
DR
AF
T
7.
1

P1788/D7.1
Draft Standard For Interval Arithmetic

John Pryce and Christian Keil, Technical Editors

DR
AF
T
7.
1

DR
AF
T
7.
1

Frontmatter

Required IEEE items to be added:

– Draft copyright statements
– Title
– Abstract and keywords
– Committee lists
– Acknowledgments (after the Introduction)

4! To the P1788 working group reader.

General. Passages in this color are my editorial comments: mostly asking for answers to or debate
on a question; or giving my opinion; or noting changes made.

Introduction

This introduction explains some of the alternative interpretations, and sometimes competing
objectives, that influenced the design of this standard, but is not part of the standard.

Mathematical context. Interval computation is a collaboration between human program-
mer and machine infrastructure which, correctly done, produces mathematically proven numerical
results about continuous problems—for instance, rigorous bounds on the global minimum of a
function or the solution of a differential equation. It is part of the discipline of “constructive real
analysis”. In the long term, the results of such computations may become sufficiently trusted to be
accepted as contributing to legal decisions. The machine infrastructure acts as a body of theorems
on which the correctness of an interval algorithm relies, so it must be made as reliable as is prac-
tical. In its logical chain are many links—hardware, underlying floating-point system, etc.—over
which this standard has no control. The standard aims to strengthen one specific link, by defining
interval objects and operations that are theoretically well-founded and practical to implement.

This document uses the standard notation [a, b] for “the interval between numbers a and
b”, with various detailed meanings depending on the underlying theory. The “classical” interval
arithmetic (IA) of R.A. Moore [5] uses only bounded, closed, nonempty intervals in the real numbers
R—that is, [a, b] = {x ∈ R | a ≤ x ≤ b } where a, b ∈ R with a ≤ b. So, for instance, division by an
interval containing 0 is not defined in it. It was agreed early on that this standard should strictly
extend classical IA in virtue of allowing an interval to be unbounded or empty.

Beyond this, various extensions of classical IA were considered. One choice that distinguishes
between theories is: Are arithmetic operations purely algebraic, or do they involve topology? An
example of the latter is containment set (cset) theory [8], which extends functions over the reals to
functions over the extended reals, e.g. sin(+∞) is the set of all possible limits of sinx as x→ +∞,
which is [−1, 1]. The complications of this were deemed to outweigh the advantages, and it was
agreed that operations should be purely algebraic.

Another choice is: Is an interval a set—a subset of the number line—or is it something dif-
ferent? The most widely used forms of IA are set-based and define an interval to be a set of
real numbers. They have established software to find validated solutions of linear and nonlinear
algebraic equations, optimization problems, differential equations, etc.

However Kaucher IA and the nearly equivalent modal IA have significant applications. In
the former an interval is formally a pair (a, b) of real numbers, which for a ≤ b is “proper” and
identified with the normal interval {x ∈ R | a ≤ x ≤ b }, and for a > b is “improper”. In the latter,
an interval is a pair (X,Q) where X is a normal interval and Q is a quantifier, either ∃ or ∀. At the
time of writing it finds commercial use in the graphics rendering industry. Both forms are referred
to as Kaucher IA henceforth.

In view of their significance it was decided to support both set-based and Kaucher IA. Because
of their different mathematical bases this led to the concept of flavors (see Clause 7). A flavor is
a version of IA that extends classical IA in a precisely defined sense, such that when only classical
intervals and restricted operations are used (avoiding, e.g., division by an interval containing zero),
all flavors produce the same results, at the mathematical level and also—up to roundoff—in finite
precision.

iii

DR
AF
T
7.
1

Currently the standard incorporates two flavors, set-based and Kaucher. Others could be
added, though there are no current plans to do so. E.g., csets could be a flavor, since they also
extend classical IA in the defined sense.

To minimize complexity, the standard for each flavor is presented as a separate sub-document
within the overall standard, readable as a self-contained unit without reference to other flavors,
and with common clauses that specify how a flavor extends classical IA.

The set-based flavor is presented first, on the grounds that it is relatively easy to grasp, easy
to teach, and easy to interpret in the context of real-world applications. In this theory:

– Intervals are sets.
– They are subsets of the set R of real numbers. At the mathematical level (Level 1 in the structure

defined in §??) they are precisely all topologically closed and connected subsets of R. The finite-
precision level (Level 2), uses the notion of an interval type, which is a finite set of Level 1
intervals.

– The interval version of an elementary function such as sinx is essentially the natural algebraic
extension to sets of the corresponding pointwise function on real numbers.

Fuzzy sets, like intervals, are a way to handle uncertain knowledge, and the two topics are
related. However, considering this relation was beyond the scope of this project.

Specification Levels. The 754-2008 standard describes itself as layered into four Specifica-
tion Levels. To manage complexity, the present standard uses a corresponding structure. It deals
mainly with Level 1, of mathematical interval theory, and Level 2, the finite set of interval datums
in terms of which finite-precision interval computation is defined. It has some concern with Level 3,
of representations of intervals as data structures; and none with Level 4, of bit strings and memory.

There is another important player: the programming language. It was a recognized omission
of IEEE-754-1985 that it specified individual operations but not how they should be used in ex-
pressions. Optimizing compilers have, since well before that standard, used clever transformations
so that it is impossible to know the precisions used and the roundings performed while evaluating
an expression, or whether the compiler has even “optimized away” (1.0 + x)− 1.0 to become sim-
ply x. IEEE-754-2008 specifies this by placing requirements on how operations should be used in
expressions, though as of this writing, few programming languages have adopted that.

The lack of any restrictions is also a problem for intervals. Thus the standard makes re-
quirements and recommendations on language implementations, thereby defining the notion of a
standard-conforming implementation of intervals within a language.

The language does not constitute a fifth level in some linear sequence; from the user’s viewpoint
most current languages sit above datum level 2, alongside theory level 1, as a practical means
to implement interval algorithms by manipulating Level 2 entities (though most languages have
influence on Levels 3 and 4 also). This standard extends them to provide an instantiation of level
2 entities.

The Fundamental Theorem. Moore’s [5] Fundamental Theorem of Interval Arithmetic
(FTIA) is central to interval computation. Roughly, it says as follows. Let f be an explicit
arithmetic expression—that is, it is built from finitely many elementary functions (arithmetic
operations) such as +,−,×,÷, sin, exp, . . ., with no non-arithmetic operations such as intersection,
so that it defines a real function f(x1, . . . , xn). Then evaluating f “in interval mode” over any
interval inputs (x1, . . . ,xn) is guaranteed to give an enclosure of the range of f over those inputs.

A version of the FTIA holds in all variants of interval theory, but with varying hypotheses
and conclusions. In the context of this standard, an expression should be evaluated entirely in one
flavor, and inferences made strictly from that flavor’s FTIA; otherwise, a user may believe an FTIA
holds in a case where it does not, with possibly serious effects in applications. As stated, the FTIA
is about the mathematical level. Moore’s achievements were to see that “outward rounding” makes
the FTIA hold also in finite precision, and to follow through the consequences. An advantage of
the level structure used by the standard is that the mapping between levels 1 and 2 defines a
framework where it is easily proved that

The finite-precision FTIA holds in any conforming implementation.

Generally it can only be determined a posteriori whether the conditions for any version of the
FTIA hold; this is an important application of the standard’s decoration system.

iv

DR
AF
T
7.
1

For each flavor in the standard, its subdocument must state precisely the form of the FTIA it
obeys, both at the mathematical level 1 and at the finite-precision level 2.

Operations.
There are several interpretations of evaluation outside an operation’s domain and operations

as relations rather than functions. This includes classical alternative meanings of division by an
interval containing zero, or square root of an interval containing negative values. To illustrate the
different interpretations, consider y =

√
x where x = [−1, 4].

(1) In optimization, when computing lower bounds on the objective function, it is generally appro-
priate to return the result y = [0, 2], and ignore the fact that

√
· has been applied to negative

elements of x.
(2) In applications where one must check the hypotheses of a fixed point theorem are satisfied (such

as solving differential equations):
(a) one may need to be sure that the function is defined and continuous on the input and,

hence, report an illegal argument when, as in the above case, this fails; or
(b) one may need the result y = [0, 2], but must flag the fact that

√
· has been evaluated at

points where it is undefined or not continuous.
(3) In constraint propagation, the equation is often to be interpreted as: find an interval enclosing

all y such that y2 = x for some x ∈ [−1, 4]. In this case the answer is [−2, 2].

The standard provides means to meet these diverse needs, while aiming to preserve clarity and
efficiency. A language might achieve this by binding one of the above three interpretations—usually
some variant of (2)—to its built-in operations, and providing the others as library procedures.

In the context of flavors, a key idea is that of common operation instances: those elementary
interval calculations that at the mathematical level are required to give the same result in all
flavors. For example [1, 2]/[3, 4] = [1/4, 2/3] is common, while division by an interval containing
zero is not common.

Decorations.
Many interval algorithms are only valid if certain mathematical conditions are satisfied: for

instance one may need to know that a function, defined by an expression, is everywhere continuous
on a box in Rn defined by n input intervals x1, . . . ,xn. The IEEE 754 model of global flags to
record events such as division by zero was considered inadequate in an era of massively parallel
processing. In this standard, such events are recorded locally by decorations.

A decorated interval is an ordinary interval tagged with a few bits that encode the decoration,
and record while evaluating an expression, e.g., “each elementary function was defined and con-
tinuous on its inputs”—which implies the same for the function defined by the whole expression.
This makes possible a rigorous check of properties such as listed in item (2) of §. A small number
of decorations is provided, designed for efficient propagation of such property information.

Care was taken to meet different user needs. Bare (undecorated) intervals are available for
simple use without validity checks. Decorated intervals are recommended for serious programming,
but suffer the “17-byte problem”: a typical bare interval stored as two doubles takes up 16 bytes,
so a decorated one needs at least 17 bytes. With large problems on typical machine architectures
this may cause inefficiencies—in data throughput if storing 17-byte data structures, or in storage if
one pads the structure to, say, 32 bytes. Hence an optional compressed decorated interval scheme
is specified, for advanced use. It aims to give the speed of 16-byte objects, at a cost in flexibility
but supporting applications such as checking whether a function is defined and continuous on its
inputs.

v

DR
AF
T
7.
1

DR
AF
T
7.
1

Contents

Frontmatter iii
Introduction iii
Mathematical context iii
Specification Levels iv
The Fundamental Theorem iv
Operations v
Decorations v

Chapter 1. General Requirements 1
1. Overview 1
1.1. Scope 1
1.2. Purpose 1
1.3. Inclusions 1
1.4. Exclusions 1
1.5. Word usage 1
1.6. The meaning of conformance 2
1.7. Programming environment considerations 2
1.8. Language considerations 2
2. Normative references 3
3. Conformance Clause 4
3.1. Set-based interval arithmetic 4
3.2. Kaucher interval arithmetic 5
4. Notation, abbreviations, definitions 6
4.1. Frequently used notation and abbreviations 6
4.2. Definitions 6
5. Structure of the standard in levels 8
6. Expressions and the functions they define 9
7. Flavors 11
7.1. Flavors overview 11
7.2. Definition of common intervals and common evaluations 11
7.3. Loose common evaluations 12
7.4. Relation of common evaluations to flavors 12
7.5. Flavors and the Fundamental Theorem 13
8. Decoration system 13
8.1. Decorations overview 13
8.2. Decoration definition and propagation 14
8.3. Recognizing common evaluation 14

Chapter 2. Set-Based Intervals 17
9. Level 1 description 17
9.1. Non-interval Level 1 entities 17
9.2. Intervals 17
9.3. Hull 18
9.4. Functions 18
9.4.1. Function terminology 18
9.4.2. Point functions 18
9.4.3. Interval-valued functions 18

vii

DR
AF
T
7.
1

9.4.4. Constants 19
9.5. Expressions 19
9.6. Required operations 20
9.6.1. Interval literals 20
9.6.2. Interval constants 20
9.6.3. Forward-mode elementary functions 20
9.6.4. Interval case expressions and case function 20
9.6.5. Reverse-mode elementary functions 22
9.6.6. Cancellative addition and subtraction 23
9.6.7. Non-arithmetic (set) operations 23
9.6.8. Constructors 24
9.6.9. Numeric functions of intervals 24
9.6.10. Boolean functions of intervals 24
9.6.11. Dot product function 25
9.7. Recommended operations (optional) 26
9.7.1. Forward-mode elementary functions 26
9.7.2. Extended interval comparisons 26
9.7.3. Slope functions 27
10. The decoration system at Level 1 30
10.1. Decorations and decorated intervals overview 30
10.2. Definitions and basic properties 30
10.3. The ill-formed interval 31
10.4. Permitted combinations 31
10.5. Initial decoration 31
10.6. Decorations and arithmetic operations 32
10.7. Decorations and non-arithmetic operations 32
10.8. Boolean functions of decorated intervals 33
10.9. Operations on decorations 33
10.10. User-supplied functions 33
10.11. The com decoration 34
10.12. Compressed arithmetic with a threshold (optional) 35
10.12.1. Motivation 35
10.12.2. Compressed interval types 35
10.12.3. Operations 36
11. Level 2 description 37
11.1. Level 2 introduction 37
11.2. Naming conventions for operations 37
11.3. 754-conformance 37
11.3.1. 754-conforming mixed-type arithmetic 38
11.4. Tagging, and the meaning of equality at Level 2 38
11.5. Number formats 39
11.6. Bare interval types 39
11.6.1. Definition 39
11.6.2. Inf-sup and mid-rad types 40
11.7. Multi-precision interval types 40
11.8. Explicit and implicit types, and Level 2 hull operation 40
11.8.1. Hull in one dimension 40
11.8.2. Hull in several dimensions 41
11.8.3. Interval type conversion 41
11.9. Level 2 interval extensions 41
11.10. Accuracy requirements 41
11.10.1. Measures of accuracy 41
11.10.2. Documentation requirements 42
11.10.3. Recommended accuracies 42
11.11. Required operations on bare intervals 43
11.11.1. Interval literals 44

viii

DR
AF
T
7.
1

11.11.2. Interval constants 45
11.11.3. Forward-mode elementary functions 45
11.11.4. Interval case expressions and case function 45
11.11.5. Reverse-mode elementary functions 45
11.11.6. Cancellative addition and subtraction 46
11.11.7. Set operations 46
11.11.8. Constructors 46
11.11.9. Numeric functions of intervals 47
11.11.10. Boolean functions of intervals 47
11.11.11. Complete arithmetic, dot product function 48
11.12. Recommended operations 48
12. The decoration system at Level 2 48
12.1. Decorated interval types 48
12.2. Required decorated types 48
12.3. Decorated versions of an operation 48
12.4. Required operations on decorated intervals 49
12.4.1. Interval literals 49
12.4.2. Interval constants 49
12.4.3. Forward-mode elementary functions 49
12.4.4. Interval case expressions and case function 49
12.4.5. Interval-valued non-arithmetic operations 49
12.4.6. Constructors 49
12.4.7. Numeric functions of intervals 49
12.4.8. Boolean functions of intervals 49
12.5. Compressed arithmetic at Level 2 50
13. Input and output (I/O) of intervals 51
13.1. Overview 51
13.2. Input 51
13.3. Output 51
13.4. Public representation 52
13.5. Representations 53
13.6. Rationale for defined hulls, text representation, and reproducibility 53
13.6.1. The hull 53
13.6.2. Standardised text representation 53
13.6.3. Reproducibility 54
14. Level 3 description 55
14.1. Representation of intervals by lower/upper bounds 55
14.2. Format conversion 55
14.3. Interchange formats 55
14.4. Support levels for interval elementary functions 55
14.5. Operation tables for basic interval operations 56
14.6. Care needed with innerPlus and innerMinus 58
14.7. Implementation of bare object arithmetic 58
15. Level 4 description 59

Chapter 3. Kaucher Intervals 61

Annex A. Details of flavor-independent requirements 63
16. List of required functions 63
17. List of recommended functions 63

Annex B. Including a new flavor in the standard 65

Annex C. Reproducibility 67

Annex D. Set-based flavor: decoration details and examples 69
18. Local decorations of arithmetic operations 69
18.1. Forward-mode elementary functions 69

ix

DR
AF
T
7.
1

18.2. Interval case function 69
19. Examples of use of decorations 69
20. Implementation of compressed interval arithmetic 72
21. Proofs of correctness for compressed interval arithmetic 73
22. The fundamental theorem of decorated interval arithmetic 74

Annex E. Further material for set-based standard (informative) 77
23. Type conversion in mixed operations 77
24. The “Not an Interval” object 77

Bibliography 79

x

DR
AF
T
7.
1

CHAPTER 1

General Requirements

1. Overview

1.1. Scope. This standard specifies basic interval arithmetic (IA) operations selecting and
following one of the commonly used mathematical interval models. This standard supports the
IEEE-754-2008 floating point formats of practical use in interval computations. Exception con-
ditions are defined and standard handling of these conditions is specified. Consistency with the
model is tempered with practical considerations based on input from representatives of vendors
and owners of existing systems.

The standard provides a layer between the hardware and the programming language levels.
It does not mandate that any operations be implemented in hardware. It does not define any
realization of the basic operations as functions in a programming language.

1.2. Purpose. The aim of the standard is to improve the availability of reliable computing
in modern hardware and software environments by defining the basic building blocks needed for
performing interval arithmetic. There are presently many systems for interval arithmetic in use;
lack of a standard inhibits development, portability; ability to verify correctness of codes.

1.3. Inclusions. This standard specifies

– Types for interval data based on underlying numeric formats, with a special class of type derived
from IEEE 754 floating point formats.

– Constructors for intervals from numeric and character sequence data.
– Addition, subtraction, multiplication, division, fused multiply add, square root; other interval-

valued operations for intervals.
– Midpoint, radius and other numeric functions of intervals.
– Interval comparison relations.
– Required elementary functions.
– Conversions between different interval types.
– Conversions between interval types and external representations as character sequences.
– Interval-related exceptions and their handling.

1.4. Exclusions. This standard does not specify

– Which numeric formats supported by the underlying system shall have an associated interval
type.

– Details of how an implementation represents intervals at the level of programming language data
types, or bit patterns.

1.5. Word usage.
In this standard three words are used to differentiate between different levels of requirements

and optionality, as follows:

– may indicates a course of action permissible within the limits of the standard with no implied
preference (“may” means “is permitted to”);

– shall indicates mandatory requirements strictly to be followed in order to conform to the stan-
dard and from which no deviation is permitted (“shall” means “is required to”);

– should indicates that among several possibilities, one is recommended as particularly suitable,
without mentioning or excluding others; or that a certain course of action is preferred but not
necessarily required; or that (in the negative form) a certain course of action is deprecated but
not prohibited (“should” means “is recommended to”).

Further:

1

DR
AF
T
7.
1

Chapter 1
P1788/D7.1, April 2, 2013

Draft Standard For Interval Arithmetic §1.8

– optional indicates features that may be omitted, but if provided shall be provided exactly as
specified.

– might indicates the possibility of a situation that could occur, with no implication of the like-
lihood of that situation (“might” means “could possibly”);

– see followed by a number is a cross-reference to the clause or subclause of this standard identified
by that number;

– comprise indicates members of a set are exactly those objects having some property, e.g. “the set
of mathematical intervals comprises the closed, connected subsets of R”; an unqualified consist
of merely asserts all members of a set have some property, e.g. “a binary floating point format
consists of numbers with a terminating binary representation”. “Comprises” means “consists
exactly of”.

– Note and Example introduce text that is informative (is not a requirement of this standard).

1.6. The meaning of conformance. §3 lists the requirements on a conforming implemen-
tation in summary form, with references to where these are stated in detail.

1.7. Programming environment considerations.
This standard does not define all aspects of a conforming programming environment. Such

behavior should be defined by a programming language definition supporting this standard, if
available; otherwise by a particular implementation. Some programming language specifications
might permit some behaviors to be defined by the implementation.

Language-defined behavior should be defined by a programming language standard sup-
porting this standard. Standards for languages intended to reproduce results exactly on all plat-
forms are expected to specify behavior more tightly than do standards for languages intended to
maximize performance on every platform.

Because this standard requires facilities that are not currently available in common program-
ming languages, the standards for such languages might not be able to fully conform to this
standard if they are no longer being revised. If the language can be extended by a function library
or class or package to provide a conforming environment, then that extension should define all the
language-defined behaviors that would normally be defined by a language standard.

Implementation-defined behavior is defined by a specific implementation of a specific
programming environment conforming to this standard. Implementations define behaviors not
specified by this standard nor by any relevant programming language standard or programming
language extension. Conformance to this standard is a property of a specific implementation of a
specific programming environment, rather than of a language specification. However a language
standard could also be said to conform to this standard if it were constructed so that every
conforming implementation of that language also conformed automatically to this standard.

