x} (x := −5x + 11). By Ite, the program is
continuous in input x and output x.

Let us now use our rules on the algorithms in Figure 2.

Example 6 (Bubble Sort). Consider the implementation of
Bubble Sort in Figure 2. (We assume it to be rewritten as a while-
program in the obvious way.) Our goal is to derive the judgment
true  Cont(BubbleSort, {A}, {A}).

Let X = {A, i, j}, and let us write R〈p,q〉 to denote the
code fragment from line p to line q (both inclusive). Also,
let us write c  Term(while b do R, X) as an abbreviation for
B (b) ∧ c  (R ≡x skip).

BubbleSort (A : array of reals)
1 for j := 1 to (|A| − 1);
2 do for i := 1 to (|A| − 1);
3 do if (A[i] > A[i + 1])
4 then t := A[i]; A[i] := A[i + 1]; A[i + 1] := t;

BellmanFord(G : array of reals, src : int)
1 …
2 for i := 1 to (|G| − 1)
3 do for each edge (v, w) of G
4 do if d[v] + G(v, w) < d[w]
5 then d[w] := d[v] + G(v, w)

Dijkstra(G : array of reals, src : int)
1 …
2 while W ≠ /0
3 do choose edge (v, w)  W such that d[w] is minimal;
4 remove (v, w) from W;
5 if d[w] + G[w, v] < d[v]
6 then d[v] := d[w] + G[w, v]

Figure 2. Bubble sort, the Bellman-Ford algorithm, and Dijkstra’s
algorithm.

112 CoMMuniCAtionS oF thE ACM | AuguST 2012 | vOL. 55 | NO. 8

research highlights

It is easy to show that true  Sep(BubbleSort, X) and
true  Sep(R〈2,4〉, X). Each loop guard only involves discrete
 variables, hence we derive true  Term(BubbleSort, X) and
true  Term(R〈2,4〉, X).

Now consider R〈3,4〉. As B(A[i] > A[i + 1]) equals (A[i] = A[i + 1])
and (A[i] = A[i + 1])  (skip ≡ X R〈4,4〉), we have true  Cont(R〈3,4〉, X,
X), then true  Cont(R〈2,4〉, X, X), and then true  Cont(BubbleSort,
X, X). Now the In-Out rule derives the judgment we are after.

Example 7 (Bellman–Ford). Take the Bellman–Ford algo-
rithm. On termination, d[u] contains the shortest path distance
from the source node src to the node u. We want to prove that
true  Cont(BellmanFord, {G}, {d}).

We use the symbols R〈p,q〉 and Term as before. Clearly, we have
true  Sep(R〈3,5〉, X) and true  Term(R〈3,5〉, X), where X = {G, v, w}.
The two branches of the conditional in Line 4 are X-equivalent
at B(d[v] + G(v, w) < d[w]), hence we have true =  Cont(R〈4,5〉,
X, X), and from this judgment, true  Cont(R〈3,5〉, X, X). Similar
arguments can be made about the outer loop. Now we can
derive the fact true  Cont(BellmanFord, X, X); weakening, we
get the judgment we seek.

Unfortunately, the rule Loop is not always enough for
continuity proofs. Consider states s and s¢ of a continu-
ous program P, where s¢ is obtained by slightly perturb-
ing s. For Loop to apply, executions from s and s¢ must
converge to close-by states at the end of each loop itera-
tion. However, this need not be so. For example, think of
Dijkstra’s algorithm. As a shortest path computation, this
program is continuous in the input graph G and the out-
put d—the array of shortest path distances. But let us look
at its main loop in Figure 2.

Note that in any iteration, there may be several items w
for which d[w] is minimal. But then, a slightly perturbed initial
value of d may cause a loop iteration to choose a different w,
leading to a drastic change in the value of d at the end of
the iteration. Thus, individual iterations of this loop are not
continuous, and we cannot apply Loop.

