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Abstract
Computer scientists have long believed that software is 
 different from physical systems in one fundamental way: 
while the latter have continuous dynamics, the former do 
not. In this paper, we argue that notions of continuity from 
mathematical analysis are relevant and interesting even 
for software. First, we demonstrate that many everyday 
programs are continuous (i.e., arbitrarily small changes to 
their inputs only cause arbitrarily small changes to their 
outputs) or Lipschitz continuous (i.e., when their inputs 
change, their outputs change at most proportionally). 
Second, we give an mostly-automatic framework for veri-
fying that a program is continuous or Lipschitz, showing 
that traditional, discrete approaches to proving programs 
correct can be extended to reason about these properties. 
An immediate application of our analysis is in reasoning 
about the robustness of programs that execute on uncer-
tain inputs. In the longer run, it raises hopes for a toolkit 
for reasoning about programs that freely combines logical 
and analytical mathematics.

1. intRoDuCtion
It is accepted wisdom in computer science that the dynam-
ics of software systems are inherently discontinuous, and 
that this fact makes them fundamentally different from 
physical systems. More than 25 years ago, Parnas15 attrib-
uted the difficulty of engineering reliable software to the 
fact that “the mathematical functions that describe the 
behavior of [software] systems are not continuous.” This 
meant that the traditional analytical calculus—the math-
ematics of choice when one is analyzing the dynamics of, 
say, fluids—did not fit the needs of software engineering 
too well. Logic, which can reason about discontinuous 
systems, was better suited to being the mathematics of 
programs.

In this paper, we argue that this wisdom is to be taken 
with a grain of salt. First, many everyday programs are con-
tinuous in the same sense as in analysis—that is, arbitrarily 
small changes to its inputs lead to arbitrarily small changes 
to its outputs. Some of them are even Lipschitz continuous—
that is, perturbations to the program’s inputs lead to at 
most proportional changes to its outputs. Second, we show 
that analytic properties of programs are not at odds with 
the classical, logical methods for program verification, giv-
ing a logic-based, mostly-automated method for formally 
verifying that a program is continuous or Lipschitz contin-
uous. Among the immediate applications of this analysis 
is reasoning about the robustness of programs that execute 
under uncertainty. In the longer run, it raises hopes for a 

unified theory of program analysis that marries logical and 
analytical approaches.

Now we elaborate on the above remarks. Perhaps the 
most basic reason why software systems can violate continu-
ity is conditional branching—that is, constructs of the form 
“if B then P1 else P2.” Continuous dynamical systems arising 
in the physical sciences do not typically contain such con-
structs, but most nontrivial programs do. If a program has 
a branch, then even the minutest perturbation to its inputs 
may cause it to evaluate one branch in place of the other. 
Thus, we could perhaps conclude that any program contain-
ing a branch is ipso facto discontinuous.

To see that this conclusion is incorrect, consider the 
problem of sorting an array of numbers, one of the most 
basic tasks in computing. Every classic algorithm for sort-
ing contains conditional branches. But let us examine the 
specification of a sorting algorithm: a mathematical func-
tion Sort that maps arrays to their sorted permutations. 
This specification is not only continuous but Lipschitz 
 continuous: change any item of an input array A by ±, and 
each item of Sort(A) changes at most by ±. For example, 
 suppose A and A′ are two input arrays as below, with A′ 
obtained by perturbing each item of A at most by ±1. Then 
Sort(A′) can be obtained by perturbing each item of Sort(A) 
at most by ±1.

Similar observations hold for many of the classic computa-
tions in computer science, for example, shortest path and 
minimum spanning tree algorithms. Our program analysis 
extends and automates methods from the traditional analyt-
ical calculus to prove the continuity or Lipschitz continuity 
of such computations. For instance, to verify that a condi-
tional statement within a program is continuous, we gener-
alize the sort of insight that a high-school student uses to 
prove the continuity of a piecewise function like
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Intuitively, abs(x) is continuous because its two “pieces” x 
and −x are continuous, and because x and −x agree on val-
ues in the neighborhood of x = 0, the point where a small 
perturbation can cause abs(x) to switch from evaluating 
one piece to evaluating the other. Our analysis uses the 
same idea to prove that “if B then P1 else P2” is continuous: 
it inductively verifies that P1 and P2 are continuous, then 
checks, often automatically, that P1 and P2 become seman-
tically equivalent at states where the value of B can flip on a 
small perturbation.

When operating on a program with loops, our analysis 
searches for an inductive proof of continuity. To prove that 
a continuous program is Lipschitz continuous, we induc-
tively compute a collection of Lipschitz matrices that contain 
numerical bounds on the slopes of functions computed 
along different control paths of the program.

Of course, complete software systems are rarely continu-
ous. However, verification technique like ours allows us to 
identify modules of a program that satisfy continuity prop-
erties. A benefit of this is that such modules are amenable 
to analysis by continuous methods. In the longer run, we 
can imagine a reasoning toolkit for programs that combines 
continuous analysis techniques, for example, numerical 
optimization or symbolic integration, and logical methods 
for analyzing code. Such a framework would expand the 
classical calculus to functions encoded as programs, a rep-
resentation worthy of first-class treatment in an era where 
much of applied mathematics is computational.

A more immediate application of our framework is 
in the analysis of programs that execute on uncertain 
inputs, for example noisy sensor data or inexact scien-
tific measurements. Unfortunately, traditional notions 
of functional correctness do not guarantee predictable 
program execution on uncertain inputs: a program may 
produce the correct output on each individual input, but 
even small amounts of noise in the input could change its 
output radically. Under uncertainty, traditional correct-
ness properties must be supplemented by the property 
of robustness, which says that small perturbations to pro-
gram’s inputs do not have much effect on the program’s 
output. Continuity and Lipschitz continuity can both serve 
as definitions of robustness, and our analysis can be used 
to prove that a program is robust.