1.8. Language considerations. All relevant languages are based on the concepts of data
and transformations. In Von Neumann languages, data are held in variables, which are transformed
by assignment. In functional languages, input data are supplied as arguments; the transformed
form is returned as results. Dataflow languages vary considerably, but use some form of the data
and transformation approach.

Similarly, all relevant languages are based on the concept of mapping the pseudo-mathematical
notation that is the program code to approximate real arithmetic, nowadays almost exclusively
using some form of floating-point. The unit of mapping and transformation can be individual
operations and built-in functions, expressions, statements, complete procedures, or other. This
standard is applicable to all of these.

The least requirement on a conforming language standard, compiler or interpreter is that it
shall:

(1) define bindings so that the programmer can specify level 2 data (in the sense of the levels
defined in §??) as described in this standard;

(2) define bindings so that the programmer can specify the operations on such data as described
in this standard;

(3) define any properties of such data and operations that this standard requires to be defined;

2 April 2, 2013

DR
AF
T
7.
1

Chapter 1
P1788/D7.1, April 2, 2013

Draft Standard For Interval Arithmetic §2.0

(4) honor the rules of interval transformations on such data and operations as described in this
standard; such units of transformation that the language standard, compiler or interpreter
uses.

Specifically, if the data before and after the unit of transformation are regarded as sets of
mathematical intervals, the transformed form of all combinations of the elements (the real values)
represented by the prior set shall be a member of the posterior set.

If a conforming language standard supports reproducible interval arithmetic it shall also:

(5) Use the data bindings as specified in point (1) above for reproducible operations;
(6) Define bindings to the reproducible operations as described in this standard;
(7) Define any modes and constraints that the programmer needs to specify or obey in order to

obtain reproducible results.

If a conforming language standard supports both non-reproducible and reproducible interval
arithmetic it shall also:

(8) Permit a reproducible transformation unit to be used as a component in a non-reproducible
program, possibly via a suitable wrapping interface.

2. Normative references

1. IEEE Std 754-2008. IEEE Standard for Floating-Point Arithmetic.

3 April 2, 2013

DR
AF
T
7.
1

Chapter 1
P1788/D7.1, April 2, 2013

Draft Standard For Interval Arithmetic §3.2

3. Conformance Clause

4! This should probably moved to an earlier place in the standard. It might be put before all the
normative things, which are referenced thereafter. Thus with normative notations it would be Chapter
1 Section 3.

To conform to OASIS Conformance Requirements for Specifications version 0.5, 1 March 2002
we have to do the following things in essence:

X provide a conformance clause—we are doing this right now
X use the proper conformance keywords—as long as we are adhering to §1.5 this is covered.
• address all topics in section 8 of the OASIS requirements
X (8.1) Specify what conforms—an implementation of an interval arithmetic program-

ming environment
X (8.1.1) Modularity of the conformance—We don’t have different components that

individually have to conform.
◦ (8.1.2) Specifying conformance claims—We don’t have different levels of conformance
– (8.2) Profiles and levels—the flavors look like profiles
– (8.3) Extensions—probably none
– (8.4) Discretionary items—implementation defined things
– (8.5) Deprecated things—not yet
– (8.6) Internationalization—english is normative, we have some characteristics for

languages which might be interesting here
• examine and if appropriate address all things in section 9

– (9.1) Implementation Conformance Statement—this might be relevant to register
implementation defined points

– (9.2) Test assertions—probable connection to the test suite
– (9.3) Testing methodology/program

Things to consider

• a language definition may be supporting the standard, an implementation may be con-
forming - may we have different objects that may be the object of the standard after all,
see §1.7

• an implementation might also be a library, class or package
• a reproducibility mode might look like a level? at least it is a kind of quality of the

implementation
• perhaps we have to clarify (here?) the difference between conformance levels and the

levels structure—if necessary add something to the definitions.
• flavors

– shall provide at least one
– may provide additional
– flavors following common evaluation on common intervals

An implementation of an interval arithmetic programming environment that conforms to this
standard shall satisfy the following requirements

• flavor-independent requirements

A conforming implementation shall also provide at least one of the following profiles1, defined
in Clause 7, called included flavors of interval arithmetic in the context of this standard. In addition
it may also provide additional flavors that

• shall provide the required operations in Clause 16;
• should provide the recommended operations in Clause 17;
• shall provide common evaluations on common intervals as specified in §7.4.

3.1. Set-based interval arithmetic. An implementation of the set-based flavor shall satisfy
the following requirements

• set-based requirements

1maybe drop this term?

4 April 2, 2013

DR
AF
T
7.
1

Chapter 1
P1788/D7.1, April 2, 2013

Draft Standard For Interval Arithmetic §3.2

3.2. Kaucher interval arithmetic. An implementation of the Kaucher flavor shall satisfy
the following requirements

• Kaucher requirements

An implementation may claim its conformance to this standard in the following way

Name of implementation and version have been tested for conformance to the
P1788 Standard for Interval Arithmetic, version D7.0 using the we might put a
reference to a probable test suite here on YYYY-MM-DD and no nonconformi-
ties were found.

5 April 2, 2013

DR
AF
T
7.
1

Chapter 1
P1788/D7.1, April 2, 2013

Draft Standard For Interval Arithmetic §4.2

4. Notation, abbreviations, definitions

4.1. Frequently used notation and abbreviations.

754 IEEE-Std-754-2008 “IEEE Standard for Floating-Point Arithmetic”.
R the set of real numbers.
R the set of extended real numbers, R ∪ {−∞,+∞}.
IR the set of closed real intervals, including unbounded intervals and the

empty set.
F,G, . . . generic notation for (the set of numbers, including ±∞) representable

in some floating point format.
IF, IG, . . . the members of IR whose lower and upper bounds are in F,G,

Empty the empty set.
Entire the whole real line.

NaI Not an Interval.
NaN Not a Number.

qNaN quiet NaN.
sNaN signaling NaN.

x, y, . . . [resp. f, g, . . .] typeface/notation for a numeric value [resp. numeric function].
x,y, . . . [resp. f , g, . . .] typeface/notation for an interval value [resp. interval function].

f, g, . . . typeface/notation for an expression, producing a function by evalua-
tion.

Dom(f) the domain of a point-function f .
Rge(f | s) the range of a point-function f over a set s; the same as the image

of s under f .

[Note. Little used in this document, but used in classical interval analysis, are IR, the set of bounded,
nonempty closed real intervals; and IF, the intervals of IR whose bounds are in F. The symbols I and
I act as operators on subsets S of R, namely IS or I(S) = “the empty set, plus all intervals whose
endpoints are in S” and IS = “all nonempty intervals whose endpoints are finite and in S”.]

4.2. Definitions.

4! Definitions belonging to Levels 2 onward have been temporarily removed.
4.2.1. arithmetic operation. A function provided by an implementation (see Defn 4.2.8). It

comes in three forms: the point operation, which is a mathematical real function of real variables
such as log(x); one or more (bare) interval extensions of the point operation, each of which
corresponds to the finite precision interval type of its result; and one or more decorated interval
extensions, each being the (unique) decorated version of a bare interval extension.

Together with the interval non-arithmetic operations (§9.4.1), these form the implementation’s
library, which splits into the point library (a conceptual entity, being a set of mathematical
functions), the bare interval library and the decorated interval library, corresponding to the
above categories. The latter two may be further qualified by a result interval type, e.g., “binary64
inf-sup decorated interval library”.

The programming environment’s floating point approximations to mathematical point func-
tions constitute the floating point library. The standard makes no requirements on these.

A basic arithmetic operation is one of the six functions +, −, ×, ÷, fused multiply-add
fma and square root sqrt.

Constants such as 3.456 and π are regarded as arithmetic operations whose number of argu-
ments is zero. Details in §9.4.4.

4.2.2. box. See Defn 4.2.10.
4.2.3. domain. For a function with arguments taken from some set, the domain comprises

those points in the set at which the function has a value. The domain of an arithmetic operation
is part of its definition. E.g., the (point) arithmetic operation of division x/y, in this standard,
has arguments (x, y) in R2, and its domain is the set { (x, y) ∈ R2 | y 6= 0 }. See also Defn 4.2.14.

4.2.4. elementary function. Synonymous with arithmetic operation.
4.2.5. expression. A symbolic object f that is either a symbolic variable or, recursively, of the

form ϕ(g1, . . . , gk), where ϕ is the name of a k-argument arithmetic or non-arithmetic operation
and the gi are expressions. It is an arithmetic expression if all its operations are arithmetic

6 April 2, 2013

DR
AF
T
7.
1

Chapter 1
P1788/D7.1, April 2, 2013

Draft Standard For Interval Arithmetic §4.2

operations. Writing f(z1, . . . , zn) makes f a bound expression, giving it an argument list
comprising the variables zi in that order, which must include all those that occur in f.

Details in §9.5. For the ways in which an expression defines a function, see §??, ??.
4.2.6. fma. Fused multiply-add operation, that computes x×y+z. One of the basic arithmetic

operations.
4.2.7. hull. (Full name: interval hull.) When not qualified by the name of a finite-precision

interval type, the hull of a subset s of R is the tightest (q.v.) interval containing s.
4.2.8. implementation. When used without qualification, means a realization of an interval

arithmetic conforming to the specification of this standard.
4.2.9. inf-sup. Describes a representation of an interval based on its lower and upper bounds.
4.2.10. interval. A closed connected subset of R; may be empty, bounded or unbounded. May

be called a 1-dimensional interval, see next paragraph. The set of all intervals is denoted IR.
A box or interval vector is an n-dimensional interval, i. e. a tuple (x1, . . . ,xn) where the xi

are intervals. Often identified with the cartesian product x1 × . . .×xn ⊆ Rn, it is empty if any of
the xi is empty. Details in §9.2.

4.2.11. interval extension. An interval extension of a point function f is a function f from
intervals to intervals such that f(x) belongs to f(x) whenever x belongs to x and f(x) is defined.
Details in §9.4.3. It is the natural (or tightest) interval extension if f(x) is the interval hull of
the range of f over x, for all x.

4.2.12. interval function, interval mapping. A function from intervals to intervals is called
an interval function if it is an interval extension of a point function, and an interval mapping
otherwise. Details in §9.4.3.

4.2.13. interval library. See Defn 4.2.1.
4.2.14. natural domain. For an arithmetic expression f(z1, . . . , zn), the natural domain is

the set of x = (x1, . . . , xn) ∈ Rn where the expression defines a value for the associated point
function f(x). See §??.

4.2.15. no value vs. undefined. Some functions do not have a defined value at the mathe-
matical model of Level 1 (see Clause 5). This translates to a defined value at the interval datum
Level 2 given at the corresponding places in the standard. Therefore the term “no value” is not to
be confused with an “undefined” value, which has the common meaning of a value not determined
by the standard and thus being free for the implementation to decide.

4.2.16. non-arithmetic operation. An operation on intervals that is not an interval exten-
sion of a point operation; includes interval intersection and union.

4.2.17. number. Any member of the set R ∪ {−∞,+∞} of extended reals: a finite number
if it belongs to R, else an infinite number. See §9.1.

4.2.18. point function, point operation. A mathematical function of real variables: that
is, a map f from its domain, which is a subset of Rn, to Rm, where n ≥ 0,m > 0. It is scalar
if m = 1. Any arithmetic expression f(z1, . . . , zn) defines a (usually scalar) point function, whose
domain is the natural domain of f .

4.2.19. point library. See Defn 4.2.1.
4.2.20. range. The range, Rge(f | s), of a point function f over a subset s of Rn is the set of all

values that f assumes at those points of s where it is defined, i.e. { f(x) | x ∈ s and x ∈ Dom f }.
4.2.21. string. A text string, or just string, is a finite sequence of characters belonging to

some alphabet. See §9.1.
4.2.22. tightest. Smallest in the partial order of set containment. The tightest set (unique,

if it exists) with a given property is contained in every other set with that property.
4.2.23. version. For brevity, bare or decorated interval extensions, or floating point approxi-

mations, of a library point operation may be called versions of that operation.

7 April 2, 2013

DR
AF
T
7.
1

Chapter 1
P1788/D7.1, April 2, 2013

Draft Standard For Interval Arithmetic §6.0

Relationships between specification levels for interval arithmetic
for a given flavor F and a given finite-precision interval type T.

Level 1

Number system used by flavor F.
Set of allowed intervals in F.

Principles of how +, −, ×, ÷ and other
arithmetic operations are extended to intervals.

Mathematical
Model level.

↓T-interval hull identity map ↑
total, many-to-onea total, one-to-oneb

Level 2
A finite subset T of the F-intervals—the

T-interval datums—and operations on them.
Interval

datum level.
“represents” ↑

partial, many-to-one, ontoc

Level 3
Representations of T-intervals,

e.g. by two floating point numbers.
Representation

level.
“encodes” ↑

partial, many-to-one, ontod

Level 4 Encodings 0111000... Bit string level.

Table 1. Specification levels for interval arithmetic

5. Structure of the standard in levels

The standard is structured into four levels, summarized in Table 1, that match the levels
defined in the 754 standard, see 754 Table 3.1.

Level 1, in Clause 9, defines the mathematical theory underlying the standard. The entities at
this level are mathematical intervals and operations on them. Conforming implementations shall
implement this theory.

In addition to an ordinary (bare) interval, this level defines a decorated interval, compris-
ing a bare interval and a decoration. Decorations implement this standard’s exception handling
mechanism.

Level 2, in Clause 11, is the central part of the standard. Here the mathematical theory is
approximated by an implementation-defined finite set of entities and operations. A level 2 entity
is called a datum (plural “datums” in this standard, since “data” is often misleading).

An interval datum is a mathematical interval tagged by a unique type T. The type abstracts
a representation scheme—a particular way of representing intervals (e.g., by storing their lower
and upper bounds as IEEE binary64 numbers). Level 2 arithmetic normally acts on intervals of
a given type to produce an interval of the same type (but interval operations that act on intervals
of types other than the result type are possible).

Level 3, in Clause 14, is concerned with the representation of interval datums—usually but not
necessarily in terms of floating point values. A level 3 entity is an interval object. Representations
of decorations, hence of decorated intervals, are also defined at this level.

The Level 3 requirements in this standard are few, and concern mappings from internal repre-
sentations to external ones, such as interchange formats and I/O.

A level 4 entity is a bit string. This standard makes no Level 4 requirements.
The arrows in Table 1 denote mappings between levels. The phrases in italics name these

mappings. Each phrase “total, many-to-one”, etc., labeled with a letter a to d, is descriptive of
the mapping and is equivalent to the corresponding labeled fact below.
a. Each mathematical interval (indeed each subset of R) has a unique interval datum as its T-

hull—a minimal enclosing interval of the type T.
b. Each interval datum is a mathematical interval, if one ignores its type-tag.
c. Not every interval object necessarily represents an interval datum, but when it does, that datum

is unique. Each interval datum has at least one representation, and may have more than one.
d. Not every interval encoding necessarily encodes an interval object, but when it does, that object

is unique. Each interval object has at least one encoding and may have more than one.

8 April 2, 2013

DR
AF
T
7.
1

Chapter 1
P1788/D7.1, April 2, 2013

Draft Standard For Interval Arithmetic §6.0

√
y2 − 1 + xy

input x, y

v1 = y2

v2 = v1 − 1

v3 =
√
v2

v4 = x× y
z = v3 + v4
output z

 x

 y sqr

 1

sub sqrt

mul add

Formula Pseudo-code Computational graph
(a) (b) (c)

Figure 1. Essentially equivalent notations for an expression. The pseudo-code
(b) breaks the formula into single library operations, and uses static single-
assignment (SSA) form. The graph form (c) uses the names in §9.6.3, for library
operations.

6. Expressions and the functions they define

An expression is some symbolic form used to define a function. Expressions are central to
interval computation, because the Fundamental Theorem of Interval Arithmetic (FTIA) is about
interpreting an expression in different ways: first, as defining a mathematical real point function
f ; second, as defining interval mappings that give proven enclosures for the range of f over an
input box x. The decoration system, in suitable situations, lets one strengthen this by concluding
f is everywhere defined, or everywhere continuous, on x— making it possible, for example, to
automatically verify the assumptions of the Brouwer Fixed Point Theorem.

The standard specifies behavior at the individual operation level, that makes such conclusions
possible. It does not define a meaning of “expression” since this would raise language-dependent
semantic issues outside its scope. However it is useful to list some things that an expression is and
is not, to give a context for the specifications of the standard:

(i) An expression f defines a relation between certain inputs, often represented by mathematical
or programming variables, and certain outputs, via the application of named operations that
come from a library. f may be represented in various ways, e.g., by a normal algebraic
formula or by a segment of program code or pseudo-code or as a computational graph. This

is illustrated for (an expression defining) the function f(x, y) =
√
y2 − 1 + xy in Figure 1

(a,b,c) respectively.
Code may define a vector expression, with several outputs; however, all the individual

library operations of the standard are scalar, with possibly several inputs but a single output.
(ii) For the FTIA to apply, f must be an arithmetic expression, each of whose library operations

is primarily a point-operation with real-number input(s) and output. The operations must
be generic, each one having one or more interval version(s) with interval input and output,
and corresponding decorated interval version(s). These produce point evaluation, interval
evaluation and decorated interval evaluation of the expression, also termed evaluation in point
mode, interval mode or decorated interval mode.

An implementation’s library by definition comprises all its finite-precision (Level 2) ver-
sions of required or recommended operations that it provides for any of its supported interval
types, as specified in §9.6, §9.7 and in Clause 11. Different Level 2 interval evaluations of
f come from using library operations with different combinations of input and output types
(precisions), as the implementation may provide.

The set operations intersection and convexHull are not point-operations and cannot
appear in an arithmetic expression. However they are useful for efficiently implementing
interval versions of functions defined piecewise (see Example (ii) in §10.10).

An arithmetic operation or expression may also denote a floating point function; these
are not specified by this standard.

9 April 2, 2013

DR
AF
T
7.
1

Chapter 1
P1788/D7.1, April 2, 2013

Draft Standard For Interval Arithmetic §7.1

(iii) The expression must be explicit. Interval analysis has ways to find range-enclosures for a

function such as “y = g(x) defined implicitly by solving
√
y2 − 1 + xy = 1 for y ”; but the

FTIA does not apply directly to such functions.

Each library point-operation has a defined domain, the set of inputs where it can be evaluated.
This leads to the idea of natural domain Dom(f) of the point function f(x) = f(x1, . . . , xn) defined
by an expression: the set of points x where f is defined in the sense that the whole expression can
be successfully evaluated. [Example. From the domains of / and

√
·, one finds the natural domain of√

1 + 1/x is the union of the two intervals (−∞,−1] and (0,+∞).]
In the set-based flavor—see §7.5 for other flavors—Moore’s basic theorem for a scalar function

is as follows, with the above notation.

Theorem 6.1 (Fundamental Theorem of Interval Arithmetic). Let y = f(x) be the result of
interval-evaluation of f over a box x = (x1, . . . ,xn) using any interval versions of its component
library functions. Then

(i) (“Weak” form of FTIA.) In all cases, y contains the range of f over x, that is, the set of
f(x) at points of x where it is defined:

y ⊇ Rge(f |x) = { f(x) | x ∈ x ∩Dom(f) }. (1)

(ii) (“Defined” form of FTIA.) If also each library operation in f is everywhere defined on its
inputs, while evaluating y, then f is everywhere defined on x, that is Dom(f) ⊇ x.

(iii) (“Continuous” form of FTIA.) If in addition to (ii), each library operation in f is everywhere
continuous on its inputs, while evaluating y, then f is everywhere continuous on x.

It is important to note that the theorem holds in finite precision (Level 2), not just at Level
1. Each of its forms is useful; e.g., the “continuous” FTIA is needed in applications where the
assumptions for applying Brouwer’s Fixed Point Theorem must be verified. Building on features
in older interval systems, the standard’s decoration system, Clause 8, gives basic tools for checking
the conditions for the “defined” and “continuous” forms, during evaluation of a function.

The following points are also relevant; they concern language semantics of expressions.

(iv) The computational graph of the expression is a directed acyclic graph. When program code
is involved, the FTIA applies to the expression f evaluated in a particular execution of that
code. If code contains conditional statements or loops, f and its graph may change from one
execution to another. Often such code is designed to define a function piecewise (e.g., over
several intervals, see example in §10.10). The user is responsible for checking that the FTIA
applies as intended in such cases; the standard provides no way to check automatically that
a property such as continuity holds globally.