In prior work,2 we gave a more powerful rule, called
epoch induction, for proving the continuity of programs
like the one above. The key insight here is that if we group
some loop iterations together, then continuity becomes
an inductive property of the groupings. For example, in
Dijkstra’s algorithm, a “grouping” is a maximal set S of
successive loop iterations that are tied on the initial
value of d[w]. Let s0 be the program state before the first
iteration in S is executed. Owing to arbitrarily small per-
turbations to s0, we may execute iterations in S in a very
different order. However, an iteration that ran after the
iterations in S in the original execution will still run after
the iterations in S. Moreover, for a fixed s0, the program
state, once all iterations in S have been executed, is the
same, no matter what order these iterations were exe-
cuted in. Thus, a small perturbation cannot significantly
change the state at the end of S, and the set of iterations S
forms a continuous computation.

We have implemented the rules in Figure 1, as well
as the epoch induction rule, in the form of a mostly-auto-
matic program analysis. Given a program, the analysis
iterates through its control points, assigning continuity

judgments to subprograms until convergence is reached.
Auxiliary tasks such as checking the equivalence of two
straight-line program fragments (needed by rule Ite)
are performed automatically using the Z38 SMT-solver.
Human intervention is expected in two forms. First, in
applications of the epoch induction rule, we sometimes
expect the programmer to write annotations that define
appropriate “groupings” of iterations. Second, in case a
complex loop invariant is needed for the proof (e.g., when
one of the programs in a program equivalence query is
a nested loop), the programmer is expected to supply it.
There are heuristics and auxiliary tools that can be used
to automate these steps, but our current system does not
employ them.

Given the incompleteness of our proof rules, a natu-
ral empirical question for us was whether our system can
verify the continuity of the continuous computing tasks
described in Section 2. To answer this question, we chose
several 13 continuous algorithms (including algorithms)
over real and real array data types. Our system was able to
verify the continuity of 11 of these algorithms, including
the shortest path algorithms of Bellman-Ford, Dijkstra,
and Floyd-Warshall; Merge Sort and Selection Sort in
addition to Bubble Sort; and the minimum spanning tree
algorithms of Prim and Kruskal. Among the algorithms
we could not verify were Quick Sort. Please see Chaudhuri
et al.2 for more details.

3.2. Verifying Lipschitz continuity
Now we extend the above verification framework to one for
Lipschitz continuity. Let us fix variables xi and xj of the pro-
gram P respectively as the input and the output variable. To
start with, we assume that xi and xj are of continuous data
types—reals or arrays of reals.

Let us define a control flow path of a program P as
the sequence of assignment or skip-statements that
P executes on some input (we omit a more formal defini-
tion). We note that since our arithmetic expressions are
built from additions and multiplications, each control
flow path of P encodes a continuous—in fact differen-
tiable—function of the inputs. Now suppose we can show
that each control flow path of P is a K-Lipschitz compu-
tation, for some K, in input xi and output xj. This does
not mean that P is K-Lipschitz in this input and output:
a perturbation to the initial value of xi can cause P to
execute along a different control flow path, leading to a
drastically different final state. However, if P is continu-
ous and the above condition holds, then P is K-Lipschitz
in input xi and output xj.

Our analysis exploits the above observation. To prove
that P is K-Lipschitz in input xi and output xj, we estab-
lish that (1) P is continuous at all states in input xi and
output xj and (2) each control flow path of P is K-Lipschitz
in input xi and output xj. Of these, the first task is accom-
plished using the analysis from Section 3.1. To accomplish
the second task, we compute a data structure—a set of
Lipschitz matrices—that contains upper bounds on the
slopes of any computation that can be carried out in a
control flow path of P.

AuguST 2012 | vOL. 55 | NO. 8 | CoMMuniCAtionS oF thE ACM 113

appearing in e; if the variable xi does not appear in e, then
perturbations to the initial value of xi have no effect on
xi[m]. However, the remaining locations in xi are affected by,
and only by, changes to the initial value of xi. Thus, we can
view xi as being split into two “regions”—one consisting of
xi[m] and the other of every other location—with possibly
 different Lipschitz constants. We track these constants
using two different Lipschitz matrices J and J′. Here J is as in
the rule Assign, while J′ is identical to the Lipschitz matrix
for a hypothetical assignment xi := xi.