The rest of the paper is organized as follows. In Section 2, 
we formally define continuity and Lipschitz continuity of pro-
grams and give a few examples of computations that satisfy 
these properties. In Section 3, we give a method for verifying 
a program’s continuity, and then extend it to an analysis for 
Lipschitz continuity. Related work is presented in Section 4; 
Section 5 concludes the paper with some discussion.

2. Continuity, LiPSChitz Continuity,  
AnD RoBuStnESS
In this section, we define continuity2 and Lipschitz continu-
ity3 of programs and show how they can be used to define 
robustness. First, however, we fix the programming lan-
guage Imp whose programs we reason about.

Imp is a “core” language of imperative programs, 
meaning that it supports only the most central features of 

imperative programming—assignments, branches, and 
loops. The language has two discrete data types—integers 
and arrays of integers—and two continuous data types—
reals and arrays of reals. Usual arithmetic and comparisons 
on these types are supported. In conformance with the 
model of computation under which algorithms over reals 
are typically designed, our reals are infinite-precision, and 
elementary operations on them are assumed to be given by 
unit-time oracles.

Each data type in Imp is associated with a metric.a This 
metric is our notion of distance between values of a given 
type. For concreteness, we fix, for the rest of the paper, the 
following metrics for the Imp types:

• The integer and real types are associated with the 
Euclidean metric d(x, y) = |x − y|.

• The metric over arrays (of reals or integers) of the same 
length is the L∞-norm: d(A1, A2) = maxi{|A1[i ] − A2[i ]|}. 
Intuitively, an array changes by  when its size is kept 
fixed, but one or more of its items change by . We 
define d(A1, A2) = ∞ if A1 and A2 have different sizes.

The syntax of arithmetic expressions E, Boolean expressions 
B, and programs Prog is as follows:

Here x is a typed variable, c is a typed constant, A is an array 
variable, i an integer variable or constant, + and · respec-
tively represent addition and multiplication over scalars 
(reals or integers), and the Boolean operators are as usual. 
We assume an orthogonal type system that ensures that 
all expressions and assignments in our programs are well-
typed. The set of variables appearing in P is denoted by 
Var (P) = {x1,…, xn}.

As for semantics, for simplicity, let us restrict our focus to 
programs that terminate on all inputs. Let Val be a universe 
of typed values. A state of P is a vector s ∈ Valn. Intuitively, for 
all 1 ≤ i ≤ n, s   (i  ) is the value of the variable xi at state s. The 
set of all states of P is denoted by ∑(P).

The semantics of the program P, an arithmetic expression 
e  occurring in P, and a Boolean expression b in P are now 
respectively given by maps P: ∑(P) ® ∑(P), e: ∑(P) ® Val, 
and b: ∑(P) ® {true, false}. Intuitively, for each state s of 
P, e(s) and b(s) are respectively the values of e and b at 
s, and P(s) is the state at which P terminates after starting 
execution from s. We omit the inductive definitions of these 
maps as they are standard.

Our definition of continuity of programs is an adaptation 
of the traditional -d definition of continuous functions. As 
a program can have multiple inputs and outputs, we define 
continuity with respect to an input variable xi and an output 

a Recall that a metric over a set S is a function d: S × S → R È {∞} such that 
for all x, y, z, we have (1) d(x, y) ≥ 0, with d(x, y) = 0 iff x = y; (2) d(x, y) = d(y, x); 
and (3) d(x, y) + d(y, z) ≥ d(x, z).
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variable xj. Intuitively, if P is continuous with respect to 
input xi and output xj, then an arbitrarily small change to 
the initial value of any xi, while keeping the remaining vari-
ables fixed, must only cause an arbitrarily small change to 
the final value of xj. Variables other than xj are allowed to 
change arbitrarily.

Formally, consider states s, s¢ of P and any  > 0. Let xi be 
a variable of type t, and let dt denote the metric over type t. 
We say that s and s¢ are -close with respect to xi, and write  
s ≈,i s¢, if dt(s  (i), s¢(i) ) < . We call s¢ an -perturbation of s with 
respect to xi, and write s ≡,i s¢, if s and s¢ are -close with 
respect to xi, and further, for all j π i, we have s  (    j ) = s¢(    j ). 
Now we define:

Definition 1 (Continuity). A program P is continuous at 
a state s with respect to an input variable xi and an output 
variable xj if for all  > 0, there exists a d > 0 such that for all 
s¢  S(P),

s  ≡d,i s¢ ⇒ P(s) ≈, j P(s ′)

An issue with continuity is that it only certifies program 
behavior under arbitrarily small perturbations to the inputs. 
However, we may often want a definition of continuity that 
establishes a quantitative relationship between changes to 
a program’s inputs and outputs. Of the many properties in 
function analysis that accomplish this, Lipschitz continu-
ity is perhaps the most well known. Let K > 0. A function 
f : R → R is K-Lipschitz continuous, or simply K-Lipschitz, if a  
±-change to x can change f (x) by at most ±K. The constant 
K is known as the Lipschitz constant of f. It is easy to see that 
if f is K-Lipschitz for some K, then f is continuous at every 
input x.