(v) There is a mismatch between expressions and set theory when doing interval-evaluation,
illustrated by the following. Define a 3-argument function by

f(x, y, z) = x+ z, (2)

where argument y does not occur in the expression. Interval-evaluation w = f(x,y, z) returns
x + z, ignoring y. When y is empty, e.g.

w = f([1, 2], ∅, [3, 4]) = [4, 6], (3)

this is at odds with set-theory, which says w encloses the range of the point-function over the
product box [1, 2]×∅× [3, 4]. Since this is empty, the range is empty, suggesting the computed
w should be ∅ instead of [4, 6].

It is language-defined which of these interpretations is adopted, but the FTIA theory in
Annex D is framed so that the theoretically correct result coincides with what straightforward
interval evaluation computes—here [4, 6]. This is done by defining the function specified by
an expression to depend only on those inputs that in the evaluation’s computational graph
lie on a path to the output. In (2), the function thus has two arguments x, z instead of three.

This is conveniently handled by using keyword association of dummy to actual arguments—
for expressions, not for individual library operations for which normal positional arguments
are used—so that irrelevant variables can be skipped. E.g. the argument association in (3)
may be written f(x = [1, 2], z = [3, 4]). See Annex D for details.

10 April 2, 2013

DR
AF
T
7.
1

Chapter 1
P1788/D7.1, April 2, 2013

Draft Standard For Interval Arithmetic §7.2

7. Flavors

7.1. Flavors overview. The standard permits different interval flavors, which embody dif-
ferent foundational (Level 1) approaches to intervals. An implementation shall provide at least
one flavor. For brevity, phrases such as “A flavor shall provide, or document, a feature” mean that
the implementation of that flavor shall provide the feature, or its documentation describe it.

Flavor is a property of program execution context, not of an individual interval, therefore just
one flavor shall be in force at any point of execution. It is recommended that at the language level,
the flavor should be constant at the level of a procedure/function, or of a compilation unit.

A flavor is identified by a unique name. Certain flavors, termed included, are specified in
this standard. The (list to be confirmed) flavors are the currently included flavors. The procedure
for submitting a new flavor for inclusion is described in Annex B. A conforming implementation
that provides one or more included flavors may also provide non-included flavors, without losing
conformance for the included flavors.

The flavor concept enforces a common core of behavior that different kinds of interval arith-
metic must share:

(i) The set of required operations, identified by their names, is the same in all flavors. Similarly
the set of recommended operations is the same in all flavors. See Clause 16, Clause 17.

(ii) There is a set of common intervals whose members are—in a sense made precise below—
intervals of any flavor.

(iii) There is a set of common evaluations of library operations, with common intervals as input,
that give—again in a sense made precise below—the same result in any flavor.

The result in item (iii) is a mathematically tightest (Level 1) result, ignoring any interval widening
due to finite precision (Level 2).

7.2. Definition of common intervals and common evaluations. The choice of the set
of common intervals, and the set of common evaluations of an operation, is a design decision that
defines the flavor concept. It should aim for simplicity, and the common evaluations should be
specified by a general rule that makes it easy to add a new operation to the library if needed. The
choice that was made is specified in the following paragraphs.

All likely flavors extend the classical Moore arithmetic [5] on the set IR of closed bounded
nonempty real intervals, and there is no interval outside IR that is supported in all these flavors.
Hence, the chosen set C of common intervals is IR.

The common evaluations are specified in terms of graphs of interval operations. For an interval
operation ϕ of arity k, its graph (in some flavor) is a subset of a (k+1)-dimensional space of
intervals, namely the set of interval (k+1)-tuples (x1,x2, . . . ,xk; y) such that ϕ(x1,x2, . . . ,xk) =
y is true in that flavor. Each such tuple is called an operation instance.

The general rule is that each ϕ has a set CE(ϕ) of common evaluations: operation instances
(x1,x2, . . . ,xk; y) such that all its components are in IR and

ϕ(x1,x2, . . . ,xk) = y shall hold in all flavors.

CE(ϕ) may be regarded as the flavor-independent graph of ϕ. For brevity, writing

the evaluation ϕ(x1,x2, . . . ,xk) = y is common, (4)

or the equivalent notation when ϕ is an infix operator (e.g., x1 + x2 = y), means that
(x1,x2, . . . ,xk; y) ∈ CE(ϕ).

The standard defines CE(ϕ) as follows.

Arithmetic operation: Such an operation is an interval extension, in fact the natural
interval extension (Defn 4.2.11), of the corresponding point function ϕ. The common
operation instances are those (x1,x2, . . . ,xk; y) such that the point function ϕ is defined
and continuous at each point of the closed, bounded, nonempty box x = (x1,x2, . . . ,xk),
and y equals the range of ϕ over this box. Then necessarily y belongs to IR.

Non-arithmetic operation: The common operation instances are those tuples with com-
mon inputs xi such that the result y is also common. In particular for convexHull,
the common operation instances are those (x1,x2; y) with arbitrary x1,x2 ∈ IR and y
equal to the convex hull of x1 ∪ x2. For intersection, they are those (x1,x2; y) with

11 April 2, 2013

DR
AF
T
7.
1

Chapter 1
P1788/D7.1, April 2, 2013

Draft Standard For Interval Arithmetic §7.4

arbitrary x1,x2 ∈ IR and y equal to x1 ∩ x2, provided the latter is nonempty (since
∅ /∈ IR).

[Examples.

– The evaluation [−1, 4]/[3, 4] = [−1/3, 4/3] is common; but [3, 4]/[−1, 4] = y is not common, for
any y ∈ IR.

– In the set-based flavor,
√

[−1, 4] = [0, 2]. But in the Kaucher flavor
√

[−1, 4] is undefined, so√
[−1, 4] = y cannot be common for any y. In fact CE(sqrt) is the set of all ([a, b]; [

√
a,
√

(b)])
for which 0 ≤ a ≤ b < +∞.

– Similarly, ([−1, 4] ∩ [5, 6] = ∅) in the set-based flavor, while ([−1, 4] ∩ [5, 6] = [5, 4]) in the Kaucher
flavor. Thus ([−1, 4] ∩ [5, 6] = y) cannot be common for any y.

– The above definition for arithmetic operations requires R1 “ϕ is defined and continuous at each point
of x”, which is a stronger constraint on CE(ϕ) (results in fewer common evaluations) than R2 “the
restriction of ϕ to x is everywhere defined and continuous”. This produces a weaker constraint on
what interval arithmetics can be flavors (with fewer rules, more arithmetics obey them). In particular,
requirement R1 permits cset arithmetic to be a flavor, while R2 does not.

E.g., the common evaluations of the function floor(x) are all ([a, b]; [k, k]) with k ∈ Z, k <
a ≤ b < k + 1. Thus floor([1, 1.9]) = [1, 1] is not common, because floor() is not continuous at 1,
despite its restriction to [1, 1.9] being everywhere continuous. If it were required to be common, cset
arithmetic could not be a flavor.

]

7.3. Loose common evaluations. At Level 2, common evaluations are usually not com-
putable because of roundoff; instead, an enclosing interval of some finite precision interval type is
computed. The notion of a loose common evaluation takes account of this. A loose common
evaluation derived from a common evaluation ϕ(x1,x2, . . . ,xk) = y in CE(ϕ) is defined to be any

ϕ(x1,x2, . . . ,xk) = y′ (5)

where y′ is a member of IR containing y. An element of CE(ϕ) is itself loose by this definition,
but may be called a tight common evaluation to emphasize that its y is contained in each derived
y′, above.

Informally, for a given ϕ and x = (x1,x2, . . . ,xk), the loose common evaluations describe all
closed bounded intervals that might be produced by evaluating an enclosure of Rge(ϕ |x) in finite
precision.

7.4. Relation of common evaluations to flavors. The formal definition of common eval-
uations takes into account that the common intervals are not necessarily a subset of the intervals
of a given flavor, but are identified with a subset of it by an embedding map.
[Examples.

A Kaucher interval is defined to be a pair (a, b) of real numbers—equivalently, a point in the plane
R2—which for a ≤ b is “proper” and identified with the normal real interval [a,b], and for a > b is
“improper”. Thus the embedding map is x 7→ (inf x, supx) for x ∈ IR.

For the set-based flavor, every common interval is actually an interval of that flavor (IR is a subset
of IR), so the embedding is the identity map x 7→ x for x ∈ IR.]

Formally, a flavor is identified by a pair (F, f) where F is a set of Level 1 entities, the intervals
of that flavor, and f is a one-to-one embedding map IR→ F. Usually, f(x) is abbreviated to fx.

It is then required that operation compatibility shall hold for each library operation ϕ and for
each flavor (F, f). Namely, given x1,x2, . . . ,xk and y in IR,

If (x1,x2, . . . ,xk; y) is a common operation instance of ϕ,
then (fx1, fx2, . . . , fxk; fy) is an operation instance of ϕ in flavor F.

(6)

That is, if the evaluation ϕ(x1,x2, . . . ,xk) = y is common, then ϕ(fx1, fx2, . . . , fxk) must be
defined in F with value fy.

An evaluation in F of an expression, in which only (loose) common evaluations of elementary
operations occur, is called a common evaluation of that expression. That is, in a flavor (F, f), the
expression’s inputs are members of f(IR), and each intermediate value is produced by a common
evaluation of an operation so that it is also in f(IR); hence the final result is in f(IR).

12 April 2, 2013

DR
AF
T
7.
1

Chapter 1
P1788/D7.1, April 2, 2013

Draft Standard For Interval Arithmetic §8.1

The com decoration makes it possible to determine, for a specific expression and specific interval
inputs, whether common evaluation has occurred, see Clause 8.

7.5. Flavors and the Fundamental Theorem. For a common evaluation of an arithmetic
expression, each library operation is (i.e., can be regarded as, modulo the embedding map) defined
and continuous on its inputs so that it satisfies the conditions of the strongest, “continuous” form
of the FTIA, Theorem 6.1. At Level 1, using the tightest interval extension of each operation, the
range enclosure obtained by a common evaluation is (again modulo the embedding map) the same,
independent of flavor.

It is possible in principle for an implementation to make this true also at Level 2, by providing
shared number formats and interval types that represent the same sets of reals or intervals in each
flavor; and library operations on these types and formats that have identical numerical behavior
in each flavor. For example, both set-based and Kaucher flavors might use intervals stored as
two IEEE754 binary64 numbers representing the lower and upper bounds, and might ensure that
operations, when applied to the intervals recognized by both flavors, behave identically. Such
shared behavior might be useful for testing correctness of an implementation.

Beyond common evaluations, versions of the FTIA in different flavors can be strictly incom-
parable. For example, the set-based FTIA handles unbounded intervals, which the Kaucher fla-
vor does not; while Kaucher intervals have an extended FTIA, involving generalized meanings of
“contains” and “interval extension” applicable to reverse-bound intervals, which has no simple
interpretation in the set-based flavor.

8. Decoration system

8.1. Decorations overview. A decoration is information attached to an interval; the com-
bination is called a decorated interval. Interval calculation has two main objectives:

– obtaining correct range enclosures for real-valued functions of real variables;
– verifying the assumptions of existence, uniqueness, or nonexistence theorems.

Traditional interval analysis targets the first objective; the decoration system, as defined in this
standard, targets the second.

A decoration primarily describes a property, not of the interval it is attached to, but of the
function defined by some code that produced the interval by evaluating over some input box.

For instance, if a section of code defines the expression
√
y2 − 1 + xy, then decorated-interval

evaluation of this code with suitably initialized input intervals x,y gives information about the

definedness, continuity, etc. of the point function f(x, y) =
√
y2 − 1 + xy over the box (x,y) in

the plane.
The decoration system is designed in a way that naive users of interval arithmetic do not notice

anything about decorations, unless they inquire explicitly about their values. They only need

– call the newDec operation on the inputs of any function evaluation used to invoke an existence
theorem,

– explicitly convert relevant floating-point constants (but not integer parameters such as the p in
pown(x, p) = xp) to intervals,

and have the full rigor of interval calculations available. A smart implementation may even relieve
users from these tasks. Expert users can inspect, set and modify decorations to improve code
efficiency, but are responsible for checking that computations done in this way remain rigorously
valid.

Especially in the set-based flavor, decorations are based on the desire that, from an interval
evaluation of a real function f on a box x, one should get not only a range enclosure f(x) but also
a guarantee that the pair (f,x) has certain important properties, such as f(x) being defined for
all x ∈ x, f restricted to x being continuous, etc. This goal is achieved, in parts of a program that
require it, by performing decorated interval evaluation, whose semantics is summarized as follows:

Each intermediate step of the original computation depends on some or all of the inputs, so
it can be viewed as an intermediate function of these inputs. The result interval obtained on each
intermediate step is an enclosure for the range of the corresponding intermediate function. The
decoration attached to this intermediate interval reflects the available knowledge about whether this

13 April 2, 2013

DR
AF
T
7.
1

Chapter 1
P1788/D7.1, April 2, 2013

Draft Standard For Interval Arithmetic §8.3

intermediate function is guaranteed to be everywhere defined, continuous, bounded, etc., on the
given inputs.

In some flavors, certain interval operations ignore decorations, i.e., give undecorated interval
output. Users are responsible for the appropriate propagation of decorations by these operations.

The function f is assumed to be expressed by code, an algebraic formula, etc.—generically
termed an expression—which can be evaluated in several modes: point evaluation, interval evalua-
tion, or decorated interval evaluation. The standard does not specify a definition of “expression”;
however, Annex D gives formal proofs in terms of a particular definition, and indicates how this
relates to expressions in some programming languages.

This standard’s decoration model, in contrast with 754’s, has no status flags. A general
aim, as in 754’s use of NaN and flags, is not to interrupt the flow of computation: rather, to
collate information while evaluating f , that can be inspected afterwards. This enables a fully local
handling of exceptional conditions in interval calculations—important in a concurrent computing
environment.

An implementation may provide any of the following: (i) status flags that are raised in the
event of certain decoration values being produced by an operation; (ii) means for the user to
specify that such an event signals an exception, and to invoke a system- or user-defined handler
as a result. [Example. The user may be able to specify execution be terminated if an arithmetic
operation is evaluated on a box that is not wholly inside its domain—an interval version of 754’s
“invalid operation” exception.] Such features are language- or implementation-defined.

8.2. Decoration definition and propagation. Each flavor shall document its set of pro-
vided decorations and their mathematical definitions. These are flavor-defined, with the exception
of the decoration com, see §8.3.

The implementation makes the decoration system of each flavor available to the user via
decorated interval extensions of relevant library operations. Such an operation ϕ, with interval
inputs x1, . . . ,xk carrying decorations dx1, . . . , dxk, shall compute the same interval output y as
the corresponding bare interval extension of ϕ—hence dependent on the xi but not on the dxi. It
shall compute a local decoration d, dependent on the xi and possibly on y, but not on the dxi. It
shall combine d with the dxi by a flavor-defined propagation rule to give an output decoration dy,
and return y decorated by dy.

The local decoration d may convey purely Level 1 information—e.g., that ϕ is everywhere
continuous on the box x = (x1, . . . ,xk). It may convey Level 2 information related to the particular
finite-precision interval types being used—e.g., that y, though mathematically a bounded interval,
became unbounded by overflow. For diagnostic use it may convey Level 3 or 4 information, e.g.,
how an interval is represented, or how memory is used.

If f is an expression, decorated interval evaluation of an expression means evaluation of f
with decorated interval inputs and using decorated interval extensions of the expression’s library
operations. Those inputs generally need to be given suitable initial decorations that lead to the
most informative output-decoration. A flavor shall provide a newDec function for this purpose. If
x is a bare interval, newDec(x) equals x with such an initial decoration.

It is the responsibility of each flavor to document the meaning of its decorations, and the
correct use of these decorations within programs.

8.3. Recognizing common evaluation. A flavor may provide the decoration com with the
following propagation rule for library arithmetic operations. In an implementation with more than
one flavor, each flavor shall do so.

In the following, ϕ denotes an arbitrary interval extension of a point library arithmetic opera-
tion ϕ, provided by the implementation at Level 2 (typically the one associated with a particular
interval type).

Let ϕ applied to input intervals x1,x2, . . . ,xk give the computed result y, and
let ϕ(x1,x2, . . . ,xk) = y be a loose common evaluation as defined in (5); in
particular y is bounded. If each of the inputs xi is decorated com, then the
output y shall be decorated com.

Informally, com records that the individual operation ϕ took bounded nonempty input intervals and
produced a bounded (necessarily nonempty) output interval. This can be interpreted as indicating
“overflow did not occur”. Further, the propagation rule ensures that if the initial inputs to an

14 April 2, 2013

DR
AF
T
7.
1

Chapter 1
P1788/D7.1, April 2, 2013

Draft Standard For Interval Arithmetic §8.3

arithmetic expression f are bounded and nonempty, and are initialized with the decoration com,
then the final result y = f(x1,x2, . . . ,xk) is decorated com if and only if the evaluation of the
whole expression was common as defined in §7.4.

Flavors should define other decoration values, but com is the only one that is required to have
the same meaning in all flavors.
[Examples. Reasons why an individual evaluation of ϕ with common inputs x = (x1, . . . ,xk) may not
return com include the following.

Outside domain: The implementation finds ϕ is not defined and continuous everywhere on x.
Examples:

√
[−4, 4], sign([0, 2]).

Overflow: The Level 1 result is too large to be represented. Example: Consider an interval
type T whose intervals are represented by their lower and upper bounds in some floating
point format, let REALMAX be the largest finite number in that format, and x be the common
T-interval [0, REALMAX]. Then x + x cannot be enclosed in a common T-interval.

Cost: It is too expensive to determine whether the result can be represented. A possible example
is tan([a, b]) where [a, b] is of a high-precision interval type, and one of its endpoints happens
to be very close to a singularity of tan(x).

]

15 April 2, 2013

DR
AF
T
7.
1

DR
AF
T
7.
1

CHAPTER 2

Set-Based Intervals

This Chapter contains the standard for the set-based interval flavor.

9. Level 1 description

In this clause, subclauses §9.1 to §9.5 describe the theory of mathematical intervals and in-
terval functions that underlies this flavor. The relation between expressions and the point or
interval functions that they define is specified, since it is central to the Fundamental Theorem of
Interval Arithmetic. Subclauses §9.6, 9.7 list the required and recommended arithmetic operations
(also called elementary functions) with their mathematical specifications. Clause 10 describes, at
a mathematical level, the system of decorations that is used among other things for exception
handling in this flavor of the standard.

9.1. Non-interval Level 1 entities. In addition to intervals, this flavor deals with entities
of the following kinds. They may be used as inputs or outputs of operations.

– The set R = R ∪ {−∞,+∞} of extended reals. Following the terminology of 754 (e.g.,
754§2.1.25), any member of R is called a number: it is a finite number if it belongs to R,
else an infinite number.

An interval’s members are finite numbers, but its bounds can be infinite. Finite or infinite
numbers can be inputs to interval constructors, as well as outputs from operations, e.g., the
interval width operation.

– The set of (text) strings, namely finite sequences of characters chosen from some alphabet.
Since Level 1 is primarily for human communication, there are no Level 1 restrictions on the
alphabet used. Strings may be inputs to interval constructors, as well as inputs or outputs of
read/write operations.

9.2. Intervals. The set of mathematical intervals supported by this flavor is denoted IR.
It consists of exactly those subsets x of the real line R that are closed and connected in the
topological sense. Thus it comprises the empty set (denoted ∅ or Empty) together with all the
nonempty intervals, denoted [x, x], defined by

[x, x] = {x ∈ R | x ≤ x ≤ x }, (7)

where x and x, the bounds of the interval, are extended-real numbers satisfying x ≤ x, x < +∞
and x > −∞.
[Notes.

– The above definition implies −∞ and +∞ can be bounds of an interval, but are never members of it.
In particular, [−∞,+∞] is the set of all real numbers satisfying −∞ ≤ x ≤ +∞, which is the

whole real line R—not the whole extended real line R.
– Mathematical literature generally uses a round bracket, or reversed square bracket, to show that an

endpoint is excluded from an interval, e.g. (a, b] and]a, b] denote {x | a < x ≤ b }. Where it is
convenient to change to this notation, this is pointed out, e.g., in the tables of function domains and
ranges in §9.6, 9.7.

– The set of intervals IR could be described more concisely as comprising all sets {x ∈ R | x ≤ x ≤ x }
for arbitrary extended-real x, x. However, this obtains Empty in many ways, as [x, x] for any bounds
satisfying x > x, and also as [−∞,−∞] or [+∞,+∞]. The description (7) was preferred as it makes
a one-to-one mapping between valid pairs x, x of endpoints and the nonempty intervals they specify.