Sequential composition is handled by matrix multipli-
cation (rule Sequence)—the insight here is essentially the
chain rule of differentiation. As mentioned earlier, the rule
for conditional statements merges the Lipschitz matrices
computed along the two branches. The Weaken rule allows
us to overestimate a Lipschitz constant at any point.

The rule While derives Lipschitz matrices for while-
loops. Here Bound+ (P, M) is a premise that states that the
symbolic or numeric constant M is an upper bound on the
number of iterations of P—it is assumed to be inferred
via an auxiliary checker.11 Finally, J M is shorthand for the
 singleton set of matrix products {J1… JM : Ji  J }. In cases
where M is a symbolic bound, we will not be able to compute
this product explicitly. However, in many practical cases,
one can reduce it to a simpler manageable form using alge-
braic identities.

The While rule combines the rules for if-statements
and sequential composition. Consider a loop P whose body
R has Lipschitz matrix J. If the loop terminates in exactly M
iterations, JM is a correct Lipschitz matrix for it. However,
if the loop may terminate after M′ < M iterations, we require an
extra property for JM to be a correct Lipschitz matrix: Ji ≤ Ji+1
for all i < M. This property is ensured by the condition

Figure 3. Rules for deriving Lipschitz matrices.
More precisely, let P have n variables named x1,…, xn,

as before. A Lipschitz matrix J of P is an n × n matrix, each
of whose elements is a function K : N → R≥0. Elements of J
are represented either as numeric constants or as symbolic
expressions (for example, N + 5), and the element in the
i-th row and j-th column of J is denoted by J(i, j). Our analy-
sis associates P with setsJ of such matrices via judgments
P: J. Such a judgment is read as follows: “For each control
flow path C in P and each xi, xj, there is a J  J such that C is
J(j, i)-Lipschitz in input xi and output xj.”

The Lipschitz matrix data structure can be seen as a gener-
alization of the Jacobian from vector calculus. Recall that the
Jacobian of a function f : Rn → Rn with inputs x1,…, xn  R and
outputs x1′,…, xn′  R is the matrix whose (i, j)-th entry is .
If f is differentiable, then for each xi′ and xj, f is K-Lipschitz
with respect to input xj and output xi′, where K is any upper
bound on . In our setting, each control flow path represents
a differentiable function, and we can verify the Lipschitz conti-
nuity of this function by propagating a Jacobian along the path.
On the other hand, owing to branches, the program P may
not represent a differentiable, or even continuous, function.

However, note that it is correct to associate a condi-
tional statement “if b then P1 else P2” with the set of matri-
ces (J1 È J2), where the judgments P1 : J1 and P2 : J2 have
been made inductively. Of course, this increases the num-
ber of matrices that we have to track for a subprogram. But
the proliferation of such matrices can be curtailed using an
approximation that merges two or more of them.

This merge operation  is defined as (J1  J2)(i, j) =
max(J1(i, j), J2(i, j)) for all J1, J2, i, j. Suppose we can correctly
derive the judgment P : J. Then for any J1, J2  J, it is also
correct to derive the judgment P : (J   \{J1, J2} È {J1  J2}). Note
that this overapproximation may overestimate the Lipschitz
constants for some of the control flow paths in P, but this is
acceptable as we are not seeking the most precise Lipschitz
constant for P anyway.

Figure 3 shows our rules for associating a set J of
Lipschitz matrices with a program P. In the first rule Skip,
I is the identity matrix. The rule is correct because skip is
1-Lipschitz in input xi and output xi for all i, and 0-Lipschitz
in input xi and output xj, where i ≠ j.