We generalize this definition in two ways while adapting 
it to programs. First, as for continuity, we define Lipschitz 
continuity with respect to an input variable xi and an out-
put variable xj. Second, we allow Lipschitz constants that 
depend on the size of the input. For example, suppose xi is 
an array of length N, and consider -changes to it that do not 
change its size. We consider P to be N-Lipschitz with respect 
to xi if on such a change, the output xj can change at most 
by N · . In general, a Lipschitz constant of P is a function K : 
N → R≥0 that takes the size of xi as an input.

Formally, to each value v, let us associate a size v > 0. If 
v is an integer or real, then v = 1; if v is an array of length N, 
then v = N. We have:

Definition 2 (Lipschitz continuity). Let K : N → R≥0. The 
program P is K-Lipschitz with respect to an input xi and an 
output xj if for all s, s¢  S(P) and  > 0,

s  ≡,i s¢ ∧ (s (i) = s¢(i)) ⇒ P(s) ≈m, j P(s ′)

where m = K(s (i)) · .

More generally, we could define Lipschitz continuity of 
P within a subset S¢ of its state space. In such a definition, 
s and s¢ in Definition 2 are constrained to be in S¢, and no 
assertion is made about the effect of perturbations on states 

outside S¢. Such a definition is useful because many realistic 
programs are Lipschitz only within certain regions of their 
input space, but for brevity, we do not consider it here.

Now we note that many of the classic computations in 
computer science are in fact continuous or Lipschitz.

Example 1 (Sorting). Let Sort be a sorting program that 
takes in an array A of reals and returns a sorted permutation 
of A. As discussed in Section 1, Sort is 1-Lipschitz in input A and 
output A, because any -change to the initial value of A (defined 
using our metric on arrays) can produce at most an -change to 
its final value. Note that this means that Sort is continuous in 
input A and output A at every program state.

What if A was an array of integers? Continuity still holds in 
this case, but for more trivial reasons. Since A is of a discrete 
type, the only arbitrarily small perturbation that can be made 
to A is no perturbation at all. Obviously, the program output 
does not change in this case. However, reasoning about conti-
nuity turns out to be important even under these terms. This is 
apparent when we try to prove that Sort is 1-Lipschitz when A is 
an array of integers. The easiest way to do this is to “cast” the 
input type of the program into an array of reals and prove that 
the program is 1-Lipschitz even after this modification, and this 
demands a proof of continuity.

Example 2 (Shortest paths). Let SP be a correct implementa-
tion of a shortest path algorithm. We view the graph G on which 
SP operates as an array of reals such that G[i] is the weight of 
the i-th edge. An -change to G thus amounts to a maximum 
change of ± to any edge weight of G, while keeping the node and 
edge structure intact.

The output of SP is the array d of shortest path distances in 
G—that is, d[i] is the length of the shortest path from the source 
node to the i-th node ui of G. We note that SP is N-Lipschitz 
in input G and output d (N is the number of edges in G). This 
is because if each edge weight in G changes by an amount , 
a shortest path weight can change at most by N · .

On the other hand, suppose SP had a second output: an array p 
whose i-th element is a sequence of nodes forming a minimal-weight 
path between src and ui. An -change to G may add or subtract ele-
ments from p—that is, perturb p by the amount ∞. Therefore, SP is 
not K-Lipschitz with respect to the output p for any K.

Example 3 (Minimum spanning trees). Consider any algo-
rithm MST for computing a minimum-cost spanning tree in a 
graph G with real edge weights. Suppose MST has a variable c 
that holds, on termination, the cost of the minimum spanning 
tree. MST is N-Lipschitz (hence continuous everywhere) in the 
input G and the output c.

Example 4 (Knapsack). Consider the Knapsack problem from 
combinatorial optimization. We have a set of items {1,…, N}, 
each item i associated with a real cost c[i] and a real value v[i]. 
We also have a nonnegative, real-valued budget. The goal is 
to identify a subset Used ⊆ {1,…, N} such that the constraint 
SjŒUsed c[i] ≤ Budget is satisfied, and the value of totv = SjŒUsed v[i] 
is maximized.

Let our output variable be totv. As a perturbation can turn a 
previously feasible solution infeasible, a program Knap solving 
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Therefore, to make the problem more interesting, we 
assume that the input to Bubble Sort is an array of reals. As 
before, we model graphs by arrays of reals where each item 
represents the weight of an edge.

Given a program P, our task is to derive a syntactic con-
tinuity judgment for P, defined as a term b  Cont(P, In, Out), 
where b is a Boolean formula over Var, and In and Out are 
sets of variables of P. Such a judgment is read as “For each 
xi  In and xj  Out and each state s where b is true, P is 
 con tinuous in input xi and output xj at s.” We break down 
this task into the task of deriving judgments b  Cont(P¢, 
In, Out) for programs P¢ that are syntactic substructures of 
P. For example, if P is of the form “if b then P1 else P2,” then 
we recursively derive continuity judgments for P1 and P2.

Continuity judgments are derived using a set of syntactic 
proof rules—the rules can be converted in a standard way 
into an automated program analysis that iteratively assigns 
continuity judgments to subprograms. Figure 1 shows the 
most important of our rules; for the full set, see the original 
reference.2 To understand the syntax of the rules, consider 
the rule Base. This rule derives a conclusion b  Cont(P, In, 
Out), where b, In, and Out are arbitrary, from the premise that 
P is either “skip” or an assignment.

The rule Sequence addresses sequential composition 
of programs, generalizing the fact that the composition of 
two continuous functions is continuous. One of the prem-
ises of this rule is a Hoare triple of the form {b1}P{b2}. This 
is to be read as “For any state s that satisfies b1, P(s) satis-
fies b2. (A standard program verifier can be used to verify this 
premise.) The rule In-Out allows us to restrict or generalize 
the set of input and output variables with respect to which a 
continuity judgment is made.