]
A box or interval vector is an n-tuple (x1, . . . ,xn) whose components xi are intervals, that is

a member of IRn. Usually x is identified with the cartesian product x1×. . .×xn of its components,

17

DR
AF
T
7.
1

Chapter 2
P1788/D7.1, April 2, 2013

Draft Standard For Interval Arithmetic §9.4

a subset of Rn. In particular x ∈ x, for x ∈ Rn, means by definition xi ∈ xi for all i = 1, . . . , n;
and x is empty if (and only if) any of its components xi is empty.

9.3. Hull. The (interval) hull of an arbitrary subset s of Rn, written hull(s), is the tightest

member of IRn that contains s. (The tightest set with a given property is the intersection of all
sets having that property, provided the intersection itself has this property.)

9.4. Functions.
9.4.1. Function terminology. In this flavor, operations are written as named functions; in a

specific implementation they might be represented by operators (e.g., using an infix notation), or
by families of type-specific functions, or by operators or functions whose names might differ from
those used here.

The terms operation, function and mapping are broadly synonymous. The following summa-
rizes usage, with references in parentheses to precise definitions of terms.

– A point function (§9.4.2) is a mathematical real function of real variables. Otherwise, function
is usually used with its general mathematical meaning.

– A (point) arithmetic operation (§9.4.2) is a mathematical real function for which an implemen-
tation provides versions in the implementation’s library (§9.4.2).

– A version of a point function f means a function derived from f ; typically a bare or decorated
interval extension (§9.4.3) of f .

– An interval arithmetic operation is an interval extension of a point arithmetic operation (§9.4.3).
– An interval non-arithmetic operation is an interval-to-interval library function that is not an

interval arithmetic operation (§9.4.3).
– A constructor is a function that creates an interval from non-interval data (§9.6.8).

9.4.2. Point functions. A point function is a (possibly partial) multivariate real function:
that is, a mapping f from a subset D of Rn to Rm for some integers n ≥ 0,m > 0. It is a scalar
function if m = 1, otherwise a vector function. When not otherwise specified, scalar is assumed.
The set D where f is defined is its domain, also written Dom f . To specify n, call f an n-variable
point function, or denote values of f as

f(x1, . . . , xn). (8)

The range of f over an arbitrary subset s of Rn is the set Rge(f | s) defined by

Rge(f | s) = { f(x) | x ∈ s and x ∈ Dom f }. (9)

Thus mathematically, when evaluating a function over a set, points outside the domain are
ignored—e.g., Rge(sqrt | [−1, 1]) = [0, 1].

Equivalently, for the case where f takes separate arguments s1, . . . , sn, each being a subset
of R, the range is written as Rge(f | s1, . . . , sn). This is an alternative notation when s is the
cartesian product of the si.

A (point) arithmetic operation is a function for which an implementation provides versions
in a collection of user-available operations called its library. This includes functions normally
written in operator form (e.g., +, ×) and those normally written in function form (e.g., exp,
arctan). It is not specified how an implementation provides library facilities.

9.4.3. Interval-valued functions. A box is an interval vector x = (x1, . . . ,xn) ∈ IRn. It is
usually identified with the cartesian product x1 × . . . × xn ⊆ Rn; however, the correspondence is
one-to-one only when all the xj are nonempty.

Given an n-variable scalar point function f , an interval extension of f is a (total) mapping

f from n-dimensional boxes to intervals, that is f : IRn → IR, such that f(x) ∈ f(x) whenever
x ∈ x and f(x) is defined, equivalently

f(x) ⊇ Rge(f |x)

for any box x ∈ IRn, regarded as a subset of Rn. The natural interval extension of f is the
mapping f defined by

f(x) = hull(Rge(f |x)).

Equivalently, using multiple-argument notation for f , an interval extension satisfies

f(x1, . . . ,xn) ⊇ Rge(f |x1, . . . ,xn),

18 April 2, 2013

DR
AF
T
7.
1

Chapter 2
P1788/D7.1, April 2, 2013

Draft Standard For Interval Arithmetic §9.5

and the natural interval extension is defined by

f(x1, . . . ,xn) = hull(Rge(f |x1, . . . ,xn))

for any intervals x1, . . . ,xn.
In some contexts it is useful for x to be a general subset of Rn, or the xi to be general subsets

of R; the definition is unchanged.
The natural extension is automatically defined for all interval or set arguments. The decoration

system, Clause 10, gives a way of diagnosing when the underlying point function has been evaluated
outside its domain.

When f is a binary operator • written in infix notation, this gives the usual definition of its
natural interval extension as

x • y = hull({x • y | x ∈ x, y ∈ y, and x • y is defined }).
[Example. With these definitions, the relevant natural interval extensions satisfy

√
[−1, 4] = [0, 2] and√

[−2,−1] = ∅; also x× [0, 0] = [0, 0] for any nonempty x, and x/[0, 0] = ∅, for any x.]
When f is a vector point function, a vector interval function with the same number of inputs

and outputs as f is called an interval extension of f if each of its components is an interval extension
of the corresponding component of f .

An interval-valued function in the library is called an interval arithmetic operation if
it is an interval extension of a point arithmetic operation, and an interval non-arithmetic
operation otherwise. Examples of the latter are interval intersection and union, (x,y) 7→ x ∩ y
and (x,y) 7→ hull(x ∪ y).

9.4.4. Constants. A real scalar function with no arguments—a mapping Rn → Rm with n = 0
and m = 1—is a real constant. Languages may distinguish between a literal constant (e.g., the
decimal value defined by the string 1.23e4) and a named constant (e.g., π) but the difference is
not relevant on Level 1 (and easily handled by outward rounding on Level 2).

From the definition, an interval extension of a real constant is any zero-argument interval
function that returns an interval containing c. The natural extension returns the interval [c, c].

9.5. Expressions. This flavor gives the term “expression” the general meaning described in
Clause 6.

19 April 2, 2013

DR
AF
T
7.
1

Chapter 2
P1788/D7.1, April 2, 2013

Draft Standard For Interval Arithmetic §9.6

9.6. Required operations.
For the functions listed in this subclause, an implementation shall provide interval versions

appropriate to its supported interval types. For constants and the forward and reverse arithmetic
operations in §9.6.1, 9.6.3, 9.6.4, 9.6.5, each such version shall be an interval extension (§9.4.3) of
the corresponding point function—for a constant, that means any constant interval enclosing the
point value. The required rounding behavior of these, and of the numeric functions of intervals in
§9.6.9, is detailed in §11.9, 11.11.

The names of operations, as well as symbols used for operations (e.g., for the comparisons in
§9.6.10), may not correspond to those that any particular language would use.

9.6.1. Interval literals.
An implementation shall provide denotations of exact interval values by text strings. These

are called interval literals. Level 1, which is mainly for human communication, makes no re-
quirements on the form of literals. This document uses the Level 2 syntax, specified in §11.11.1.
[Example. This includes the inf-sup form [1.234e5,Inf]; the mid-rad form <3.1416+-0.00001>; or
the named interval constant Entire.]

An invalid denotation has no value at Level 1.

9.6.2. Interval constants.
The constant functions bareempty() and bareentire() return Empty and Entire respectively.

9.6.3. Forward-mode elementary functions.
Table 1 on page 21 lists required arithmetic operations. The term operation includes functions

normally written in function notation f(x, y, . . .), as well as those normally written in unary or
binary operator notation, •x or x • y.
[Note. The list includes all general-computational operations in 754§5.4 except convertFromInt, and
some recommended functions in 754§9.2.]

Proving the correctness of interval computations relies on the Fundamental Theorem of Interval
Arithmetic, which in turn relies on the relation between a point-function and its interval extensions.
Thus the domain of each point-function and its value at each point of the domain are specified to
aid a rigorous implementation. This is mostly straightforward but needs care for functions with
discontinuities, such as pow() and atan2().

Notes to Table 1

a. In describing the domain, notation such as {y = 0} is short for { (x, y) ∈ R2 | y = 0 }, etc.
b. Regarded as a family of functions parameterized by the integer argument p.
c. Defined as ey ln x for real x > 0 and all real y, and 0 for x = 0 and y > 0, else there is no value at Level

1.
d. b = e, 2 or 10, respectively.
e. The ranges shown are the mathematical range of the point function. To ensure containment, an interval

result may include values just outside the mathematical range.
f. atan2(y, x) is the principal value of the argument (polar angle) of (x, y) in the plane.
g. To avoid confusion with notation for open intervals, in this table coordinates in R2 are delimited by

angle brackets 〈 〉.
h. sign(x) is −1 if x < 0; 0 if x = 0; and 1 if x > 0.
i. ceil(x) is the smallest integer≥ x. floor(x) is the largest integer≤ x. roundTiesToEven(x), roundTiesToAway(x)

are the nearest integer to x, with ties rounded to the even integer or away from zero respectively.
trunc(x) is the nearest integer to x in the direction of zero. (As defined in the C standard §7.12.9.)

j. Smallest, or largest, of its real arguments. A family of functions parameterized by the arity k.

9.6.4. Interval case expressions and case function.
Functions are often defined by conditionals: f(x) equals g(x) if some condition on x holds,

and h(x) otherwise. To handle interval extensions of such functions in a way that automatically
conforms to the Fundamental Theorem of Interval Arithmetic, the ternary function case(c, g, h)
is provided. To simplify defining its interval extension, the argument c specifying the condition is
real (instead of boolean), and the condition means c < 0 by definition. That is,

case(c, g, h) =

{
if c < 0 then g,

else h.

20 April 2, 2013

DR
AF
T
7.
1

Chapter 2
P1788/D7.1, April 2, 2013

Draft Standard For Interval Arithmetic §9.6

Table 1. Required forward elementary functions.
Normal mathematical notation is used to include or exclude an interval endpoint,
e.g., (−π, π] denotes {x ∈ R | −π < x ≤ π }.

Name Definition Point function domain Point function range Note
neg(x) −x R R
add(x, y) x+ y R2 R
sub(x, y) x− y R2 R
mul(x, y) xy R2 R
div(x, y) x/y R2 \ {y = 0} R a
recip(x) 1/x R \ {0} R \ {0}
sqrt(x)

√
x [0,∞) [0,∞)

fma(x, y, z) (x× y) + z R3 R
case(c, g, h) See §9.6.4.
sqr(x) x2 R [0,∞)

pown(x, p) xp, p ∈ Z
{
R if p ≥ 0
R\{0} if p < 0


R if p > 0 odd
[0,∞) if p > 0 even
{1} if p = 0
R\{0} if p < 0 odd
(0,∞) if p < 0 even

b

pow(x, y) xy {x>0} ∪ {x=0, y>0} [0,∞) a, c
exp,exp2,exp10(x) bx R (0,∞) d
log,log2,log10(x) logb x (0,∞) R d
sin(x) R [−1, 1]
cos(x) R [−1, 1]
tan(x) R\{(k + 1

2)π|k ∈ Z} R
asin(x) [−1, 1] [−π/2, π/2] e
acos(x) [−1, 1] [0, π] e
atan(x) R (−π/2, π/2) e
atan2(y, x) R2 \ {〈0, 0〉} (−π, π] e, f, g
sinh(x) R R
cosh(x) R [1,∞)
tanh(x) R (−1, 1)
asinh(x) R R
acosh(x) [1,∞) [0,∞)
atanh(x) (−1, 1) R
sign(x) R {−1, 0, 1} h
ceil(x) R Z i
floor(x) R Z i
trunc(x) R Z i
roundTiesToEven(x) R Z i
roundTiesToAway(x) R Z i
abs(x) |x| R [0,∞)
min(x1, . . . , xk) Rk for k = 2, 3, . . . R j
max(x1, . . . , xk) Rk for k = 2, 3, . . . R j

An implementation shall provide the following interval extension (see the Notes):

case(c, g,h) =


if c is empty then ∅
elseif c is a subset of the half- line x < 0 then g
elseif c is a subset of the half- line x ≥ 0 then h
else convexHull(g,h).

(10)

for any intervals c, g,h.

21 April 2, 2013

DR
AF
T
7.
1

Chapter 2
P1788/D7.1, April 2, 2013

Draft Standard For Interval Arithmetic §9.6

The function f above may be encoded as f(x) = case
(
c(x), g(x), h(x)

)
. Then, if c, g, h are

interval functions that are interval extensions of point functions c, g and h, the function

f(x) = case
(
c(x), g(x),h(x)

)
(11)

is automatically an interval extension of f .
[Notes.

1. Equation (10) does not define the natural interval extension, which returns Empty if any of its input
arguments is empty. Its advantage is that for a function defined by a conditional expression, such
as (11), it allows “short-circuiting”. That is, one can suppress evaluation of h(x) if c < 0, and of
g(x) if c ≥ 0. This is not so for the natural extension.

2. This method is less awkward than using interval comparisons as a mechanism for handling such
functions. However, the resulting interval function is usually not the tightest extension of the
corresponding point function. E.g., the (point) absolute value |x| may be defined by

|x| = case(x,−x, x).

Then it is easy to see that formula (11), applied to a nonempty x = [x, x], gives the exact range
{ |x| | x ∈ x } when x < 0 or 0 ≤ x, but the poor enclosure (−x) ∪ x when x < 0 ≤ x.

3. case(c, g, h) is equivalent to the C expression (c < 0 ? g : h).
4. Compound conditions may be expressed using the max and min operations: e.g., a real function
f(x, y) that equals sin(xy) in the positive quadrant of the plane, and zero elsewhere, may be written

f(x, y) = case(min(x, y), 0, sin(xy)),

since min(x, y) < 0 is equivalent to (x < 0 or y < 0).

]

9.6.5. Reverse-mode elementary functions.
Constraint-satisfaction algorithms use the functions in this subclause for iteratively tightening

an enclosure of a solution to a system of equations.
Given a unary arithmetic operation ϕ, a reverse interval extension of ϕ is a binary interval

function ϕRev such that

ϕRev(c,x) ⊇ {x ∈ x | ϕ(x) is defined and in c }, (12)

for any intervals c,x.
Similarly, a binary arithmetic operation • has two forms of reverse interval extension, which

are ternary interval functions •Rev1 and •Rev2 such that

•Rev1(b, c,x) ⊇ {x ∈ x | b ∈ b exists such that x • b is defined and in c }, (13)

•Rev2(a, c,x) ⊇ {x ∈ x | a ∈ a exists such that a • x is defined and in c }. (14)

If • is commutative then •Rev1 and •Rev2 agree and may be implemented simply as •Rev.
In each of (12, 13, 14), the unique natural reverse interval extension is the one whose

value is the interval hull of the right-hand side. Clearly, any reverse interval extension encloses
this hull.

The last argument x in each of (12, 13, 14) is optional, with default x = R if absent.
[Note. The argument x can be thought of as giving prior knowledge about the range of values taken by
a point-variable x, which is then sharpened by applying the reverse function: see the example below.]

Reverse operations shall be provided as in Table 2. Note pownRev(x, p) is regarded as a family
of unary functions parametrized by p.
[Example.

– Consider the function sqr(x) = x2. Evaluating sqrRev([1, 4]) answers the question: given that
1 ≤ x2 ≤ 4, what interval can we restrict x to? Using the natural reverse extension, we have

sqrRev([1, 4]) = hull{x ∈ R | x2 ∈ [1, 4] } = hull([−2,−1] ∪ [1, 2]) = [−2, 2].

– If we can add the prior knowledge that x ∈ x = [0, 1.2], then using the optional second argument
gives the tighter enclosure

sqrRev([1, 4], [0, 1.2]) = hull{x ∈ [0, 1.2] | x2 ∈ [1, 4] } = hull
(
[0, 1.2] ∩ ([−2,−1] ∪ [1, 2])

)
= [1, 1.2].

22 April 2, 2013

DR
AF
T
7.
1

Chapter 2
P1788/D7.1, April 2, 2013

Draft Standard For Interval Arithmetic §9.6

Table 2. Required reverse elementary functions.

From unary functions
sqrRev(c,x)

recipRev(c,x)

absRev(c,x)

pownRev(c,x, p)

sinRev(c,x)

cosRev(c,x)

tanRev(c,x)

coshRev(c,x)

From binary functions
mulRev(b, c,x)

divRev1(b, c,x)

divRev2(a, c,x)

powRev1(b, c,x)

powRev2(a, c,x)

atan2Rev1(b, c,x)

atan2Rev2(a, c,x)

– One might think it suffices to apply the operation without the optional argument and intersect the
result with x. This is less effective because “hull” and “intersect” do not commute. E.,g., in the
above, this method evaluates

sqrRev([1, 4]) ∩ x = [−2, 2] ∩ [0, 1.2] = [0, 1.2],

so no tightening of the enclosure x is obtained.

]

9.6.6. Cancellative addition and subtraction.

4! I have made this only apply to bounded intervals, since it really seems hard to frame a specification
for unbounded ones that translates unambiguously to the finite precision (Level 2) situation.

Also I have deviated from the Motion 12 spec, by making the operations defined only when
width(x) ≥ width(y). IMO it is actively harmful in applications to make it always defined. This

is for the same reasons that it is harmful to replace
√
x by the everywhere defined

√
|x|: an application

MUST test for definedness, and making it always defined leads to un-noticed wrong results from code
that forgets to test. With Kaucher/modal intervals a different choice may be appropriate.

Cancellative subtraction solves the problem: Recover interval z from intervals x and y, given
that one knows x was obtained as the sum y + z.
[Example. In some applications one has a list of intervals a1, . . . ,an, and needs to form each interval
sk which is the sum of all the ai except ak, that is sk =

∑n
i=1, i 6=k ai, for k = 1, . . . , n.

Evaluating all these sums independently costs O(n2) work. However, if one forms the sum s of all the
ai, one can obtain each sk from s and ak by cancellative subtraction. This method only costs O(n)
work.

This example illustrates that in finite precision, computing x (as a sum of terms) typically incurs at
least one roundoff error, and may incur many. Thus the model underlying these cancellative operations
is that x is an enclosure of an unknown true sum x0, whereas y is “exact”. The computed z is thus
an enclosure of an unknown true z0 such that y + z0 = x0.]

There is an operation cancelPlus(x,y), equivalent to cancelMinus(x,−y) and therefore not
specified separately.

There is an operation cancelMinus(x,y) that returns for any two bounded intervals x and y
the tightest interval z such that

y + z ⊇ x (15)

if such a z exists. Otherwise cancelMinus(x,y) has no value at Level 1.
This specification leads to the following Level 1 algorithm. If x = ∅ then z = ∅. If x 6= ∅ and

y = ∅ then z has no value. If x = [x, x] and y = [y, y] are both nonempty and bounded, define
z = x−y and z = x−y. Then z is defined to be [z, z] if z ≤ z (equivalently if width(x) ≥ width(y)),
and has no value otherwise. If either x or y is unbounded, z has no value.
[Note. Because of the cancellative nature of these operations, care is needed in finite precision to
determine whether the result is defined or not. More details are given at Level 3 in §14.5.]

9.6.7. Non-arithmetic (set) operations.
The following operations shall be provided, the arguments and result being intervals.

23 April 2, 2013

DR
AF
T
7.
1

Chapter 2
P1788/D7.1, April 2, 2013

Draft Standard For Interval Arithmetic §9.6

Name Definition
intersection(x,y) x ∩ y
convexHull(x,y) interval hull of x ∪ y

9.6.8. Constructors.
An interval constructor by definition is an operation that creates a bare or decorated interval

from non-interval data. The following bare interval constructors shall be provided.
The operation nums2interval(l, u), where l and u are extended-real values, returns the set

{x ∈ R | l ≤ x ≤ u }. If (see §9.2) the conditions l ≤ u, l < +∞ and u > −∞ hold, this set is the
nonempty interval [l, u] and the operation is said to succeed. Otherwise the operation is said to
fail, and returns no value.

The operation text2interval(t) succeeds and returns the interval denoted by the text string
t, if t denotes an interval. Otherwise, it fails and returns no value.
[Note. Since Level 1 is mainly for human-human communication, any understandable t is acceptable,
e.g. "[3.1,4.2]" or "[2π,∞]”. Rules for the strings t accepted at an implementation level are given
in the Level 2 Subclause 13 on I/O and may optionally be followed.]

9.6.9. Numeric functions of intervals.
The operations in Table 3 shall be provided, the argument being an interval and the result a

number, which for some of the operations may be infinite.
[Note. Implementations should provide an operation that returns mid(x) and rad(x) simultaneously.]

Table 3. Required numeric functions of an interval x = [x, x].
Note inf can return −∞; each of sup, wid, rad and mag can return +∞.