To obtain Lipschitz constants for assignments to variables
(rule Assign), we must quantify the way the value of an arith-
metic expression e changes when its inputs are changed.
This is done by computing a vector ∇e whose i-th element is an
upper bound on . In more detail, we have

Assignments xi[m] := e to array locations are slightly trick-
ier. The location xi[m] is affected by changes to variables

114 CoMMuniCAtionS oF thE ACM | AuguST 2012 | vOL. 55 | NO. 8

research highlights

∀i, j: J(i, j) = 0 ∨ J(i, j) ≥ 1. Note that in the course of a proof,
we can weaken any Lipschitz matrix for the loop body to a
matrix J of this form.
We can prove the following soundness theorem:

Theorem 2. Let P be continuous in input xi and output xj . If
the rules in Figure 3 derive the judgment P : {J}, then P is J(j, i)-
Lipschitz in input xi and output xj.

Example 8 (Warmup). Recall the program “if (x > 2) then
x := x/2 else x := −5x + 11” from Example 5 (x is a real). Our rules
can associate the left branch with a single Lipschitz matrix
containing a single entry , and the right branch with a single
matrix containing a single entry 5. Given the continuity of the
program, we conclude that the program is 5-Lipschitz in input
x and output x.

Example 9 (Bubble Sort). Consider the Bubble Sort algo-
rithm (Figure 2) once again, and as before, let R〈p,q〉 denote the
code fragment from line p to line q. Let us set x0 to be A and x1
to be t.

Now, let . From the rules in Figure 3, we can derive
(t := A[i]) : { J}, (A[i] := A[i + 1]) : {I}, and (A[i + 1] := t) : {J, I}.

Carrying out the requisite matrix multiplications, we get
R〈4,4〉 : {J}. Using the rule Ite, we have R〈3,4〉 : {I, J}. Now, it
is easy to show that R〈3,4〉 gets executed N times, where N
is the size of A. From this we have R〈2,4〉 : {I, J}N. Given that
J2 = IJ = JI = J, this is equivalent to the judgment R〈2,4〉 : {I, J}.
From this, we derive BubbleSort : {J, I}. Given the proof of con-
tinuity carried out in Example 1, Bubble Sort is 1-Lipschitz in
input A and output A.

Intuitively, the reason why Bubble Sort is so robust is that
here, (1) there is no data flow from program points where arith-
metic operations are carried out to points where values are
assigned to the output variable and (2) continuity holds every-
where. In fact, one can formally prove that any program that
meets the above two criteria is 1-Lipschitz. However, we do not
develop this argument here.

Example 10 (Bellman–Ford; Dijkstra). Let us consider
the Bellman–Ford algorithm (Figure 2) once again, and let x0
be G and x1 be d. Consider line 5 (i.e., the program R〈5,5〉); our
rules can assign to this program the Lipschitz matrix J, where

. With a few more derivations, we obtain R〈4,5〉 : {J}.
Using the rule for loops, we have R〈3,5〉 : {JN}, where N is the
number of edges in G, and then BellmanFord : {JN2}. But note
that

Combing the above with the continuity proof in Example 7, we
decide that the Bellman–Ford algorithm is N2-Lipschitz in input
G and output d.

Note that the Lipschitz constant obtained in the above
proof is not the optimal one—that would be N. This is an
instance of the gap between truth and provability that is the
norm in program analysis. Interestingly, our rules can derive
the optimal Lipschitz constant for Dijkstra’s algorithm. Using

the same reasoning as above, we assign to the main loop of the
algorithm the single Lipschitz matrix J. Applying the Loop rule,
we derive

Given that the algorithm is continuous in input G and output d,
it is N-Lipschitz in input G and output d.

Let us now briefly consider the case when the input and
output variables in our program are of discrete type. As
a program is trivially continuous in every discrete input,
continuity is not a meaningful notion in such a setting.
Therefore, we focus on the problem of verifying Lipschitz
continuity—for example, showing that the Bubble Sort algo-
rithm is 1-Lipschitz even when the input array A is an array
of integers.

An easy solution to this problem is to cast the array A into
an array A* of reals, and then to prove 1-Lipschitz continuity
of the resultant program in input A* and output A*. As any
integer is also a real, the above implies that the original algo-
rithm is 1-Lipschitz in input A and output A. Thus, reals are
used here as an abstraction of integers, just as (unbounded)
integers are often used in program verification as abstrac-
tions of bounded-length machine numbers.