The next rule—Ite—handles conditional statements, 
and is perhaps the most interesting of our rules. In a con-
ditional branch, a small perturbation to the input variables 
can cause control to flow along a different branch, leading 
to a syntactically divergent behavior. For instance, this hap-
pens in Lines 3–4 in the Bubble Sort algorithm in Figure 2— 
perturbations to items in A can lead to either behaviors  

this problem is discontinuous with respect to the input c and 
also with respect to the input Budget. At the same time, Knap is 
N-Lipschitz with respect to the input v: if the value of each item 
changes by ±, the value of totv can change by ±N.

Continuity and Lipschitz continuity can be used as defi-
nitions of robustness, a property that ensures that a program 
behaves predictably on uncertain inputs. Uncertainty, in 
this context, can be modeled by either nondeterminism (the 
value of x has a margin of error ±) or a probability distribu-
tion. For example, a robust embedded controller does not 
change its control decisions abruptly because of uncertainty 
in its sensor-derived inputs. The statistics computed by a 
robust scientific program are not much affected by mea-
surement errors in the input dataset.

Robustness has benefits even in contexts where a pro-
gram’s relationship with uncertainty is not adversarial. 
The input space of a robust program does not have iso-
lated “peaks”—that is, points where the program output is 
very different from outputs on close-by inputs. Therefore, 
we are more likely to cover a program’s behaviors using 
random tests if the program is robust. Also, robust com-
putations are more amenable to randomized and approxi-
mate program transformations20 that explore trade-offs 
between a program’s quality of results and resource con-
sumption. Transformations of this sort can be seen to 
deliberately introduce uncertainty into a program’s opera-
tional semantics. If the program is robust, then this extra 
uncertainty does not significantly affect its observable 
behavior, hence such a transformation is “safer” to per-
form. More details are available in our conference paper 
on robustness analysis.3

Now, if a program is Lipschitz, then we can give quantita-
tive upper bounds on the change to its behavior due to uncer-
tainty in its inputs, and further, this bound is small if the 
inputs are only slightly uncertain. Consequently, Lipschitz 
continuity is a rather strong robustness property. Continuity 
is a weaker definition of robustness—a program computing 
ex is continuous, even though it hugely amplifies errors in its 
inputs. Nonetheless, it captures freedom from a common 
class of robustness violations: those where uncertainty in 
the inputs alters a program’s control flow, and this change 
leads to a significant change in the program’s output.

3. PRoGRAM VERiFiCAtion
Now we present our automated framework for proving a 
program continuous2 or Lipschitz.3 Our analysis is sound—
that is, a program proven continuous or Lipschitz by our 
analysis is indeed continuous. However, as the analysis 
targets a Turing-complete language, it is incomplete—for 
example, a program may be continuous even if the analysis 
does not deem it so.

3.1. Verifying continuity
First we show how to verify the continuity of an Imp program. 
We use as running examples three of the most well-known 
algorithms of computing: Bubble Sort, the Bellman–Ford 
shortest path algorithm, and Dijkstra’s shortest path algo-
rithm (Figure 2). As mentioned in Example 1, a program 
is always continuous in input variables of discrete types. 

Figure 1. key rules in continuity analysis.
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of either “swapping A[i] and A[i + 1]” or  “leaving A 
unchanged.”

The core idea behind the rule Ite is to show that such a 
divergence does not really matter, because at the program 
states where arbitrarily small perturbations to the program 
variables can “flip” the value of the guard b of the condi-
tional statement (let us call the set of such states the bound-
ary of b), the branches of the conditional are arbitrarily close 
in behavior.

Precisely, let us construct from b the following formula:

Note that B (b) represents an overapproximation of the 
boundary of b. Also, for a set of output variables Out and 
a Boolean formula c, let us call programs P1 and P2 Out-
equivalent under c, and write c  (P1 ≡Out P2), if for each 
state s that satisfies c, the states P1(s) and P2(s) agree 
on the values of all variables in Out. We assume an oracle 
that can determine if c  (P1 ≡Out P2) for given c, P1, P2, and 
Out. In practice, such equivalence questions can often be 
solved fully automatically using modern automatic theo-
rem provers.19 Now, to derive a continuity judgment for a 
program “if b then P1 else P2” with respect to the outputs 
Out, Ite shows that P1 and P2 become Out-equivalent under 
the condition B (b).

The rule Loop derives continuity judgments for while-
loops. The idea here is to prove the body R of the loop 
continuous, then inductively argue that the entire loop is 
continuous too. In more detail, the rule derives a continu-
ity judgment c  Cont(R, X, X), where c is a loop invariant—
a property that is always true at the loop header—and X is 
a set of variables. Now consider any state s satisfying c. An 
arbitrarily small perturbation to this state leads to an arbi-
trarily small change in the value of each variable in X at the 
end of the first iteration, which only leads to an arbitrarily 
small change in the value of each variable in X at the end of 
the second iteration, and so on. Continuity follows.

Some subtleties need to be considered, however. An 
execution from a slightly perturbed state may terminate 
earlier or later than it would in the original execution. 
Even if the loop body is continuous, the extra iterations 
in either the modified or the original execution may cause 
the states at the loop exit to be very different. We rule out 
such scenarios by asserting a premise called synchronized 
termination. A loop “while b do R” fulfills this property 
with respect to a loop invariant c and a set of variables X, if 
B (b) ∧ c  R ≡x skip). Under this property, even if the loop 
reaches a state where a small perturbation can cause the 
loop to terminate earlier (similarly, later), the extra itera-
tions in the original execution have no effect on the pro-
gram state. We can ignore these iterations in our proof.