Name Definition

inf(x)

{
lower bound of x if x is nonempty

∞ if x is empty

sup(x)

{
upper bound of x if x is nonempty

−∞ if x is empty

mid(x)

{
midpoint (x+ x)/2 if x is nonempty bounded

no value if x is empty or unbounded

wid(x)

{
width x− x if x is nonempty

no value if x is empty

rad(x)

{
radius (x− x)/2 if x is nonempty

no value if x is empty

mag(x)

{
magnitude sup{ |x| | x ∈ x } if x is nonempty

no value if x is empty

mig(x)

{
mignitude inf{ |x| | x ∈ x } if x is nonempty

no value if x is empty

4! I have gone for simplicity. Also I have followed my own view that at Level 1 it is more consistent
with math conventions for a function to simply have “no value” outside its domain, than for it to
return a special value. At Level 2 this translates into returning a value such as NaN.

9.6.10. Boolean functions of intervals.
The following operations shall be provided, which return a boolean (1 = true, 0 = false) result.
There is a function isEmpty(x), which returns 1 if x is the empty set, 0 otherwise. There is a

function isEntire(x), which returns 1 if x is the whole line, 0 otherwise.
There are eight comparison relations, which take two interval inputs and return a boolean

result. These are defined in Table 4, in which column three gives the set-theoretic definition, and
column four gives an equivalent specification when both intervals are nonempty.

The following table shows what the definitions imply when at least one interval is empty.

24 April 2, 2013

DR
AF
T
7.
1

Chapter 2
P1788/D7.1, April 2, 2013

Draft Standard For Interval Arithmetic §9.6

Table 4. Comparisons for intervals a and b. Notation ∀a means “for all a in a”,
and so on. In column 4, a=[a, a] and b=[b, b], where a, b may be −∞ and a, b may
be +∞; and <′ is the same as < except that −∞ <′ −∞ and +∞ <′ +∞ are true.

Name Symbol Definition For a, b 6= ∅ Description

equal(a, b) a = b ∀a ∃b a = b ∧ ∀b ∃a b = a a = b ∧ a = b a equals b

containedIn(a, b) a ⊆ b ∀a ∃b a = b b ≤ a ∧ a ≤ b a is a subset of b

less(a, b) a ≤ b ∀a ∃b a ≤ b ∧ ∀b ∃a a ≤ b a ≤ b ∧ a ≤ b a is weakly less than b
precedes(a, b) a≺· b ∀a ∀b a ≤ b a ≤ b a is to left of but may touch b

isInterior(a, b) a⊂◦ b ∀a ∃b a < b ∧ ∀a ∃b b < a b <′ a ∧ a <′ b a is interior to b

strictlyLess(a, b) a < b ∀a ∃b a < b ∧ ∀b ∃a a < b a <′ b ∧ a <′ b a is strictly less than b
strictlyPrecedes(a, b) a ≺ b ∀a ∀b a < b a < b a is strictly to left of b

areDisjoint(a, b) a∩/ b ∀a ∀b a 6= b a < b ∨ b < a a and b are disjoint

a = ∅ a 6= ∅ a = ∅
b 6= ∅ b = ∅ b = ∅

a = b 0 0 1
a ⊆ b 1 0 1
a ≤ b 0 0 1
a≺· b 1 1 1
a⊂◦ b 1 0 1
a < b 0 0 1
a ≺ b 1 1 1
a∩/ b 1 1 1

[Note.

– Column two gives suggested symbols for use in typeset algorithms.
– All these relations, except a∩/ b, are transitive for nonempty intervals.
– The first three are reflexive.
– isInterior uses the topological definition: b is a neighbourhood of each point of a. This implies,

for instance, that isInterior(Entire,Entire) is true.
– In fact all occurrences of < in column 4 of Table 4 can be replaced by <′.

]

9.6.11. Dot product function.
For point vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) the function dotProduct(x, y) =∑n

i=1 xiyi is defined, but has no requirements at Level 1. It is specified in Subclause 11.11.11
which deals with the Complete Arithmetic datatype and operations.

25 April 2, 2013

DR
AF
T
7.
1

Chapter 2
P1788/D7.1, April 2, 2013

Draft Standard For Interval Arithmetic §9.7

9.7. Recommended operations (optional).
An implementation should provide interval versions of the functions listed in this subclause.

If such an interval version is provided, it shall behave as specified here.

9.7.1. Forward-mode elementary functions.
The list of recommended functions is in Table 5. Each interval version shall be an interval

extension of the point function.

Table 5. Recommended elementary functions.
Normal mathematical notation is used to include or exclude an interval endpoint,
e.g., (−1, 1] denotes {x ∈ R | −1 < x ≤ 1 }.

Name Definition Point function domain Point function range Note

rootn(x, q) real q
√
x,

q ∈ Z \ {0}


R if q > 0 odd
[0,∞) if q > 0 even
R\{0} if q < 0 odd
(0,∞) if q < 0 even

same as domain a


expm1(x)
exp2m1(x)
exp10m1(x)

bx−1 R (−1,∞) b, c
logp1(x)
log2p1(x)
log10p1(x)

logb(x+1) (−1,∞) R b, c

compoundm1(x, y) (1 + x)y − 1 {x>−1} ∪ {x=−1, y>0} [0,∞) c, d

hypot(x, y)
√
x2 + y2 R2 [0,∞)

rSqrt(x) 1/
√
x (0,∞) (0,∞)

sinPi(x) sin(πx) R [−1, 1] e
cosPi(x) cos(πx) R [−1, 1] e
tanPi(x) tan(πx) R\{ k + 1

2 | k ∈ Z } R e
asinPi(x) arcsin(x)/π [−1, 1] [−1/2, 1/2] e
acosPi(x) arccos(x)/π [−1, 1] [0, 1] e
atanPi(x) arctan(x)/π R (−1/2, 1/2) e
atan2Pi(y, x) atan2(y, x)/π R2 \ {〈0, 0〉} (−1, 1] e, f

Notes to Table 5

a. Regarded as a family of functions parameterized by the integer arguments q, or r and s.
b. b = e, 2 or 10, respectively.
c. Mathematically unnecessary, but included to let implementations give better numerical behavior

for small values of the arguments.
d. In describing domains, notation such as {y = 0} is short for { (x, y) ∈ R2 | y = 0 }, and so on.
e. These functions avoid a loss of accuracy due to π being irrational, cf. Table 1, note e.
f. To avoid confusion with notation for open intervals, in this table coordinates in R2 are delimited

by angle brackets 〈 〉.

9.7.2. Extended interval comparisons.
The interval overlapping operation overlap(a, b), also written a◦◦ b, arises from the

work of J.F. Allen [1] on temporal logic. It may be used as an infrastructure for other inter-
val comparisons. If implemented, it should also be available at user level; how this is done is
implementation-defined or language-defined.

Allen identified 13 states of a pair (a, b) of nonempty intervals, which are ways in which they
can be related with respect to the usual order a < b of the reals. Together with three states for
when either interval is empty, these define the 16 possible values of overlap(a, b).

To describe the states for nonempty intervals of positive width, it is useful to think of b = [b, b]
(with b < b) as fixed, while a = [a, a] (with a < a) starts far to its left and moves to the right. Its
endpoints move continuously with strictly positive velocity. Then, depending on the relative sizes
of a and b, the value of a◦◦ b follows a path from left to right through the graph below, whose
nodes represent Allen’s 13 states.

26 April 2, 2013

DR
AF
T
7.
1

Chapter 2
P1788/D7.1, April 2, 2013

Draft Standard For Interval Arithmetic §9.7

starts → containedBy → finishes
↑ ↓

→ before → meets → overlaps → equals → overlappedBy → metBy → after →
↓ ↑

finishedBy → contains → startedBy

For instance “a overlaps b”—equivalently a◦◦ b has the value overlaps—is the case a < b < a < b.
The three extra values are: bothEmpty when a = b = ∅, else firstEmpty when a = ∅,

secondEmpty when b = ∅.
Table 6 shows the 16 states, with the 13 “nonempty” states specified (a) in terms of set

membership using quantifiers and (b) in terms of the endpoints a, a, b, b, and also (c) shown dia-
grammatically.

The set and endpoint specifications remove some ambiguities of the diagram view when one
interval shrinks to a single point that coincides with an endpoint of the other. Such a case is
allocated to equal when all four endpoints coincide; else to starts, finishes, finishedBy or
startedBy as appropriate; never to meets or metBy.
[Note. The 16 state values can be encoded in four bits. However, if they are then translated into
patterns P in a 16-bit word, having one position equal to 1 and the rest zero, one can easily implement
interval comparisons by using bit-masks.

For instance, suppose we make the states s in Table 6’s order correspond to the 16 bits in the
word, left-to-right, so s = bothEmpty maps to P (s) = 1000000000000000, s = firstEmpty maps
to P (s) = 0100000000000000 and so on. Consider the relation areDisjoint(a, b). This is true if
and only if one or both of a or b is empty, or a is “before” b, or a is “after” b. That is, iff the logical
“and” of P (s) with the mask disjointMask = 1111000000000001 is not identically zero.

This scheme can be efficiently implemented in hardware, see for instance M. Nehmeier, S. Siegel
and J. Wolff von Gudenberg [6]. All the required comparisons in this standard can be implemented in
this way, as can be, e.g., the “possibly” and “certainly” comparisons of Sun’s interval Fortran. Thus
the overlap operation is a primitive from which it is simple to derive all interval comparisons commonly
found in the literature.]

9.7.3. Slope functions.
The functions in Table 7 are the commonest ones needed to efficiently implement improved

range enclosures via first- and second-order slope algorithms. They are analytic at x = 0 after
filling in the removable singularity there, where each has the value 1.

27 April 2, 2013

DR
AF
T
7.
1

Chapter 2
P1788/D7.1, April 2, 2013

Draft Standard For Interval Arithmetic §9.7

Table 6. The 16 states of interval overlapping situations for intervals a, b.
Notation ∀a means “for all a in a”, and so on. Phrases within a cell are joined by
“and”, e.g. starts is specified by (a = b ∧ a < b).

State a◦◦ b Set Endpoint Diagram

is specification specification

States with either interval empty

bothEmpty a = ∅ ∧ b = ∅
firstEmpty a = ∅ ∧ b 6= ∅
secondEmpty a 6= ∅ ∧ b = ∅

States with both intervals nonempty

before ∀a∀b a < b a < b
a a

b b

meets

∀a∀b a ≤ b
∃a∀b a < b

∃a∃b a = b

a < a

a = b

b < b
a a

b b

overlaps

∃a∀b a < b

∃b∀a a < b

∃a∃b b < a

a < b

b < a

a < b
a a

b b

starts

∃a∀b a ≤ b
∃b∀a b ≤ a
∃b∀a a < b

a = b

a < b a a

b b

containedBy
∃b∀a b < a

∃b∀a a < b

b < a

a < b a a

b b

finishes

∃b∀a b < a

∃a∀b b ≤ a
∃b∀a a ≤ b

b < a

a = b a a

b b

equal
∀a∃b a = b

∀b∃a b = a

a = b

a = b a a

b b

finishedBy

∃a∀b a < b

∃b∀a a ≤ b
∃a∀b b ≤ a

a < b

b = a a a

b b

contains
∃a∀b a < b

∃a∀b b < a

a < b

b < a a a

b b

startedBy

∃b∀a b ≤ a
∃a∀b a ≤ b
∃a∀b b < a

b = a

b < a a a

b b

overlappedBy

∃b∀a b < a

∃a∀b b < a

∃b∃a a < b

b < a

a < b

b < a
a a

b b

metBy

∀b∀a b ≤ a
∃b∃a b = a

∃b∀a b < a

b < b

b = a

a < a
a a

b b

after ∀b∀a b < a b < a
a a

b b

28 April 2, 2013

DR
AF
T
7.
1

Chapter 2
P1788/D7.1, April 2, 2013

Draft Standard For Interval Arithmetic §9.7

Table 7. Recommended slope functions.

Name Definition Point function domain Point function range Note

expSlope1(x)
1

x
(ex − 1) R (0,∞)

expSlope2(x)
2

x2
(ex − 1− x) R (0,∞)

logSlope1(x)
2

x2
(log(1+x)− x) R (0,∞)

logSlope2(x)
3

x3
(log(1+x)−x+

x2

2
)R (0,∞)

cosSlope2(x) − 2

x2
(cosx− 1) R [0, 1]

sinSlope3(x) − 6

x3
(sinx− x) R (0, 1]

asinSlope3(x)
6

x3
(arcsinx− x) [−1, 1] [1, 3π − 6]

atanSlope3(x) − 3

x3
(arctanx−x) R (0, 1]

coshSlope2(x)
2

x2
(coshx− 1) R [1,∞)

sinhSlope3(x)
3

x3
(sinhx− x) R [12 ,∞)

29 April 2, 2013

DR
AF
T
7.
1

Chapter 2
P1788/D7.1, April 2, 2013

Draft Standard For Interval Arithmetic §10.2

10. The decoration system at Level 1

10.1. Decorations and decorated intervals overview. The decoration system of the set-
based flavor conforms to the principles of Clause 8.1. An implementation makes the decoration
system available by providing:

– a decorated version of each interval extension of an arithmetic operation, of each interval con-
structor, and of some other operations;

– various auxiliary functions, e.g., to extract a decorated interval’s interval and decoration parts,
and to apply a standard initial decoration to an interval.

The system is specified here at a mathematical level, with the finite-precision aspects in §12.
§10.2, 10.3, 10.4 give the basic concepts. §10.5, 10.6 define how intervals are given an initial dec-
oration, and how decorations are bound to library interval arithmetic operations to give correct
propagation through expressions. §10.7, 10.8 are about non-arithmetic operations. §10.9 describes
housekeeping operations on decorations, including comparisons, and conversion between a deco-
rated interval and its interval and decoration parts. §10.10 discusses the decoration of user-defined
arithmetic operations. The decoration com makes it possible to verify, under fairly restrictive
conditions, whether a given computation gives the same result in different flavors; §10.11 gives
explanatory notes on the com decoration. §10.12 defines a restricted decorated interval arithmetic
that suffices for some important applications and is easier to implement efficiently.

In Annex D, Clause 19 gives examples of the meaning and use of decorations; and Clause 22
contains a rigorous theoretical foundation, including a proof of the Fundamental Theorem of Dec-
orated Interval Arithmetic for this flavor.

10.2. Definitions and basic properties. Formally, a decoration d is a property (that is,
a boolean-valued function) pd(f,x) of pairs (f,x), where f is a real-valued function with domain

Dom(f) ⊆ Rn for some n ≥ 0 and x ∈ IRn is an n-dimensional box, regarded as a subset of
Rn. The notation (f,x) unless said otherwise denotes such a pair, for arbitrary n, f and x.
Equivalently, d is identified with the set of pairs for which the property holds:

d = { (f,x) | pd(f,x) is true }. (16)

The set D of decorations has five members:

Value Short description Property Definition
com common pcom(f,x) x is a bounded, nonempty subset of Dom(f);

f is continuous at each point of x; and the
computed interval f(x) is bounded.

dac defined & continuous pdac(f, x) x is a nonempty subset of Dom(f), and the
restriction of f to x is continuous;

def defined pdef(f,x) x is a nonempty subset of Dom(f);
trv trivial ptrv(f,x) always true (so gives no information);
ill ill-formed pill(f,x) Not an Interval; formally Dom(f) = ∅,

see §10.3.

(17)

These are listed according to the propagation order (27), which may also be thought of as a
quality-order of (f,x) pairs—decorations above trv are “good” and those below are “bad”.

A decorated interval is a pair, written interchangeably as (u, d) or ud, where u ∈ IR is a real
interval and d ∈ D is a decoration. (u, d) may also denote a decorated box

(
(u1, d1), . . . , (un, dn)

)
,

where u and d are the vectors of interval parts ui and decoration parts di, respectively. The set
of decorated intervals is denoted by DIR, and the set of decorated boxes with n components is
denoted by DIRn.

When several named intervals are involved, the decorations attached to u,v, . . . are often
named du, dv, . . . for readability, for instance (u, du) or udu, etc.

An interval or decoration may be called a bare interval or decoration, to emphasize that it is
not a decorated interval.

Treating the decorations as sets as in (16), trv is the set of all (f,x) pairs, and the others are
nonempty subsets of trv. By design they satisfy the exclusivity rule

For any two decorations, either one contains the other or they are disjoint. (18)

30 April 2, 2013

DR
AF
T
7.
1

Chapter 2
P1788/D7.1, April 2, 2013

Draft Standard For Interval Arithmetic §10.6

Namely the definitions (17) give:

com ⊂ dac ⊂ def ⊂ trv ⊃ ill, note the change from ⊂ to ⊃; (19)

com, dac and def are disjoint from ill. (20)

Property (18) implies that for any (f,x) there is a unique tightest (in the containment order
(19)), decoration such that pd(f,x) is true, called the strongest decoration of (f,x), or of f
over x, and written dec(f,x). That is:

dec(f,x) = d ⇐⇒ pd(f,x) holds, but pe(f,x) fails for all e ⊂ d. (21)

[Note. Like the exact range Rge(f |x), the strongest decoration is theoretically well-defined, but its
value for a particular f and x may be impractically expensive to compute, or even undecidable.]

10.3. The ill-formed interval. The ill decoration results from invalid constructions, and
propagates unconditionally through arithmetic expressions. Namely, if a constructor call does not
return a valid decorated interval, it returns an ill-formed one (i.e., decorated with ill); and the
decorated interval result of a library arithmetic operation is ill-formed, if and only if one of its
inputs is ill-formed. Formally, ill may be identified with the property Dom(f) = ∅ of (f,x) pairs,
see Clause 24.

An ill-formed decorated interval is also called NaI, Not an Interval. Except as described in
the next paragraph, an implementation shall behave as if there is only one NaI, whose interval
part is indeterminate. However, the intervalPart() operation must return a bare interval for any
decorated interval input, and for NaI this shall be Empty; thus NaI may be viewed as being ∅ill.

An exception is that other information may be stored in an NaI in an implementation-defined
way (like the payload of a 754 floating point NaN), and functions may be provided for a user to set
and read this for diagnostic purposes. An implementation may also provide means for an exception
to be raised when an NaI is produced.
[Example. The constructor call nums2interval(2, 1) is invalid in this flavor, so its decorated version
returns NaI.]

10.4. Permitted combinations. A decorated interval ydy shall always be such that y ⊇
Rge(f |x) and pdy(f,x) holds, for some (f,x) as in §10.2—informally, it must tell the truth about
some conceivable evaluation of a function over a box. If dy = dac or def then by definition x
is nonempty, and f is everywhere defined on it, so that Rge(f |x) is nonempty, implying y is
nonempty. Hence the decorated intervals ∅dac and ∅def, and ∅com if com is provided, are contradic-
tory: implementations shall not produce them.

No other combinations are essentially forbidden.

10.5. Initial decoration. Correct use of decorations when evaluating an expression has two
parts: correctly initialize the input intervals; and evaluate using decorated interval extensions
of library operations. To provide correct initialization, the function newDec() is provided. For
a single bare interval x, newDec() decorates it with dec(Id,x), the strongest decoration dx that
makes pdx(Id,x) true, where Id is the identity function Id(x) = x for real x. That is,

newDec(x) = xd where d = dec(Id,x) =

 com if x is nonempty and bounded,
dac if x is unbounded,
trv if x is empty.

(22)

[Note. The following features are used in examples in this document. It is language-defined whether
an implementation provides them.

– For a decorated interval xdx, newDec() discards the decoration and acts on the interval part,

newDec(xdx) = newDec(x). (23)

– For a vector of n bare or decorated intervals, newDec() acts componentwise to give a vector of n
decorated intervals.

– A bare interval constant, in a context that expects a decorated interval, is implicitly promoted to a
decorated interval by applying the newDec function. For example, [1, 2], [1,+∞] and ∅ are promoted
to [1, 2]com, [1,+∞]dac and ∅trv respectively.

]

31 April 2, 2013

DR
AF
T
7.
1

Chapter 2
P1788/D7.1, April 2, 2013

Draft Standard For Interval Arithmetic §10.7

10.6. Decorations and arithmetic operations. Given a scalar point function ϕ of k vari-
ables, a decorated interval extension of ϕ—denoted here by the same name ϕ—adds a dec-
oration component to a bare interval extension of ϕ. It has the form wdw = ϕ(vdv), where
vdv = (v, dv) is a k-component decorated box ((v1, dv1), . . . , (vk, dvk)). By the definition of a bare
interval extension, the interval part w depends only on the input intervals v; the decoration part
dw generally depends on both v and dv. In this context, NaI is regarded as being ∅ill.