Unsurprisingly, this strategy does not always work.
Consider the program “if (x > 0) then x := x + 1 else skip,”
where x is an integer. This program is 2-Lipschitz. Its
“slope” is the highest around initial states where x = 0: if
the initial value of x changes from 0 to 1, the final value of
x changes from 0 to 2. At the same time, if we cast x into a
real, the resultant program is discontinuous and thus not
K-Lipschitz for any K.

It is possible to give an analysis of Lipschitz continu-
ity that does not suffer from the above issue. This analy-
sis casts the integers into reals as mentioned above, then
calculates a Lipschitz matrix of the resultant program;
however, it checks a property that is slightly weaker than
continuity. For lack of space, we do not go into the details
of the analysis here.

We have extended our implementation of continuity
analysis with the verification method for Lipschitz continu-
ity presented above, and applied the resulting system to the
suite of 13 algorithms mentioned at the end of Section 3.1.
All these algorithms were either 1-Lipschitz or N-Lipschitz.
Our system was able to compute the optimal Lipschitz
constant for 9 of the 11 algorithms where continuity could
be verified. In one case (Bellman-Ford), it certified an
N-Lipschitz computation as N2-Lipschitz. The one example
on which it fared poorly was the Floyd-Warshall shortest
path algorithm, where the best Lipschitz constant that it
could compute was exponential in N3.

4. RELAtED WoRk
So far as we know, we were the first2 to propose a frame-
work for continuity analysis of programs. Before us,
Hamlet12 advocated notions of continuity of software;
however, he concluded that “it is not possible in practice
to mechanically test for continuity” in the presence of

AuguST 2012 | vOL. 55 | NO. 8 | CoMMuniCAtionS oF thE ACM 115

loops. Soon after our first paper on this topic (and before
our subsequent work on Lipschitz continuity of pro-
grams), Reed and Pierce18 gave a type system that can ver-
ify the Lipschitz continuity of functional programs. This
system can seamlessly handle functional data structures
such as lists and maps; however, unlike our method, it
cannot reason about discontinuous control flow, and
would consider any program with a conditional branch
to have a Lipschitz constant of ∞.

More recently, Jha and Raskhodnikova have taken a prop-
erty testing approach to estimating the Lipschitz constant
of a program. Given a program, this method determines,
with a level of probabilistic certainty, whether it is either
1-Lipschitz or -far (defined in a suitable way) from being
1-Lipschitz. While the class of programs allowed by the
method is significantly more restricted than what is investi-
gated here or by Reed and Pierce 13, the appeal of the method
lies in its crisp completeness guarantees, and also in that it
only requires blackbox access to the program.

Robustness is a standard correctness property in control
theory,16, 17 and there is an entire subfield of control study-
ing the design and analysis of robust controllers. However,
the systems studied by this literature are abstractly defined
using differential equations and hybrid automata rather
than programs. The systematic modeling and analysis of
robustness of programs was first proposed by us in the con-
text of general software, and by Majumdar and Saha14 in the
context of control software.

In addition, there are many efforts in the abstract inter-
pretation literature that, while not verifying continuity or
robustness explicitly, reason about the uncertainty in a pro-
gram’s behavior due to floating-point rounding and sensor
errors.6, 7, 10 Other related literature includes work on auto-
matic differentiation (AD),1 where the goal is to transform
a program P into a program that returns the derivative of P
where it exists. Unlike the work described here, AD does not
attempt verification—no attempt is made to certify a pro-
gram as differentiable or Lipschitz.

5. ConCLuSion
In this paper, we have argued for the adoption of analyt-
ical properties like continuity and Lipschitz continuity
as correctness properties of programs. These properties
are relevant as they can serve as useful definitions of
robustness of programs to uncertainty. Also, they raise
some fascinating technical issues. Perhaps counterin-
tuitively, some of the classic algorithms of computer
science satisfy continuity or Lipschitz continuity, and
the problem of systematic reasoning about these prop-
erties demands a nontrivial combination of analytical
and logical insights.