Second, even if the loop body is continuous in input xi and 
output xj for every xi, xj  X, an iteration may drastically change 
the value of program variables not in X. If there is a data flow 
from these variables to some variable in X, continuity will not 
hold. We rule out this scenario through an extra condition. 
Consider executions of P whose initial states satisfy a con-
dition c. We call a set of variables X of P separable under c if 
the value of each z  X on termination of any such execution 
is independent of the initial values of variables not in X. We 
denote the fact that X is separable in this way by c  Sep(P, X).

To verify that P is continuous in input xi and output xj at 
state s, we derive a judgment b  Cont(P, {xi}, {xj}), where b 
is true at s. The correctness of the method follows from the 
following soundness theorem:

Theorem 1. If the rules in Figure 1 can derive the judgment 
b  Cont(P, In, Out), then for all xi  In, xj  Out, and s such that 
b = true, P is continuous in input xi and output xj at s.

Example 5 (Warmup). Consider the program “if (x > 2) then  
x := x/2 else x := −5x + 11.” B(x > 2) equals (x = 2) and  
(x = 2)  (x := x/2) ≡{x} (x := −5x + 11). By Ite, the program is 
continuous in input x and output x.

Let us now use our rules on the algorithms in Figure 2.

Example 6 (Bubble Sort). Consider the implementation of 
Bubble Sort in Figure 2. (We assume it to be rewritten as a while-
program in the obvious way.) Our goal is to derive the judgment 
true  Cont(BubbleSort, {A}, {A}).

Let X = {A, i, j}, and let us write R〈p,q〉 to denote the 
code  fragment from line p to line q (both inclusive). Also, 
let us write c  Term(while b do R, X) as an abbreviation for  
B (b) ∧ c  (R ≡x skip).

BubbleSort (A : array of reals)
1 for j := 1 to (|A| − 1);
2    do for i := 1 to (|A| − 1);
3    do if (A[i] > A[i + 1])
4       then t := A[i]; A[i] := A[i + 1]; A[i + 1] := t;

BellmanFord(G : array of reals, src : int)
1 …
2 for i := 1 to (|G| − 1)
3    do for each edge (v, w) of G
4    do if d[v] + G(v, w) < d[w]
5        then d[w] := d[v] + G(v, w)

Dijkstra(G : array of reals, src : int)
1 …
2 while W ≠ /0
3    do choose edge (v, w)  W such that d[w] is minimal;
4      remove (v, w) from W;
5      if d[w] + G[w, v] < d[v]
6      then d[v] := d[w] + G[w, v]

Figure 2. Bubble sort, the Bellman-Ford algorithm, and Dijkstra’s 
algorithm.
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It is easy to show that true  Sep(BubbleSort, X) and 
true  Sep(R〈2,4〉, X). Each loop guard only involves discrete 
 variables, hence we derive true  Term(BubbleSort, X) and 
true  Term(R〈2,4〉, X).

Now consider R〈3,4〉. As B(A[i] > A[i + 1]) equals (A[i] = A[i + 1]) 
and (A[i] = A[i + 1])  (skip ≡ X R〈4,4〉), we have true  Cont(R〈3,4〉, X, 
X), then true  Cont(R〈2,4〉, X, X), and then true  Cont(BubbleSort, 
X, X). Now the In-Out rule derives the judgment we are after.

Example 7 (Bellman–Ford). Take the Bellman–Ford algo-
rithm. On termination, d[u] contains the shortest path distance 
from the source node src to the node u. We want to prove that 
true  Cont(BellmanFord, {G}, {d}).

We use the symbols R〈p,q〉 and Term as before. Clearly, we have 
true  Sep(R〈3,5〉, X) and true  Term(R〈3,5〉, X), where X = {G, v, w}. 
The two branches of the conditional in Line 4 are X-equivalent 
at B(d[v] + G(v, w) < d[w]), hence we have true =  Cont(R〈4,5〉, 
X, X), and from this judgment, true  Cont(R〈3,5〉, X, X). Similar 
arguments can be made about the outer loop. Now we can 
derive the fact true  Cont(BellmanFord, X, X); weakening, we 
get the judgment we seek.

Unfortunately, the rule Loop is not always enough for 
continuity proofs. Consider states s and s¢ of a continu-
ous program P, where s¢ is obtained by slightly perturb-
ing s. For Loop to apply, executions from s and s¢ must 
converge to close-by states at the end of each loop itera-
tion. However, this need not be so. For example, think of 
Dijkstra’s algorithm. As a shortest path computation, this 
program is continuous in the input graph G and the out-
put d—the array of shortest path distances. But let us look 
at its main loop in Figure 2.

Note that in any iteration, there may be several items w  
for which d[w] is minimal. But then, a slightly perturbed  initial 
value of d may cause a loop iteration to choose a different w, 
leading to a drastic change in the value of d at the end of 
the iteration. Thus, individual iterations of this loop are not 
continuous, and we cannot apply Loop.

In prior work,2 we gave a more powerful rule, called 
epoch induction, for proving the continuity of programs 
like the one above. The key insight here is that if we group 
some loop iterations together, then continuity becomes 
an inductive property of the groupings. For example, in 
Dijkstra’s algorithm, a “grouping” is a maximal set S of 
successive loop iterations that are tied on the initial 
value of d[w]. Let s0 be the program state before the first 
iteration in S is executed. Owing to arbitrarily small per-
turbations to s0, we may execute iterations in S in a very 
different order. However, an iteration that ran after the 
iterations in S in the original execution will still run after 
the iterations in S. Moreover, for a fixed s0, the program 
state, once all iterations in S have been executed, is the 
same, no matter what order these iterations were exe-
cuted in. Thus, a small perturbation cannot significantly 
change the state at the end of S, and the set of iterations S 
forms a continuous computation.