The definition of a bare interval extension implies

w ⊇ Rge(ϕ |v), (enclosure). (24)

The decorated interval extension of ϕ determines a dv0 such that

pdv0(ϕ,v) holds, (a “local decoration”). (25)

It then evaluates the output decoration dw by

dw = min{dv0, dv1, . . . , dvk}, (the “min-rule”), (26)

where the minimum is taken with respect to the propagation order:

com > dac > def > trv > ill. (27)

[Notes.

1. Because NaI is treated as ∅ill, this definition implies (without treating it as a special case) that
ϕ(vdv) is NaI if, and only if, some component of vdv is NaI.

2. Let f(z1, . . . , zn) be an expression defining a real point function f(x1, . . . , xn). Then decorated
interval evaluation of f on a correctly initialized input decorated box xdx gives a decorated interval
ydy such that not only, by the Fundamental Theorem of Interval Arithmetic, one has

y ⊇ Rge(f |x) (28)

but also

pdy(f,x) holds. (29)

For instance, if the computed dy equals def then f is proven to be everywhere defined on the box
x. This is the Fundamental Theorem of Decorated Interval Arithmetic (FTDIA). The
rules for initializing and propagating decorations are key to its validity. They are justified, and a
formal statement and proof of the FTDIA given, in Annex D.

Briefly, (22) gives the correct result for the simplest expression of all, where f is the identity
f(x) = x, which contains no arithmetic operations. The decorations are designed so that the min-
rule (26) embodies basic facts of set theory and analysis, such as “If each of a set of functions is
everywhere defined [resp. continuous] on its input, their composition has the same property” and “If
any of a set of functions is nowhere defined on its input, their composition has the same property”.
It causes correct propagation of decorations through each arithmetic operation, and hence through
a whole expression.

3. In the same way as the enclosure requirement (24) is compatible with many bare interval extensions,
typically coming from different interval types at Level 2, so there may be several dv0 satisfying the
local decoration requirement (25). The ideal choice is the strongest decoration d such that pd(ϕ,v)
holds, that is to take

dv0 = dec(ϕ,v). (30)

This is easily computable in finite precision for the arithmetic operations in §9.6, 9.7—see the tables
in Annex D, §18. However, functions may be added to the library in future for which (30) is
impractical to compute for some arguments v. Hence the weaker requirement (25) is made.

]

10.7. Decorations and non-arithmetic operations.
The following give interval results but are not interval extensions of point functions:

– the reverse-mode operations of §9.6.5;
– the cancellative operations cancelPlus(x,y) and cancelMinus(x,y) of §9.6.6;
– The set-oriented operations intersection(x,y) and convexHull(x,y) of §9.6.7.

32 April 2, 2013

DR
AF
T
7.
1

Chapter 2
P1788/D7.1, April 2, 2013

Draft Standard For Interval Arithmetic §10.10

The decorated interval version of each such operation distinguishes NaI inputs but otherwise returns
a decoration indicating no information, as follows. If any input is NaI, the result is NaI. Otherwise
the result is obtained by applying the corresponding operation to the interval parts of the inputs,
and decorating its result with trv.

The user is responsible for applying a more informative decoration to the result via setDec(),
where this can be deduced in a given context. Other versions of the operations may be provided
in a language- or implementation-defined way, that apply such a context-adapted decoration.

The following operations give non-interval results:

– the numeric functions of §9.6.9;
– the boolean-valued functions of §9.6.10;
– the overlap function of §9.7.2.

For each such operation, if any input is NaI the result is undefined at Level 1. Otherwise, the
operation acts on decorated intervals by discarding the decoration and applying the corresponding
bare interval operation.

10.8. Boolean functions of decorated intervals. The equality comparison equal, or =,
shall be provided for decorated intervals. NaI shall compare unequal to any decorated interval,
including itself. Other input combinations shall compare equal if and only if the interval parts are
equal and the decoration parts are equal.

The inequality comparison notEqual, or 6=, shall be provided. It is the logical negation of =
(so NaI 6= NaI is true).

The unary function isNaI shall be provided. It is true if and only if its input is NaI.

10.9. Operations on decorations.
Given a decorated interval xdx, the operations intervalPart(xdx) and decorationPart(xdx)

shall be provided, which return x and dx respectively. NaI is deemed to equal ∅ill, so that
intervalPart(NaI) returns ∅ and decorationPart(NaI) returns ill.

Given an interval x and a decoration dx, the operation setDec(x, dx) returns the decorated
interval xdx. If this would produce one of the forbidden combinations—that is, x = ∅ and dx is
one of def, dac or com—then NaI is returned instead. setDec(x, ill) returns NaI for any interval
x, whether empty or not.

For decorations, comparison operations for equality = and its negation 6= shall be provided,
as well as comparisons >,<,≥,≤ with respect to the propagation order (27).
[Note. Careless use of the setDec function can negate the aims of the decoration system and lead
to false conclusions that violate the FTDIA. It is provided for expert users, who may need it, e.g.,
to decorate the output of functions whose definition involves the intersection and convexHull

operations.]

10.10. User-supplied functions. A user may define a decorated interval extension of some
point function, as defined in §10.6, to be used within expressions as if it were a library operation.
[Examples.

(i) In an application, an interval extension of the function

f(x) = x+ 1/x

was required. Evaluated as written, it gives unnecessarily pessimistic enclosures: e.g., with x =
[12 , 2], one obtains

f(x) = [12 , 2] + 1/[12 , 2] = [12 , 2] + [12 , 2] = [1, 4],

much wider than Rge(f |x) = [2, 2 1
2].

Thus it is useful to code a tight interval extension by special methods, e.g. monotonicity
arguments, and provide this as a new library function. Suppose this has been done. To convert
it to a decorated interval extension just entails adding code to provide a local decoration and
combine this with the input decoration by the min-rule (26). In this case it is straightforward to
compute the strongest local decoration d = dec(f,x), as follows.

d =

 com if 0 /∈ x and x is nonempty and bounded,
dac if 0 /∈ x and x is unbounded,
trv if x = ∅ or 0 ∈ x 6= [0, 0].

33 April 2, 2013

DR
AF
T
7.
1

Chapter 2
P1788/D7.1, April 2, 2013

Draft Standard For Interval Arithmetic §10.11

(ii)

The next example shows how an expert may ma-
nipulate decorations explicitly to give a function,
defined piecewise by different formulas in different
regions of its domain, the best possible decoration.
Suppose that

f(x) =

{
f1(x) :=

√
x2 − 4 if |x| > 2,

f2(x) := −
√

4− x2 otherwise,

where := means “defined as”, see the diagram. −4 −2 0 2 4
−2

−1

0

1

2

3

4

The function consists of three pieces, on regions x ≤ −2, −2 ≤ x ≤ 2 and x ≥ 2, that join con-
tinuously at region boundaries, but the standard gives no way to determine this continuity, at run
time or otherwise. For instance, if f is implemented by the case function, the continuity infor-
mation is lost when evaluating it on, say, x = [1, 3], where both branches contribute for different
values of x ∈ x.

However, a user-defined decorated interval function as defined below provides the best possible
decorations.

function ydy = f(xdx)
u = f1(x ∩ [−∞,−2])
v = f2(x ∩ [−2, 2])
w = f1(x ∩ [2,+∞])
y = convexHull(convexHull(u,v),w)
dy = dx

The user’s knowledge that f is everywhere defined and continuous is expressed by the statement
dy = dx, propagating the input decoration unchanged. f , thus defined, can safely be used within
a larger decorated interval evaluation.

]

10.11. Notes on the com decoration.
[Notes.

– The force of com is the Level 2 property that the computed interval f(x) is bounded. Equivalently,
overflow did not occur, where overflow has the generalized meaning that a finite-precision operation
could not enclose a mathematically bounded result in a bounded interval of the required output type.
Briefly, for a single operation, “com is dac plus bounded inputs and no overflow”.

Thus the result of interval-evaluating an arithmetic expression in finite precision is decorated com

if and only if the evaluation is common at Level 2, meaning: each input that affects the result is
nonempty and bounded, and each individual operation that affects the result is everywhere defined
and continuous on its inputs and does not overflow.

– A tempting alternative is to make com record whether the evaluation is common at Level 1, meaning
that all the relevant intervals are mathematically bounded, even if overflow occurred in finite precision.
E.g., one might drop the “bounded inputs” requirement and require “mathematically bounded”
instead of “actually bounded” on the output of an operation.

However, the dac decoration already provides such information and the suggested change gives
nothing extra. Namely, if the inputs x to f(x) are bounded, and the output decoration is dac, it
follows, from the fact that a continuous function on a compact set is bounded, that the point function
f is mathematically bounded on x, and all its individual operations are mathematically bounded on
their inputs even if overflow may have occurred in finite precision.

34 April 2, 2013

DR
AF
T
7.
1

Chapter 2
P1788/D7.1, April 2, 2013

Draft Standard For Interval Arithmetic §10.12

For example consider f(x) = 1/(2x) evaluated at x = [1,M] using an inf-sup type where M is
the largest representable real. This gives

ydy = f(xcom) = 1/(2 ∗ [1,M]com) = 1/[2,+∞]dac = [0, 12]dac.

Despite the overflow, one can deduce from the final dac that the result of the multiplication was
mathematically bounded.

This may be of limited use: consider g(x) = 1/f(x) = 1/(1/(2x)), evaluated at the same
x = [1,M] giving zdz. The standard has no way to record that the lower bound of y is mathematically
positive, i.e., 1/(2M). Thus the Level 2 result is zdz = [2,+∞]trv, compare [2, 2M]com at Level 1.

]

10.12. Compressed arithmetic with a threshold (optional).
10.12.1. Motivation. The compressed decorated interval arithmetic (compressed arith-

metic for short) described here lets experienced users obtain more efficient execution in applications
where the use of decorations is limited to the context described below. An implementation need
not provide it; if it does so, the behavior described in this subclause is required.

Each Level 2 instance of compressed arithmetic is based on a supported Level 2 bare interval
type T, but is a distinct “compressed type”, with its own datums and library of operations.

The context is that of evaluating an arithmetic expression, where the use made of a deco-
rated interval evaluation ydy = f(xdx) depends on a check of the result decoration dy against an
application-dependent exception threshold τ , where τ ≥ trv in the propagation order (27):

dy ≥ τ represents normal computation. The decoration is not used, but one exploits the range
enclosure given by the interval part and the knowledge that dy remained ≥ τ .

dy < τ declares an exception to have occurred. The interval part is not used, but one exploits
the information given by the decoration.

10.12.2. Compressed interval types. For such uses, one needs to record an interval’s value, or
its decoration, but never both at once. The compressed type of threshold τ , associated with
T, is the type each of whose datums is either a bare T-interval or a bare decoration less than τ . It
is denoted Tτ . Two such types are the same if and only if they have the same T and the same τ .
A Tτ datum can be any T datum or any decoration except that:

– Only decorations < τ occur; in particular com is never used.
– The empty interval ∅ is replaced by—equivalently, is regarded by the implementation as being—a

new decoration emp added to the table in (17), whose defining property is

Value Short description Property Definition
emp empty pemp(f,x) x ∩Dom(f) is empty;

(31)

emp lies between trv and ill in the containment order (19) and the propagation order (27):

com ⊂ dac ⊂ def ⊂ trv ⊃ emp ⊃ ill, (32)

com > dac > def > trv > emp > ill.

Since τ ≥ trv it is always true that emp < τ , which means that as soon as an empty result is
produced while evaluating an expression, the dy < τ case has occurred.
[Note. The reason for treating ∅ as a decoration < τ is that obtaining an empty result (e.g., by doing

something like
√

[−2,−1] while evaluating a function) is one of the “exceptions” that compressed
interval computation should detect.]

The only way to use compressed arithmetic with a threshold τ is to construct Tτ datums.
Conversion between compressed types, say from a Tτ -interval to a T′τ ′ -interval, shall be equivalent
to converting first to a normal decorated interval by normalInterval(), then between decorated
interval types if T 6= T′, and finally to the output type by τ ′-compressedInterval().

[Note. Since, for any practical interval type T, a decoration fits into less space than an interval, one
can implement arithmetic on compressed interval datums that take up the same space as a bare interval
of that type. For instance if T is the IEEE754 binary64 inf-sup type, a compressed interval uses 16
bytes, the same as a bare T-interval; a full decorated T-interval needs at least 17 bytes.

Because compressed intervals must behave exactly like bare intervals as long as one does not fall
below the threshold, and take up the same space, there is no room to encode τ as part of the interval’s
value.]

35 April 2, 2013

DR
AF
T
7.
1

Chapter 2
P1788/D7.1, April 2, 2013

Draft Standard For Interval Arithmetic §10.12

10.12.3. Operations. The enquiry function isInterval(x) returns true if the compressed in-
terval x is an interval, false if it is a decoration.

The constructor τ-compressedInterval() is provided for each threshold value τ . The result
of τ-compressedInterval(X), where X = (x, dx) is a decorated T-interval, is a Tτ -interval as
follows:

if dx ≥ τ , return the Tτ -interval with value x

else return the Tτ -interval with value dx.

τ-compressedInterval(x) for a bare interval x is equivalent to τ-compressedInterval(newDec(x)).
The function normalInterval(x) converts a Tτ -interval to a decorated interval of the parent

type, as follows:

if x is an interval , return (x, τ).

if x is a decoration d

if d is ill or emp, return (Empty, d)

else return (Entire, d).

Arithmetic operations on compressed intervals shall follow worst case semantics rules that
treat a decoration in {trv, def, dac} as representing a set of decorated intervals, and are necessary
if the fundamental theorem is to remain valid. Namely, inputs to each operation behave as follows:

– Operations purely on bare intervals are performed as if each x is the decorated interval xτ ,
resulting in a decorated interval ydy that is then converted back into a compressed interval. If
dy < τ , the result is the bare decoration dy, otherwise the bare interval y.

– For operations with at least one bare decoration input, the result is always a bare decoration.
A bare interval input is treated as in the previous item. A decoration d in {emp, ill} is treated
as ∅d. A decoration d in {trv, def, dac} is treated (conceptually) as xd with an arbitrary
nonempty interval x. The decoration com cannot occur. Performing the resulting decorated
interval operation on all such possible inputs leads to a set of all possible results ydy. The
tightest decoration (in the containment order (32)) enclosing all resulting dy is returned.

As a result each operation returns an actual or implied decoration compatible with its input, so
that in an extended evaluation, the final decoration using compressed arithmetic is never stronger
than that produced by full decorated interval arithmetic.

4! (JDP, 2013.) I conjecture that the following may be an equivalent specification, but have not
checked.

1. Each compressed interval argument is converted to a decorated interval by
normalInterval;

2. the corresponding operation of the parent decorated interval type is performed;

3. the result, if an interval, is converted back to a compressed interval by
τ-compressedInterval.

 (33)

[Example. Assuming τ > def,

– The division def/[1, 2] becomes xdef/[1, 2]τ with arbitrary nonempty interval x.
The result is always decorated def, so returns def.

– But [1, 2]/def becomes [1, 2]τ/xdef with arbitrary nonempty interval x.
The result can be decorated def, trv or emp, so returns the tightest decoration containing these,
namely trv.

]
Since there are only a few decorations, one can prepare complete operation tables according

to this rule, and only these tables need to be implemented. In Annex D, sample tables and worked
examples are in Clause 20 and a proof of correctness of the compressed arithmetic system is in
Clause 21.

If compressed arithmetic is implemented, it shall provide versions of all the required operations
of §9.6, and it should provide the recommended operations of §9.7.

36 April 2, 2013

DR
AF
T
7.
1

Chapter 2
P1788/D7.1, April 2, 2013

Draft Standard For Interval Arithmetic §11.3

11. Level 2 description

11.1. Level 2 introduction. Objects and operations at Level 2 are said to have finite pre-
cision. They are the entities from which implementable interval algorithms may be constructed.
Level 2 objects are called datums1Since the standard deals with numeric functions of intervals
(such as the midpoint) and interval functions of numbers (such as the construction of an interval
from its lower and upper bounds), this clause involves both numeric and interval datums, as well
as the set D of decorations.

Following 754 terminology, numeric (floating point) datums are organized into formats. Inter-
val datums are organized into types. Each format or type is a finite set of datums, with associated
operations. The standard defines three kinds of interval type:

– Bare interval types, see §11.6, represent finite sets of (mathematical, Level 1) intervals.
– Decorated interval types, see §12, represent finite sets of decorated intervals.
– Compressed interval types (optional), see §12.5, implement compressed decorated interval

arithmetic.

An implementation shall support at least one bare interval type. If 754-conforming, it shall
support the inf-sup type, see §11.6.2, of at least one of the five basic formats of 754§3.3.

There shall be a one-to-one correspondence between bare interval types and decorated interval
types, wherein each bare interval type has a corresponding derived decorated interval type, see
§12.2. Beyond this, which types are supported is language- or implementation-defined.

This standard uses the term T-version of an operation, where T is a bare or decorated interval
type, to mean a finite-precision approximation to the corresponding Level 1 operation, in which
any input or output intervals become T-intervals. This includes the following:

(a) A T-interval extension (§11.9) of one of the required or recommended arithmetic operations of
§9.6, 9.7.

(b) A set operation, such as intersection and convex hull of T-intervals, returning a T-interval.
(c) A function such as the midpoint, whose input is a T-interval and output is a numeric value.
(d) A constructor, whose input is numeric or text and output is a T-interval.
(e) The T-interval hull, regarded as a conversion operation, see §11.8.3.

Generically these comprise the operations of the type T, for the implementation.
An implementation may also support mixed-type operations, where input and output intervals

are not all of the same type.
It is language-defined whether the type of a datum can be determined at run time.

11.2. Naming conventions for operations. An operation can exist in many forms at Level
2 depending on the input and result types, and is generally given a name that suits the context.

For example, the addition of two interval datums x,y may be written in generic algebra
notation x + y; or with a generic text name addition(x,y); or giving full type information such
as decimal64-infsup-addition(x,y).

It may also be written as T-addition(x,y) to show it is an operation of a particular but
unspecified type T, or—in the context of 754-conforming types—as typeOf -addition(x,y) where
typeOf has a similar meaning to 754’s formatOf .

In a specific language or programming environment, the names used for types may differ from
those used in this document.

11.3. 754-conformance. The standard defines the notion of 754-conformance, whose stronger
requirements improve accuracy and programming convenience. In this context a part of an imple-
mentation means a subset of the set of supported Level 2 interval types.

A 754-conforming type is an inf-sup type derived from a 754 floating point format—one
of the five basic types or an extended precision or extendable precision format—that meets the
general requirements for conformance and whose operations meet the accuracy requirements in
Table 8.

A 754-conforming part of an implementation is a subset of the set of supported 754-
conforming types, that meets the requirements for mixed-type arithmetic in the next paragraphs.

1Not “data”, whose common meaning could cause confusion.

37 April 2, 2013

DR
AF
T
7.
1

Chapter 2
P1788/D7.1, April 2, 2013

Draft Standard For Interval Arithmetic §11.4

A 754-conforming implementation is one where all supported types are 754-conforming, and
the whole set of supported types meets the requirements for mixed-type arithmetic.

11.3.1. 754-conforming mixed-type arithmetic. The 754 standard requires a conforming float-
ing point system to provide mixed-format “formatOf ” operations. That is, the output format is
specified and the inputs may be of any format of the same radix as the output. The result is
computed as if using the exact inputs and rounded to the required accuracy on output. This elimi-
nates the problem of double rounding in mixed-format work, which otherwise can cause significant
growth of errors.

A 754-conforming part of an implementation shall provide (e.g., by exploiting the formatOf
feature at Level 3) corresponding mixed-type “typeOf ” operations. That is, the output type is
specified and the inputs may be of any type of the same radix as the output. The result shall be
computed as if using the exact inputs and shall meet the accuracy requirements for each operation,
specified in Table 8.

These requirements shall apply to all Level 2 operations with interval operands, without explicit
mention.

11.4. Tagging, and the meaning of equality at Level 2. A Level 2 format or type is an
abstraction of a particular way to represent numbers or intervals—e.g., “IEEE 64 bit binary” for
numbers—focusing on the Level 1 objects represented, and hiding the Level 3 method by which it
is done.

However a datum is more than just the Level 1 value: for instance the number 3.75 represented
in 64 bit binary is a different datum from the same number represented in 64 bit decimal.