We believe that the work described here is a first step
toward an extension of the classical calculus to a symbolic
mathematics where programs form a first-class represen-
tation of functions and dynamical systems. From a practi-
cal perspective, this is important as physical systems are
increasingly controlled by software, and as even applied
mathematicians increasingly reason about functions that
are not written in the mathematical notation of textbooks,

but as code. Speaking more philosophically, the classical
calculus focuses on the computational aspects of real anal-
ysis, and the notation of calculus texts has evolved primar-
ily to facilitate symbolic computation by hand. However, in
our era, most mathematical computations are carried out
by computers, and a calculus for our age should not ignore
the notation that computers can process most easily: pro-
grams. This statement has serious implications—it opens
the door not only to the study of continuity or derivatives
but also to, say, Fourier transforms, differential equations,
and mathematical optimization of code. Some efforts in
these directions4, 5, 9 are already under way; others will no
doubt appear in the years to come.

Acknowledgments
This research was supported by NSF CAREER Award
#1156059 (“Robustness Analysis of Uncertain Programs:
Theory, Algorithms, and Tools”).

© 2012 aCm 0001-0782/12/08 $15.00

Swarat Chaudhuri (swarat@rice.edu),
Department of Computer science, rice
university, houston, tX.

Sumit Gulwani (sumitg@microsoft.com),
microsoft research, redmond, Wa.

Roberto Lublinerman (rluble@psu.edu),
Department of Computer science and
engineering, pennsylvania state university,
university park, pa.

References

 1. bucker, m., Corliss, g., hovland, p.,
naumann, u., norris, b. automatic
Differentiation: applications, theory
and Implementations, birkhauser,
2006.

 2. Chaudhuri, s., gulwani, s.,
lublinerman, r. Continuity analysis of
programs. In POPL (2010), 57–70.

 3. Chaudhuri, s., gulwani,
s., lublinerman, r., navidpour, s.
proving programs robust. In FSE
(2011), 102–112.

 4. Chaudhuri, s., solar-lezama, a.
smooth interpretation. In PLDI
(2010), 279–291.

 5. Chaudhuri, s., solar-lezama, a.
smoothing a program soundly and
robustly. In CAV (2011), 277–292.

 6. Chen, l., miné, a., Wang, j., Cousot, p.
Interval polyhedra: an abstract
domain to infer interval linear
relationships. In SAS (2009),
309–325.

 7. Cousot, p., Cousot, r., feret, j.,
mauborgne, l., miné, a., monniaux,
D., rival, X. the astreé analyzer. In
ESOP (2005), 21–30.

 8. de moura, l. m. bjørner, n. Z3: an
effcient smt solver. In TACAS (2008),
337–340.

 9. girard, a., pappas, g. approximate
bisimulation: a bridge between
computer science and control theory.
Eur. J. Contr. 17, 5 (2011), 568.

 10. goubault, e. static analyses of the
precision of floating-point operations.
In SAS (2001).

 11. gulwani, s., Zuleger, f. the
reachability-bound problem. In PLDI
(2010), 292–304.

 12. hamlet, D. Continuity in software
systems. In ISSTA (2002).

 13. jha, m., raskhodnikova, s. testing
and reconstruction of lipschitz
functions with applications to data
privacy. In FOCS (2011), 433–442.

 14. majumdar, r., saha, I. symbolic
robustness analysis. In RTSS (2009),
355–363.

 15. parnas, D. software aspects of
strategic defense systems.
Commun. ACM 28, 12 (1985),
1326–1335.

 16. pettersson, s., lennartson, b. stability
and robustness for hybrid systems.
In Decision and Control (Dec 1996),
1202–1207.

 17. podelski, a., Wagner, s. model
checking of hybrid systems: from
reachability towards stability. In
HSCC (2006), 507–521.

 18. reed, j., pierce, b. Distance makes
the types grow stronger: a calculus
for differential privacy. In ICFP
(2010).

 19. strichman, o. regression
verification: proving the equivalence
of similar programs. In CAV
(2009).

 20. Zhu, Z., misailovic, s., kelner, j.,
rinard, m. randomized accuracy-
aware program transformations for
efficient approximate computations.
In POPL (2012).