We have implemented the rules in Figure 1, as well 
as the epoch induction rule, in the form of a mostly-auto-
matic program analysis. Given a program, the analysis 
iterates through its control points, assigning continuity 

judgments to subprograms until convergence is reached. 
Auxiliary tasks such as checking the equivalence of two 
straight-line program fragments (needed by rule Ite) 
are performed automatically using the Z38 SMT-solver.  
Human intervention is expected in two forms. First, in 
applications of the epoch induction rule, we sometimes 
expect the programmer to write annotations that define 
appropriate “groupings” of iterations. Second, in case a 
complex loop invariant is needed for the proof (e.g., when 
one of the programs in a program equivalence query is 
a nested loop), the programmer is expected to supply it.  
There are heuristics and auxiliary tools that can be used 
to automate these steps, but our current system does not 
employ them.

Given the incompleteness of our proof rules, a natu-
ral empirical question for us was whether our system can 
verify the continuity of the continuous computing tasks 
described in Section  2. To answer this question, we chose 
several 13 continuous algorithms (including algorithms) 
over real and real array data types. Our system was able to 
verify the continuity of 11 of these algorithms, including 
the shortest path algorithms of Bellman-Ford, Dijkstra, 
and Floyd-Warshall; Merge Sort and Selection Sort in 
addition to Bubble Sort; and the minimum spanning tree 
algorithms of Prim and Kruskal. Among the algorithms 
we could not verify were Quick Sort. Please see Chaudhuri 
et al.2 for more details.

3.2. Verifying Lipschitz continuity
Now we extend the above verification framework to one for 
Lipschitz continuity. Let us fix variables xi and xj of the pro-
gram P respectively as the input and the output variable. To 
start with, we assume that xi and xj are of continuous data 
types—reals or arrays of reals.

Let us define a control flow path of a program P as 
the sequence of assignment or skip-statements that 
P  executes on some input (we omit a more formal defini-
tion). We note that since our arithmetic expressions are 
built from additions and multiplications, each control 
flow path of P encodes a continuous—in fact differen-
tiable—function of the inputs. Now suppose we can show 
that each control flow path of P is a K-Lipschitz compu-
tation, for some K, in input xi and output xj. This does 
not mean that P is K-Lipschitz in this input and output: 
a perturbation to the initial value of xi can cause P to 
execute along a different control flow path, leading to a 
drastically different final state. However, if P is continu-
ous and the above condition holds, then P is K-Lipschitz 
in input xi and output xj.

Our analysis exploits the above observation. To prove 
that P is K-Lipschitz in input xi and output xj, we estab-
lish that (1) P is continuous at all states in input xi and 
output xj and (2) each control flow path of P is K-Lipschitz 
in input xi and output xj. Of these, the first task is accom-
plished using the analysis from Section 3.1. To accomplish 
the second task, we compute a data structure—a set of 
Lipschitz matrices—that contains upper bounds on the 
slopes of any computation that can be carried out in a 
control flow path of P.
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appearing in e; if the variable xi does not appear in e, then 
perturbations to the initial value of xi have no effect on 
xi[m]. However, the remaining locations in xi are affected by, 
and only by, changes to the initial value of xi. Thus, we can 
view xi as being split into two “regions”—one consisting of 
xi[m] and the other of every other location—with  possibly 
 different Lipschitz constants. We track these constants 
using two different Lipschitz matrices J and J′. Here J is as in 
the rule Assign, while J′ is identical to the Lipschitz matrix 
for a hypothetical assignment xi := xi.

Sequential composition is handled by matrix multipli-
cation (rule Sequence)—the insight here is essentially the 
chain rule of differentiation. As mentioned earlier, the rule 
for conditional statements merges the Lipschitz matrices 
computed along the two branches. The Weaken rule allows 
us to overestimate a Lipschitz constant at any point.

The rule While derives Lipschitz matrices for while-
loops. Here Bound+ (P, M) is a premise that states that the 
symbolic or numeric constant M is an upper bound on the 
number of iterations of P—it is assumed to be inferred 
via an auxiliary checker.11 Finally, J M is shorthand for the 
 singleton set of matrix products {J1… JM :          Ji  J }. In cases 
where M is a symbolic bound, we will not be able to compute 
this product explicitly. However, in many practical cases, 
one can reduce it to a simpler manageable form using alge-
braic identities.

The While rule combines the rules for if-statements 
and sequential composition. Consider a loop P whose body 
R has Lipschitz matrix J. If the loop terminates in exactly M 
iterations, JM is a correct Lipschitz matrix for it. However, 
if the loop may terminate after M′ < M iterations, we require an 
extra property for JM to be a correct Lipschitz matrix: Ji ≤ Ji+1 
for all i < M. This property is ensured by the condition  

Figure 3. Rules for deriving Lipschitz matrices.
More precisely, let P have n variables named x1,…, xn, 

as before. A Lipschitz matrix J of P is an n × n matrix, each 
of whose elements is a function K : N → R≥0. Elements of J 
are represented either as numeric constants or as symbolic 
expressions (for example, N + 5), and the element in the 
i-th row and j-th column of J is denoted by J(i, j). Our analy-
sis associates P with setsJ of such matrices via judgments 
P: J. Such a judgment is read as follows: “For each control 
flow path C in P and each xi, xj, there is a J  J such that C is 
J(   j, i)-Lipschitz in input xi and output xj.”