This is achieved by formally regarding each datum as a pair:

number datum = (Level 1 number, format name),
interval datum = (Level 1 interval, type name),

where the name is some symbol that uniquely identifies the format or type. The Level 1 value is
said to be tagged by the name. It follows that distinct formats or types are disjoint sets

By convention, such names are omitted from datums except when clarity requires.
[Example. Level 2 interval addition within a type named t is normally written z = x + y, though the
full correct form is (z, t) = (x, t) + (y, t). The full form might be used, for instance, to indicate that
mixed-type addition is forbidden between types s and t but allowed between types s and u. Namely,
one can say that (x, s) + (y, t) is undefined, but (x, s) + (y, u) is defined.]

In this document the five basic formats of 754§3.3 are named binary32, binary64, binary128,
decimal64, decimal128. Their inf-sup types (§11.6.2) are I(binary32), . . . , I(decimal128), the
parentheses being optional. Also, abbreviated names such as b64 instead of binary64 are some-
times used for convenience, and refer to the same format, or type derived from it.

An interval datum may have more than one representation at Level 3 (e.g., in an inf-sup type,
a zero endpoint might be stored as either −0 or +0). Independent of representation, two bare
interval datums are defined to be equal if and only if they represent the same Level 1 interval
tagged by the same or equivalent name. In particular two datums of the same bare interval type
are equal if and only if they represent the same Level 1 interval.
[Note. Two bare interval datums a, b of the same type are equal if and only if equal(a, b) returns
true. However, in the context of 754-conforming types, intervals of different types can compare equal.
E.g., let a, b be the binary32 inf-sup and binary64 inf-sup extensions, respectively, of an interval
that is represented exactly in both types, such as [1, 2]. Then equal(a, b) is true, but a and b are
not equal in the sense of this subclause.]

4! The next passage may be controversial, and certainly needs stating more precisely. Discussion
please!

Implementations shall ensure that different Level 3 representations of an interval datum cannot
affect the execution of a program by conforming to the

Equality principle. Let y = f(x1, x2, ..., xn) be an arbitrary evaluation at
Level 2 of a predicate (boolean valued expression), where the arguments xj can
be any mix of intervals and numbers. Then y shall be unchanged if any interval
argument xj is replaced by an argument x′j that equals xj in the Level 2 sense.

38 April 2, 2013

DR
AF
T
7.
1

Chapter 2
P1788/D7.1, April 2, 2013

Draft Standard For Interval Arithmetic §11.6

Here f is in general a mixed interval/numeric expression. It is built up of library functions ϕi,
which can be arithmetic operations, constructors, comparisons, or numeric functions of intervals,
or point arithmetic operations or comparisons of the underlying floating point system.

Evaluation at Level 2 means that the inputs xj are of specified types (using this to mean both
interval types and number formats); and each ϕi has specified types for its inputs and output, such
that each value that is used as an input is of the expected type.
[Example. Let F be a 754 format and T = IF the derived inf-sup type. Suppose a T-interval [l, u] is
represented at Level 3 as the pair of F-numbers (l, u). Let f be the expression

1/inf(x) > 0.

and consider [0, 1] with the two Level 3 representations x = (−0, 1) and x′ = (+0, 1). Then x = x′ in
the Level 2 sense, but a naive implementation gives

f(x) =

(
1

inf(x)
> 0

)
=

(
1

−0
> 0

)
= (−∞ > 0) = false;

f(x′) =

(
1

inf(x′)
> 0

)
=

(
1

+0
> 0

)
= (+∞ > 0) = true.

The standard does not say which of these two results is “correct”. But since they differ, the equality
principle is violated and such an implementation is non-conforming. One way to make it conforming is
to canonicalize all operations that output an interval, to ensure that for instance all zero bounds are
stored as +0.]

11.5. Number formats. Having regard to §11.4, a number format, or just format, is the
set of all pairs (x, f) where x belongs to a set F, and f is a name for the format.

F comprises a finite subset of the extended reals R, together with a value NaN. A numeric
member of F is one that is not NaN. F shall contain zero, −∞ and +∞, and shall be symmetric: if
a numeric x is in F, so is −x.

Following the convention of omitting names, the format is normally identified with the set
F, and one may say a number format is a set of datums comprising NaN together with a finite,
symmetric, set F of extended reals that contains 0 and ±∞. The non-NaN members of F are called
F-numbers.
[Note. At Level 2 each format has only one NaN datum, but this may correspond to more than one
NaN at Level 3, e.g. by using the payload of a 754 NaN.]

A floating-point format in the 754 sense, such as binary64, is identified with the number
format for which F is the set of extended-real numbers that are exactly representable in that
format, where –0 and +0 both represent the mathematical number 0.

4! I deviate from motion 33 here in not allowing for −0,+0 to be distinct datums, hoping we can
avoid this.

A number format F is said to be compatible with an interval type T, if each non-empty
T-interval contains at least one finite F-number.

Each format F shall have an associated rounding function that maps any extended real
number x to an element of F. A constraint can be given on the rounding direction, e.g. one of the
rounding direction attributes in 754§4.3. The rounded result is an element of F that is closest to x
subject to this constraint, with an implementation-defined rule for the distance to an infinity, and
for the method of tie-breaking when more than one member of F has the “closest” property.

11.6. Bare interval types.
11.6.1. Definition. Having regard to §11.4, a bare interval type is the set of all pairs (x, t)

where x belongs to a finite subset T of the mathematical intervals IR that contains Empty and
Entire, and t is a name for the type.

Following the convention of omitting names, the type is normally identified with the set T,
and one may say a bare interval type is an arbitrary finite set T of intervals that contains Empty
and Entire.

A T-interval means an interval belonging to T; a T-box means a box with T-interval compo-
nents.
[Examples. To illustrate the flexibility allowed in defining types, let S1 and S2 be the sets of inf-
sup intervals using 754 single (binary32) and double (binary64) precision respectively. That is, a

39 April 2, 2013

DR
AF
T
7.
1

Chapter 2
P1788/D7.1, April 2, 2013

Draft Standard For Interval Arithmetic §11.8

member of S1 [respectively S2] is either empty, or an interval whose bounds are exactly representable
in binary32 [respectively binary64].

An implementation can (and usually would) define these as different types, by tagging members of
S1 by one type name t1 and members of S2 by another name t2. At Level 3 they would be represented
as a pair of binary32 or binary64 floating point datums respectively. However, it could treat them
as one type, with the representation by a pair of binary32’s being a space-saving alternative to the
pair of binary64’s, to be used when convenient.]

11.6.2. Inf-sup and mid-rad types. The inf-sup type derived from a given number format F
(the type F inf-sup, e.g., “binary64 inf-sup”) is the bare interval type T comprising all intervals
whose endpoints are in F, together with Empty. F is termed the parent format of T. Note that
Entire is in T because ±∞ ∈ F by the definition of a number format, so T satisfies the requirements
for a bare interval type given in §11.6.1.

Mid-rad types are not specified by this standard but are useful for examples. A mid-rad
bare interval type is taken to be one whose nonempty bounded intervals comprise all intervals of
the form [m − r,m + r], where m is in some number format F, and r is in a possibly different
number format F′, with m, r finite and r ≥ 0. From the definition in §11.6.1 such a type, to be
conforming, must contain Empty and Entire, so at Level 3 it must have representations of these;
it may also have representations of semi-bounded intervals.

11.7. Multi-precision interval types. Multi-precision floating point systems—extendable
precision in 754 terminology—generally provide an (at least conceptually) infinite sequence of levels
of precision, where there is a finite set Fn of numbers representable at the nth level (n = 1, 2, 3, . . .),
and F1 ⊂ F2 ⊂ F3 These are typically used to define a corresponding infinite sequence of
interval types Tn with T1 ⊂ T2 ⊂ T3
[Example. For multi-precision systems that define a nonempty Tn-interval to be one whose endpoints
are Fn-numbers, each Tn is an inf-sup type with a unique interval hull operation—explicit, in the sense
of §11.8.]

A conforming implementation must define such Tn as a parameterized sequence of interval
types. It cannot take the union over n of the sets Tn as a single type, because this infinite set has
no interval hull operation: there is generally no tightest member of it enclosing a given set of real
numbers. This constrains the design of conforming multi-precision interval systems.

11.8. Explicit and implicit types, and Level 2 hull operation.
11.8.1. Hull in one dimension. Each bare interval type T shall have an interval hull operation

y = hullT(s)

specified, which is part of its mathematical definition. It maps an arbitrary set of reals, s, to a
minimal T-interval y enclosing s. Minimal is in the sense that

s ⊆ y, and for any other T-interval z, if s ⊆ z ⊆ y then z = y.

For clarity when needed, this operation is called the T-hull and denoted hullT.
Since T is a finite set and contains Entire, such a minimal y exists for any s. In general y may

not be unique. If it is unique for every subset s of R, then the type T is called explicit, otherwise
it is implicit. For an explicit type, the hull operation is uniquely determined and need not be
separately specified. For an implicit type, the implementation’s documentation shall specify the
hull operation, e.g., by an algorithm.

Two types with different hull operations are different, even if they have the same set of intervals.
[Examples. Every inf-sup type is explicit. A mid-rad type is typically implicit.

As an example of the need for a specified hull algorithm, let T be the mid-rad type (§11.6.2) where
m and r use the same floating point format F, say binary64, and let s be the interval [−1, 1+ε] where
1 + ε is the next F-number above 1. Clearly any minimal interval (m, r) enclosing s has r = 1 + ε. But
m can be any of the many F-numbers in the range 0 to ε; each of these gives a minimal enclosure of s.

A possible general algorithm, for a bounded set s and a mid-rad type, is to choose m ∈ F as close
as possible to the mathematical midpoint of the interval [s, s] = [inf s, sup s] (with some way to resolve
ties) and then the smallest r ∈ F′ such that r ≥ max(m − s, s − m). The cost of performing this
depends on how the set s is represented. If s is a binary64 inf-sup interval, it is simple. If s is defined
as the range of some exotic function, it could be expensive.]

40 April 2, 2013

DR
AF
T
7.
1

Chapter 2
P1788/D7.1, April 2, 2013

Draft Standard For Interval Arithmetic §11.10

For 754-conforming implementations the hull operations of the inf-sup types derived from the
formats binary32, binary64, binary128, decimal64 and decimal128 are denoted respectively as

hullb32, hullb64, hullb128, hulld64, hulld128.

11.8.2. Hull in several dimensions. In n dimensions the T-hull, as defined mathematically in
§11.8.1, is extended to act componentwise, namely for an arbitrary subset s of Rn it is hullT(s) =
(y1, . . . ,yn) where

yi = hullT(si),

and si = { si | s ∈ s } is the projection of s on the ith coordinate dimension. It is easily seen that
this is a minimal T-box containing s, and that if T is explicit it equals the unique tightest T-box
containing s.

11.8.3. Interval type conversion. For each supported bare interval type T, an implementation
shall provide the hull operation hullT(x) for input intervals x of any supported bare interval type.
Conversion of an interval from one type to another, whether explicit or implicit, shall be done by
applying the hull operation of the output type.

11.9. Level 2 interval extensions. Let T be a bare interval type and f an n-variable scalar
point function. A T-interval extension of f , also called a T-version of f , is a mapping f from
n-dimensional T-boxes to T-intervals, that is f : Tn → T, such that f(x) ∈ f(x) whenever x ∈ x
and f(x) is defined. Equivalently

f(x) ⊇ Rge(f |x). (34)

for any T-box x ∈ Tn, regarding x as a subset of Rn. Generically, such mappings are called Level
2 interval extensions.

Though only defined over a finite set of boxes, a Level 2 extension of f is equivalent to a full
Level 1 extension of f (§9.4.3) so that this document does not distinguish between Level 2 and
Level 1 extensions. Namely define f∗ by

f∗(s) = f(hullT(s))

for any subset s of Rn. Then the interval f∗(s) contains Rge(f | s) for any s, making f∗ a Level
1 extension, and f∗(s) equals f(s) whenever s is a T-box.

In the context of a 754-conforming implementation, typeOf operations occur, where the inputs
may be a mix of related types (e.g., the inf-sup types of binary32 and binary64). In such cases,
T is deemed to be the union of the individual types involved.

11.10. Accuracy requirements.
In this subclause, operation denotes any Level 2 version, provided by the implementation, of a

Level 1 operation with interval output and at least one interval input.
The standard makes recommendations, but no requirements, on the accuracy of operations. It

makes requirements on documenting the accuracy achieved by an implementation.

11.10.1. Measures of accuracy. Three accuracy modes are defined: tightest, accurate and
valid, that indicate the quality of interval enclosure achieved by an operation. The tightest and
valid modes apply to all interval types and all operations.

Each mode is in the first instance a property of an individual evaluation, that is of a pair
(f ,x) where f is an operation and x is an input box. The accurate mode is defined only for
inf-sup types (because it involves the nextOut function), and for interval forward and reverse
arithmetic operations of §9.6.3, 9.6.5 (because accurate requires operations f that are monotone
at Level 1: u ⊆ v implies f(u) ⊆ f(v)).

Let f exact denote the corresponding Level 1 operation and, for a forward or reverse arithmetic
operation, let f be the underlying point function2.

The weakest mode, valid, is just the property of enclosure:

f exact(x) ⊆ f(x); (35)

this is the minimal requirement for conformance. For a forward arithmetic operation, it is equiva-
lent to (34).

2Non-interval arguments, such as the p of pown(x, p), are ignored in the following

41 April 2, 2013

DR
AF
T
7.
1

Chapter 2
P1788/D7.1, April 2, 2013

Draft Standard For Interval Arithmetic §11.11

The strongest mode, tightest, is the property that f(x) equals the value f tightest(x) that gives
best possible T-interval enclosure of the Level 1 result:

f tightest(x) = hullT(f exact(x)). (36)

For a forward arithmetic operation, it is equivalent to

f(x) = hullT(Rge(f |x)). (37)

The intermediate mode accurate asserts that f(x) is valid, (35), and is at most slightly wider
than the result of applying the tightest version to a slightly widened input box:

f(x) ⊆ nextOut(f tightest(nextOut(hullT(x)))), (38)

—the inner hullT is explained below.
The nextOut function is defined as follows, for an inf-sup type T derived from a number

format F. For any F-number x, define nextUp(x) to be +∞ if x = +∞, and the least member of F
greater than x otherwise; since ±∞ belong to F by definition, this is always well-defined. Similarly
nextDown(x) is −∞ if x = −∞, and the greatest member of F less than x otherwise. [Note. For an
IEEE 754 format, these are the nextUp and nextDown functions in 754-2008 §5.3.1.]

Then for a nonempty T-interval x = [x, x], define

nextOut(x) = [nextDown(x), nextUp(x). (39)

For a T-box, nextOut acts componentwise.
[Notes. In (38):

– The inner nextOut() aims to handle the problem of a function like sinx evaluated at a very large
argument, where a small relative change in the input can produce a large relative change in the result.

– The outer nextOut() relaxes the requirement for correct (rather than, say, faithful) rounding, which
may be hard to achieve for some special functions at some arguments.

– The inputs to f might be of a different type from the output type T. The inner hullT ensures x is
widened by “at least an F-ulp” (ulp = unit in the last place) at each finite endpoint even when this
is so. For example, let T be a 2-digit decimal inf-sup type. Then nextOut widens the T-interval
x = [2.4, 3.7] to [2.3, 3.8]—an ulp at each end. But an operation might accept 4-digit decimal inf-
sup inputs, and x might be [2.401, 3.699]. Then nextOut(x) is [nextDown(2.401), nextUp(3.699)] =
[2.4, 3.7], a widening by a small fraction of an ulp. But nextOut(hullT([2.401, 3.699])) =
nextOut([2.4, 3.7]) = [2.3, 3.8], giving a significant widening.

]

11.10.2. Documentation requirements. An implementation shall document an achieved accu-
racy for each of its interval operations. This shall be done by dividing the operation’s domain
of definition into disjoint ranges and stating an accuracy in each range. This information may
be supplemented by further detail, e.g., to give accuracy data in a more appropriate way for a
non-inf-sup type.
[Example. For sin(x) in the binary64 inf-sup type the accuracy might be given as

Operation Type Mode Range
sin binary64 tightest for any x ⊆ [−1015, 1015]

accurate for all other x.

Such information by its nature is conservative; the actual accuracy might be better than stated, for
many inputs.]

Each operation should be identified by a language- or implementation-defined name of the
Level 1 operation (which may differ from that used in this standard), its output type, its input
type(s) if necessary, and any other information (e.g., a library version) needed to resolve ambiguity.

11.10.3. Recommended accuracies. For 754-conforming types, the accuracy of operations for
arbitrary interval inputs should be at least that given in Table 8, which represents what can be
achieved with acceptable efficiency at the time of writing.

42 April 2, 2013

DR
AF
T
7.
1

Chapter 2
P1788/D7.1, April 2, 2013

Draft Standard For Interval Arithmetic §11.11

(a) Forward
Name Accuracy
add(x, y) tightest
sub(x, y) tightest
mul(x, y) tightest
div(x, y) tightest
recip(x) tightest
sqrt(x) tightest
hypot(x, y) accurate
case(b, g, h) tightest
sqr(x) tightest
pown(x, p) accurate
pow(x, y) accurate
exp,exp2,exp10(x) accurate
log,log2,log10(x) accurate
sin(x) accurate
cos(x) accurate
tan(x) accurate
asin(x) accurate
acos(x) accurate
atan(x) accurate
atan2(y, x) accurate
sinh(x) accurate
cosh(x) accurate
tanh(x) accurate
asinh(x) accurate
acosh(x) accurate
atanh(x) accurate
sign(x) tightest
ceil(x) tightest
floor(x) tightest
round(x) tightest
trunc(x) tightest
abs(x) tightest
min(x1, . . . , xk) tightest
max(x1, . . . , xk) tightest

(b) Reverse
Name Accuracy
sqrRev(c, x) accurate
recipRev(c, x) accurate
absRev(c, x) accurate
pownRevc, (x, p) accurate
sinRev(c, x) accurate
cosRev(c, x) accurate
tanRev(c, x) accurate
coshRev(c, x) accurate
mulRev(b, c, x) accurate
divRev1(b, c, x) accurate
divRev2(a, c, x) accurate
powRev1(b, c, x) accurate
powRev2(a, c, x) accurate
atan2Rev1(b, c, x) accurate
atan2Rev2(a, c, x) accurate

Table 8. Accuracy levels for required arithmetic operations.

11.11. Required operations on bare intervals.
An implementation shall provide a T-version, see §11.9, of each operation listed in subclauses

§11.11.1 and §11.11.3 to §11.11.10, for each supported type T. That is, those of its inputs and
outputs that are intervals, are of type T.

A 754-conforming implementation, or part thereof, shall provide mixed-type typeOf operations,
as specified in §11.3.1, for the following operations, which correspond to those that 754 requires to
be provided as formatOf operations.

add, sub, mul, div, recip, sqrt, sqr, sign, ceil, floor, round, trunc,

abs, min, max, fma.

An implementation may provide more than one version of some operations for a given type.
For instance it may provide an “accurate” version in addition to a required “tightest” one, to offer
a trade-off of accuracy versus speed or code size. How such a facility is provided, is language- or
implementation-defined.

43 April 2, 2013

DR
AF
T
7.
1

Chapter 2
P1788/D7.1, April 2, 2013

Draft Standard For Interval Arithmetic §11.11

11.11.1. Interval literals.
An interval literal is a text string that denotes an interval, termed its value. A number literal

(within this subclause) means a string that may be part of an interval literal and denotes an
extended-real number, termed its value.

Within an interval literal, conversion of a number literal to its value is done as if in infinite
precision, ignoring any default or explicit language-defined precision specification within it. Con-
version of an interval literal’s value x to a finite-precision interval y is a separate operation. y
shall in all cases contain x; typically y is the T-hull of x for some interval type T.

The following forms of number literal shall be supported:

(1) A number literal3 of the form provided by the host language of the implementation, in decimal
or any other supported radix.

(2) Either of the strings inf or infinity, ignoring case, optionally preceded by +, with value +∞;
or preceded by -, with value −∞.

(3) A string in the hexadecimal-significand form of IEEE 754-2008, §5.12.3, with the value specified
there.

(4) A string p / q, that is p and q separated by the / character, where p, q are decimal integer
strings, with p optionally signed and q > 0. Its value is the exact rational number p/q.

[Notes. These categories need not be mutually exclusive, e.g., in C/C++ (i.e., with that host language),
form (3) is included in (1).]
[Examples. In C or Java, the number literals 0.2 and 0.2f are of form (1) and have the same value, the
real number 1

5 , despite having default precision “double”, and explicit precision “float”, respectively.

Similarly in Fortran, 0.2 and 2.d-1 both have value 1
5 . For any host language the literals 0xffp-2

(form (3)) and 255/256 (form (4)) both have the value 255
256 .]