The Lipschitz matrix data structure can be seen as a gener-
alization of the Jacobian from vector calculus. Recall that the 
Jacobian of a function f : Rn → Rn with inputs x1,…, xn  R and 
outputs x1′,…, xn′  R is the matrix whose (i, j)-th entry is  .  
If f is differentiable, then for each xi′ and xj, f is K-Lipschitz 
with respect to input xj and output xi′, where K is any upper 
bound on  . In our setting, each control flow path represents 
a differentiable function, and we can verify the Lipschitz conti-
nuity of this function by propagating a Jacobian along the path. 
On the other hand, owing to branches, the program P may 
not represent a differentiable, or even continuous, function.

However, note that it is correct to associate a condi-
tional statement “if b then P1 else P2” with the set of matri-
ces (J1 È J2), where the judgments P1 : J1 and P2 : J2 have 
been made inductively. Of course, this increases the num-
ber of matrices that we have to track for a subprogram. But 
the proliferation of such matrices can be curtailed using an 
approximation that merges two or more of them.

This merge operation  is defined as (  J1  J2)(i, j) = 
max(  J1(i, j ), J2(i, j ) ) for all J1, J2, i, j. Suppose we can correctly 
derive the judgment P : J. Then for any J1, J2  J, it is also 
correct to derive the judgment P : (J   \{J1, J2} È {J1  J2}). Note 
that this overapproximation may overestimate the Lipschitz 
constants for some of the control flow paths in P, but this is 
acceptable as we are not seeking the most precise Lipschitz 
constant for P anyway.

Figure 3 shows our rules for associating a set J of 
Lipschitz matrices with a program P. In the first rule Skip, 
I is the identity matrix. The rule is correct because skip is 
1-Lipschitz in input xi and output xi for all i, and 0-Lipschitz 
in input xi and output xj, where i ≠ j.

To obtain Lipschitz constants for assignments to variables 
(rule Assign), we must quantify the way the value of an arith-
metic expression e changes when its inputs are changed. 
This is done by computing a vector ∇e whose i-th element is an 
upper bound on   . In more detail, we have

Assignments xi[m] := e to array locations are slightly trick-
ier. The location xi[m] is affected by changes to variables 
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∀i, j: J(i, j) = 0 ∨ J(i, j) ≥ 1. Note that in the course of a proof, 
we can weaken any Lipschitz matrix for the loop body to a 
matrix J of this form.
We can prove the following soundness theorem:

Theorem 2. Let P be continuous in input xi and output xj . If 
the rules in Figure 3 derive the judgment P : {J}, then P is J(j, i)-
Lipschitz in input xi and output xj.

Example 8 (Warmup). Recall the program “if (x > 2) then 
x := x/2 else x := −5x + 11” from Example 5 (x is a real). Our rules 
can associate the left branch with a single Lipschitz matrix 
containing a single entry , and the right branch with a single 
matrix containing a single entry 5. Given the continuity of the 
program, we conclude that the program is 5-Lipschitz in input 
x and  output x.

Example 9 (Bubble Sort). Consider the Bubble Sort algo-
rithm (Figure 2) once again, and as before, let R〈p,q〉 denote the 
code fragment from line p to line q. Let us set x0 to be A and x1 
to be t. 

Now, let . From the rules in Figure 3, we can derive 
(t := A[i]) : { J}, (A[i ] := A[i + 1]) : {I}, and (A[i + 1] := t) : {J, I}.

Carrying out the requisite matrix multiplications, we get 
R〈4,4〉 : {J}. Using the rule Ite, we have R〈3,4〉 : {I, J}. Now, it 
is easy to show that R〈3,4〉 gets executed N times, where N 
is the size of A. From this we have R〈2,4〉 : {I, J}N. Given that 
J2 = IJ = JI = J, this is equivalent to the judgment R〈2,4〉 : {I, J}. 
From this, we derive BubbleSort : {J, I}. Given the proof of con-
tinuity carried out in Example 1, Bubble Sort is 1-Lipschitz in 
input A and output A.

Intuitively, the reason why Bubble Sort is so robust is that 
here, (1) there is no data flow from program points where arith-
metic operations are carried out to points where values are 
assigned to the output variable and (2) continuity holds every-
where. In fact, one can formally prove that any program that 
meets the above two criteria is 1-Lipschitz. However, we do not 
develop this argument here.

Example 10 (Bellman–Ford; Dijkstra). Let us consider 
the Bellman–Ford algorithm (Figure 2) once again, and let x0 
be G and x1 be d. Consider line 5 (i.e., the program R〈5,5〉); our 
rules can assign to this program the Lipschitz matrix J, where 

. With a few more derivations, we obtain R〈4,5〉 : {J}. 
Using the rule for loops, we have R〈3,5〉 : {JN}, where N is the 
number of edges in G, and then BellmanFord : {JN2}. But note 
that

Combing the above with the continuity proof in Example 7, we 
decide that the Bellman–Ford algorithm is N2-Lipschitz in input 
G and output d.

Note that the Lipschitz constant obtained in the above 
proof is not the optimal one—that would be N. This is an 
instance of the gap between truth and provability that is the 
norm in program analysis. Interestingly, our rules can derive 
the optimal Lipschitz constant for Dijkstra’s algorithm. Using 

the same reasoning as above, we assign to the main loop of the 
algorithm the single Lipschitz matrix J. Applying the Loop rule, 
we derive

Given that the algorithm is continuous in input G and output d, 
it is N-Lipschitz in input G and output d.

Let us now briefly consider the case when the input and 
output variables in our program are of discrete type. As 
a program is trivially continuous in every discrete input, 
continuity is not a meaningful notion in such a setting. 
Therefore, we focus on the problem of verifying Lipschitz 
continuity—for example, showing that the Bubble Sort algo-
rithm is 1-Lipschitz even when the input array A is an array 
of integers.

An easy solution to this problem is to cast the array A into 
an array A* of reals, and then to prove 1-Lipschitz continuity 
of the resultant program in input A* and output A*. As any 
integer is also a real, the above implies that the original algo-
rithm is 1-Lipschitz in input A and output A. Thus, reals are 
used here as an abstraction of integers, just as (unbounded) 
integers are often used in program verification as abstrac-
tions of bounded-length machine numbers.

Unsurprisingly, this strategy does not always work. 
Consider the program “if (x > 0) then x := x + 1 else skip,” 
where x is an integer. This program is 2-Lipschitz. Its 
“slope” is the highest around initial states where x = 0: if 
the initial value of x changes from 0 to 1, the final value of 
x changes from 0 to 2. At the same time, if we cast x into a 
real, the resultant program is discontinuous and thus not 
K-Lipschitz for any K.

It is possible to give an analysis of Lipschitz continu-
ity that does not suffer from the above issue. This analy-
sis casts the integers into reals as mentioned above, then 
calculates a Lipschitz matrix of the resultant program; 
however, it checks a property that is slightly weaker than 
continuity. For lack of space, we do not go into the details 
of the analysis here.

We have extended our implementation of continuity 
analysis with the verification method for Lipschitz continu-
ity presented above, and applied the resulting system to the 
suite of 13 algorithms mentioned at the end of Section 3.1. 
All these algorithms were either 1-Lipschitz or N-Lipschitz. 
Our system was able to compute the optimal Lipschitz 
constant for 9 of the 11 algorithms where continuity could 
be verified. In one case (Bellman-Ford), it certified an 
N-Lipschitz computation as N2-Lipschitz.  The one example 
on which it fared poorly was the Floyd-Warshall shortest 
path algorithm, where the best Lipschitz constant that it 
could compute was exponential in N3.

4. RELAtED WoRk
So far as we know, we were the first2 to propose a frame-
work for continuity analysis of programs. Before us, 
Hamlet12 advocated notions of continuity of software; 
however, he concluded that “it is not possible in practice 
to mechanically test for continuity” in the presence of 
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loops. Soon after our first paper on this topic (and before 
our subsequent work on Lipschitz continuity of pro-
grams), Reed and Pierce18 gave a type system that can ver-
ify the Lipschitz continuity of functional programs. This 
system can seamlessly handle functional data structures 
such as lists and maps; however, unlike our method, it 
cannot reason about discontinuous control flow, and 
would consider any program with a conditional branch 
to have a Lipschitz constant of ∞.

More recently, Jha and Raskhodnikova have taken a prop-
erty testing approach to estimating the Lipschitz constant 
of a program. Given a program, this method determines, 
with a level of probabilistic certainty, whether it is either 
1-Lipschitz or -far (defined in a suitable way) from being 
1-Lipschitz. While the class of programs allowed by the 
method is significantly more restricted than what is investi-
gated here or by Reed and Pierce 13, the appeal of the method 
lies in its crisp completeness guarantees, and also in that it 
only requires blackbox access to the program.

Robustness is a standard correctness property in control 
theory,16, 17 and there is an entire subfield of control study-
ing the design and analysis of robust controllers. However, 
the systems studied by this literature are abstractly defined 
using differential equations and hybrid automata rather 
than programs. The systematic modeling and analysis of 
robustness of programs was first proposed by us in the con-
text of general software, and by Majumdar and Saha14 in the 
context of control software.

In addition, there are many efforts in the abstract inter-
pretation literature that, while not verifying continuity or 
robustness explicitly, reason about the uncertainty in a pro-
gram’s behavior due to floating-point rounding and sensor 
errors.6, 7, 10 Other related literature includes work on auto-
matic differentiation (AD),1 where the goal is to transform 
a program P into a program that returns the derivative of P 
where it exists. Unlike the work described here, AD does not 
attempt verification—no attempt is made to certify a pro-
gram as differentiable or Lipschitz.

5. ConCLuSion
In this paper, we have argued for the adoption of analyt-
ical properties like continuity and Lipschitz continuity 
as correctness properties of programs. These properties 
are relevant as they can serve as useful definitions of 
robustness of programs to uncertainty. Also, they raise 
some fascinating technical issues. Perhaps counterin-
tuitively, some of the classic algorithms of computer 
science satisfy continuity or Lipschitz continuity, and 
the problem of systematic reasoning about these prop-
erties demands a nontrivial combination of analytical 
and logical insights.

We believe that the work described here is a first step 
toward an extension of the classical calculus to a symbolic 
mathematics where programs form a first-class represen-
tation of functions and dynamical systems. From a practi-
cal perspective, this is important as physical systems are 
increasingly controlled by software, and as even applied 
mathematicians increasingly reason about functions that 
are not written in the mathematical notation of textbooks, 

but as code. Speaking more philosophically, the classical 
calculus focuses on the computational aspects of real anal-
ysis, and the notation of calculus texts has evolved primar-
ily to facilitate symbolic computation by hand. However, in 
our era, most mathematical computations are carried out 
by computers, and a calculus for our age should not ignore 
the notation that computers can process most easily: pro-
grams. This statement has serious implications—it opens 
the door not only to the study of continuity or derivatives 
but also to, say, Fourier transforms, differential equations, 
and mathematical optimization of code. Some efforts in 
these directions4, 5, 9 are already under way; others will no 
doubt appear in the years to come.
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