The forms of interval literal that shall be supported are shown in the following list. To simplify
stating the needed constraints, e.g. l ≤ u, the number literals l, u,m, r are identified with their
values. Space shown between elements of a literal, below, denotes zero or more characters that
count as whitespace in the host language. For instance in the mid-rad form, whitespace may occur
on either side of m and r but not between the two characters of +-. [Note. Some characters, e.g.,
newline, may be whitespace in some contexts but not others.]

Constants: The string empty, ignoring case, whose value is the empty set ∅; and the string
entire, ignoring case, whose value is the whole line R.

Inf-sup form: a string [l , u] where l and u are number literals with l ≤ u, l < +∞ and
u > −∞, see §9.2. Its value is the mathematical interval [l, u].

Mid-rad form: a string < m +- r > where m and r are number literals representing finite
numbers with r ≥ 0. Its value is the mathematical interval [m− r,m+ r].

Uncertain form: a string m?rue where: m is a decimal number literal of form (1) above,
without exponent; r is empty or is a non-negative decimal integer ulp-count; u is empty
or is a direction character, either u (up) or d (down); and e is empty or is a decimal
exponent field for the number m. No whitespace is permitted within the string.

One ulp equals one unit in the last place of the number m as written. The literal
m? by itself denotes m with a symmetrical uncertainty of 1

2ulp, that is the interval

[m − 1
2ulp,m + 1

2ulp]. The literal m?r denotes m with a symmetrical uncertainty of r
ulps, that is [m− r×ulp,m+ r×ulp]. Adding d or u converts this to uncertainty in one
direction only, e.g. m?d denotes [m− 1

2ulp,m] and m?ru denotes [m,m+r∗ulp]. Finally
the exponent field if present multiplies the whole interval by the appropriate power of 10,
e.g. m?rue denotes 10e × [m,m+ r × ulp].

3“floating constant” in C, “real literal constant” in Fortran, “real numeric literal” in Ada, etc.

44 April 2, 2013

DR
AF
T
7.
1

Chapter 2
P1788/D7.1, April 2, 2013

Draft Standard For Interval Arithmetic §11.11

[Examples. Assuming the common types of decimal number literals are provided:

Form Literal Value
Inf-sup [1.e3, 1.1e3] [1000, 1100]

[-Inf, 2/3] [−∞, 2/3]
Mid-rad <3.56 +- 0.002> [3.558, 3.562]

<5/3 +- 1/15> [8/5, 26/15]
Uncertain 3.56? [3.555, 3.565]

3.56?2u [3.56, 3.58]
3.560?2 [3.558, 3.562]
3.56?2ue+1 [35.6, 35.8]

]
A formal description of interval literals is by the following grammar (using the notation of

754§5.12.3) which defines an intervalLiteral, subject to the constraints on l, u,m, r stated above.
anycase(s) matches all upper/lower case variants of the string s, e.g. anycase("ab") matches any
of "ab", "Ab", "aB", "AB".

sign [+-]

digit [0123456789]

natural {digit} +
langNumLit {number literal of host language}
langNumLitMant {mantissa of number literal of host language}
langNumLitExp {exponent of number literal of host language}
sp {whitespace character of host language} *
infLit {sign} ? (anycase("inf") | anycase("infinity"))
hexNumLit {see 754§5.12.3}
ratNumLit {sign} ? {digit} + "/" {digit} +
numberLiteral ({langNumLit} | {infLit} | {hexNumLit} | {ratNumLit} |)
pointIntvl "[" {sp} {numberLiteral} {sp} "]"

infSupIntvl "[" {sp} {numberLiteral} {sp} "," {sp} {numberLiteral} {sp} "]"

midRadIntvl "<" {sp} {numberLiteral} {sp} "+-" {sp} {numberLiteral} {sp} ">"

uncertIntvl {langNumLitMant} "?" {natural} ? [du]? {langNumLitExp} ?
constIntvl (anycase("empty") | anycase("entire"))
intervalLiteral ({pointIntvl} | {infSupIntvl} | {midRadIntvl} | {uncertIntvl} | {constIntvl})

4! Possible enhancements:

– Floating literals may include denotations of real constants such as Pi denoting π.

11.11.2. Interval constants. An implementation shall provide a T-version of each constant
function in §9.6.2, for each supported bare interval type T. It returns a T-interval.

11.11.3. Forward-mode elementary functions. An implementation shall provide a T-version of
each forward arithmetic operation in §9.6.3, for each supported bare interval type T. Its inputs
and output are T-intervals.

For a 754-conforming type, each such operation shall have an extension of that type with
accuracy mode as in Table 8(a). For other types, the accuracy mode is language- or implementation-
defined.
[Note. For operations with some integer arguments, such as integer power xn, only the real arguments
are replaced by intervals.]

11.11.4. Interval case expressions and case function. An implementation shall provide the
interval case(c, g,h) function, see §9.6.4, for each supported type T. The input c is of an arbitrary
supported interval type. The inputs g,h, and the result, are of type T. The implementation shall
be as if the T-version of convexHull is used in (10) of §9.6.4.

11.11.5. Reverse-mode elementary functions. An implementation shall provide a T-version of
each reverse arithmetic operation in §9.6.5, for each supported bare interval type T. Its inputs and
output are T-intervals.

For a 754-conforming type, each such operation shall have a version of that type with accuracy
mode as in Table 8(b). For other types, the accuracy mode is language- or implementation-defined.

45 April 2, 2013

DR
AF
T
7.
1

Chapter 2
P1788/D7.1, April 2, 2013

Draft Standard For Interval Arithmetic §11.11

11.11.6. Cancellative addition and subtraction. An implementation shall provide a T-version
of each of the operations cancelPlus and cancelMinus in §9.6.6, for each supported bare interval
type T. Its inputs and output are T-intervals.

It shall return an enclosure of the Level 1 value if the latter is defined, and Entire other-
wise. In particular it shall return Empty if the Level 1 value is Empty. Thus, for the case of
cancelMinus(x,y), it returns Entire in these cases:

– both x and y are unbounded;
– x 6= ∅ and y = ∅;
– x and y are nonempty bounded intervals with width(x) < width(y).

It returns an unbounded interval, which may be Entire, if the Level 1 value is defined but there is
no bounded T-interval containing it.

If T is a 754-conforming type, the result shall be the T-hull of the Level 1 result when this
is defined. [Note. This may require computing in extra precision in boundary cases: see example in
§14.6.]

At user level, implementations should only provide the operations of this subclause in decorated
form, to make “no value at Level 1” detectable.

11.11.7. Set operations. An implementation shall provide a T-version of each of the operations
intersection and convexHull in §9.6.7, for each supported bare interval type T. Its inputs and
output are T-intervals.

These operations shall return the T-interval hull of the exact result.
[Note. In particular, if T is an inf-sup type, each operation always returns the exact result. However,
this need not be the case with the mixed-type version of the operation, when T is a 754-conforming
type.]

11.11.8. Constructors. There shall be a bare interval version of each constructor in §9.6.8, for
each supported bare interval type T. It returns a T-interval.

Both nums2interval and the inf-sup form of text2interval involve testing if b = (l ≤ u) is
0 (false) or 1 (true), to determine whether the interval is empty or nonempty. In the former case,
l and u are values of supported number formats within a program; in the latter, they are floating
literals.

Evaluating b as 0 when the true value is 1 (a “false negative”) leads to falsely returning Empty
as an enclosure of the true nonempty interval. Evaluating b as 1 when the true value is 0 (a “false
positive”) is undesirable, but permissible since it returns a nonempty interval as an enclosure for
Empty. Implementations shall ensure that false negatives cannot occur, and should ensure that
false positives cannot occur.

A bare interval constructor call either succeeds or fails. This notion is used to deter-
mine the value returned by the corresponding decorated interval constructor. A language- or
implementation-defined exception should be signaled when a bare interval constructor call fails.

[Note. Evaluating b correctly can be hard, if l and u have values very close in a relative sense, and are
represented in different ways—e.g., if an implementation allows them to be floating point variables or
literals of different radices. It could be especially challenging in an extendable-precision context.

Language rules can cause such errors even when l and u have the same format. E.g., in C, if
long double is supported and has more precision than double, default behavior might be to round
long double inputs l and u to double at entry to a nums2interval call. This is forbidden—the com-
parison l ≤ u requires the exact values to be used, which requires use of a version of nums2interval

with long double arguments.]

nums2interval.

– The inputs l and u to the constructor x = nums2interval(l, u) are datums of supported number
formats Fl and Fu. Mixed format, where Fl 6= Fu, is possible. For a given T, each Fl,Fu
combination is called a kind in this subclause.

For all kinds, the result x shall enclose the Level 1 value if this exists, that is, if neither l
nor u is NaN, and the exact extended-real values of l and u satisfy l ≤ u, l < +∞, u > −∞.

The constructor call succeeds if the implementation determines that the Level 1 value exists,
or is unable to determine that it does not exist—see the discussion at the start of this subclause.
In the latter case the result shall be an interval containing l and u.

The call also succeeds in the special cases l = u = −∞ or l = u = +∞, see below.

46 April 2, 2013

DR
AF
T
7.
1

Chapter 2
P1788/D7.1, April 2, 2013

Draft Standard For Interval Arithmetic §11.11

Otherwise the call fails, and returns x = ∅.
– An implementation shall provide at least one kind where l and u have the same format. This

format should be compatible with T, see §11.5.
– For T belonging to a 754-conforming implementation, formatOf kinds shall be provided, which

accept l and u having any 754 format of that implementation, of the same radix as T’s parent
format. The result shall be the T-hull of the Level 1 result, when this exists, and shall be Empty
otherwise.

– If l = u = +∞, the Level 1 result is undefined. In finite precision however, l and u are likely to be
finite values that overflowed. Therefore in this case nums2interval shall return the tightest T-
interval that is unbounded above. For any type, this exists and has the form x = [HUGEPOS,+∞],
where HUGEPOS is a uniquely defined extended-real number < +∞.
[Note. If T is an inf-sup type based on a format F, then HUGEPOS is the largest finite F-number. For
other types, HUGEPOS can be −∞, hence x = Entire, if no T-intervals are unbounded above, except
Entire.]

If l = u = −∞, nums2interval shall return [−∞, HUGENEG], defined similarly.

text2interval.
Input s to the constructor text2interval(s) is a text string. The constructor call succeeds

if the implementation determines that s is a valid interval literal with value x, see §11.11.1, and
returns a T-interval containing x. It also succeeds if the implementation evaluates finite bounds
l, u but cannot determine that l ≤ u. In the latter case the result shall be an interval containing l
and u. Otherwise the call fails and the result is Empty.

If T is a 754-conforming type, the result shall be the T-hull of x.

11.11.9. Numeric functions of intervals. An implementation shall provide a T-version of each
numeric function in Table 3 of §9.6.9, for each supported bare interval type T. It shall return a
result in a supported number format F as defined in §11.5. Several, user-selectable, versions may
be provided, returning results in different formats.

The implementation shall document how it breaks ties, e.g., when computing the closest F-
number to a value that is midway between two F-numbers. If F is a 754-conforming format, the tie-
breaking method shall follow 754§4.3.1 and 754§4.3.3; otherwise it is language- or implementation-
defined.

If T is a 754-conforming type, versions shall be provided that return the result in any supported
754 format of the same radix as T.

– inf(x) returns the Level 1 value, rounded toward −∞.
– sup(x) returns the Level 1 value, rounded toward +∞.
– mid(x) returns NaN if x is Empty, and 0 if x is Entire. Otherwise for nonempty x = [x, x] its

value is defined by the following cases.

x, x both finite the closest finite F-number to the Level 1 value, breaking
ties appropriately;

x = −∞, x finite the finite negative F-number of largest magnitude;
x finite, x = +∞ the finite positive F-number of largest magnitude;

The three tabulated cases can be obtained by computing (x+x)/2 exactly in the extended reals
and rounding the result to the nearest finite F-number.

– rad(x) returns NaN if x is empty, and otherwise the smallest F-number r such that x is contained
in the exact interval [m− r,m+ r], where m is the value returned by mid(x).
[Note. rad(x) may be +∞ even though x is bounded, if F has insufficient range. However, if F is a
754 format and T is the derived inf-sup type, rad(x) is finite for all bounded nonempty intervals.]

– wid(x) returns the same value as 2 ∗ rad(x), rounded toward +∞.
[Note. At Level 2, wid(x) may be infinite though rad(x) is finite.]

– mag(x) returns the Level 1 value rounded toward +∞ if this value exists (if x is nonempty).
Otherwise it returns NaN.

– mig(x) returns the Level 1 value rounded toward zero if this value exists (if x is nonempty).
Otherwise it returns NaN.

11.11.10. Boolean functions of intervals.
An implementation shall provide a T-version of the function isEmpty(x) and the function

isEntire(x) in §9.6.10, for each supported bare interval type T.

47 April 2, 2013

DR
AF
T
7.
1

Chapter 2
P1788/D7.1, April 2, 2013

Draft Standard For Interval Arithmetic §12.3

An implementation shall provide a T-version of each of the comparison relations in Table 4 of
§9.6.10, for each supported bare interval type T. Its inputs are T-intervals.

For a 754-conforming part of an implementation, mixed-type versions of these relations shall
be provided, where the inputs have arbitrary 754-conforming types of the same radix.

These comparisons shall return, in all cases, the correct value of the comparison applied to the
intervals represented by the inputs as if in infinite precision. In particular equal shall return true

if and only if its arguments are equal as defined in §11.4.
11.11.11. Complete arithmetic, dot product function. An implementation that provides 754-

conforming types shall provide complete arithmetic, as specified in U. Kulisch and V. Snyder
[4], for the parent format F of at least one such type.

This involves providing a complete format datatype C(F) associated with the relevant F, and
associated operations. A C(F) datum z holds a fixed-point number of the relevant radix (2 or
10), with enough digits before and after the point to let multiply-add operations z+ x ∗ y be done
exactly, where x and y are arbitrary finite F-numbers. It also holds one bit for sign, and 3 bits for
status information (equivalent to a decoration).
[Example. For the binary64 format the recommended complete format has 4 bits for sign and status,
2134 bits before the point, and 2150 after the point, for a total of 4288 bits or 536 bytes; this allows
for at least 288 multiply-adds before overflow can occur.]

The following operations shall be provided, see [4] for details.

– convert converts from a complete format to a floating point format, or vice versa, or from one
complete format to another.

– completeAddition and completeSubtraction add or subtract two complete or floating point
format operands, of which at least one is complete, giving a complete format result.

– completeMultiplyAdd computes z+x∗y where z has a complete format and x, y are of floating
point format, giving a complete format result.

– completeDotProduct. Let a and b be vectors of length n holding floating point numbers of
format F. Then completeDotProduct(a, b) computes a · b =

∑n
k=1 akbk exactly and rounds it

once to give a result of format F.
For this final rounding, all 754 rounding modes should be supported. If correct rounding

(to nearest) is not provided then faithful rounding (with an error < 1 ulp) shall be provided.

11.12. Recommended operations.
To come shortly.

12. The decoration system at Level 2

12.1. Decorated interval types. Formally, the decorated interval type DT derived
from a bare interval type T comprises the set of triples (x, t, d) where (x, t) is a T-interval tagged
with the name t of T according to §11.4, and d ∈ D is a decoration. The members of DT are
decorated interval datums.

By convention, as with bare intervals (§11.4), the name t is omitted except when clarity
requires. Thus T is regarded as a finite set of mathematical intervals, and a member of DT
is written as a pair (x, d), equivalently xd, where x ∈ T and d ∈ D, that follows the rule for
permissible combinations in §10.4.

12.2. Required decorated types. An implementation shall provide the derived decorated
interval type for each provided bare interval type. Conversely each provided decorated interval
type shall be derived from a provided bare interval type. [Note. That is, the map “is derived from”
is a bijection from the set of provided bare interval types to the set of provided decorated interval types,
with inverse “is parent of”.]

There shall be a Not an Interval, NaI, datum of each provided decorated interval type. It shall
appear to be unique as far as Level 2 operations are concerned, but operations may be provided
to set and get a payload in an NaI for diagnostic purposes, in an implementation-defined way (see
§10.3).

12.3. Decorated versions of an operation. Let ϕ be a Level 2 operation whose (input
or output) arguments are either of bare interval type, or of a non-interval type (e.g., integer or
boolean). A decorated version of ϕ has the same number and order of arguments, with each

48 April 2, 2013

DR
AF
T
7.
1

Chapter 2
P1788/D7.1, April 2, 2013

Draft Standard For Interval Arithmetic §12.4

argument of bare interval type replaced by an argument of the derived decorated interval type;
non-interval argument types are unchanged. Further,
[Example. The integer power function pown(x, p) = xp has Level 2 bare interval versions with signature
T = pown(T,F) where T is a bare interval type and F an integer format. Its decorated version has
signature DT = pown(DT,F) where DT is the decorated type derived from T.]

12.4. Required operations on decorated intervals. 4! Elsewhere! The function newDec()
shall be provided. Its input is a T-interval or DT-interval and its output is a DT-interval as specified
in §10.5.

12.4.1. Interval literals. A decorated interval literal string s is defined to consist of an interval-
string sx followed by an underscore followed by a decoration string sd. If sx is a valid interval
literal (§11.11.1) representing an interval x according to the implementation, and sd is one of ill,
emp, trv, def, dac or com representing the corresponding decoration dx, and if xdx is a permitted
combination according to §10.4, then s is valid and its value is xdx. In all other cases s is invalid
and its value is NaI. If the implementation does not support com, then com is treated as if it were
dac.
[Note. An implementation may implicitly promote a bare interval literal with value x to the decorated
interval newDec(x) in suitable contexts, in a language-defined way.]

12.4.2. Interval constants. Each provided Level 2 interval constant (§11.11.2), returning the T-
interval Empty or Entire, shall have a decorated version that returns the DT-interval newDec(Empty)
or newDec(Entire), respectively.

12.4.3. Forward-mode elementary functions. Each provided Level 2 arithmetic operation (§11.11.3)
with arguments of type T, shall have a decorated version with corresponding arguments of type
DT. It shall be a decorated interval extension as defined in §10.6—thus the interval part of its
output is the same as if the bare interval operation were applied to the interval parts of its inputs.

The only freedom of choice in the decorated version is how the local decoration, denoted dv0
in (25) of §10.6, is computed. dv0 shall be the strongest possible (and is thus uniquely defined) if
the accuracy mode of the corresponding bare interval operation is “tightest”, but otherwise is only
required to obey (25).

12.4.4. Interval case expressions and case function. 4! TBW. Arnold Neumaier had a special
recipe, which I need to look up.

12.4.5. Interval-valued non-arithmetic operations. This set of operations includes the reverse-
mode elementary functions of §11.11.5, the cancellative addition and subtraction of §11.11.6 and
the set operations of §11.11.7. Each provided Level 2 operation of this set, with arguments of type
T, shall have a decorated version with corresponding arguments of type DT. The decoration shall
be as in §10.7.

Versions with alternative decorations such as intersectionDec and convexHullDec, if pro-
vided, should be provided for all supported types.

12.4.6. Constructors. There shall be a decorated version of each provided bare interval con-
structor of a type T. It returns a DT-interval.

nums2interval.
For any inputs, if the bare interval constructor succeeds as defined in §11.11.8, and returns a

T-interval x, the decorated version shall return newDec(x). Otherwise it shall return NaI.

text2interval.
If the input string s is a valid decorated interval literal as defined in §12.4.1, with value xdx,

the constructor shall return xdx. If s is a valid bare interval literal as defined in §11.11.1, with
value x, the constructor shall return newDec(x). Otherwise it shall return NaI.

12.4.7. Numeric functions of intervals. There shall be a decorated version of each provided
numeric function of T-intervals, see §11.11.9. It takes DT-interval input and the result format is
that of the bare interval operation.

Following §10.7, if no input is NaI, the result is obtained by discarding the decoration and
applying the corresponding bare interval operation. In the case of NaI input, the result is NaN if
the result format supports this, else is language- or implementation-defined.

12.4.8. Boolean functions of intervals.
There shall be a decorated version of each provided boolean function of T-intervals, see §11.11.9.

It takes DT-interval input and the result is boolean.

49 April 2, 2013

DR
AF
T
7.
1

Chapter 2
P1788/D7.1, April 2, 2013

Draft Standard For Interval Arithmetic §12.5

For the functions in the preceding paragraph, following §10.7, if no input is NaI then the result
is obtained by discarding the decoration and applying the corresponding bare interval operation.
In the case of NaI input, the result is false, and a language- or implementation-defined exception
should be signaled.

There shall be a function isNaI(X) with DT-interval input X, that returns true if X is NaI,
else false. It shall not raise an exception, whether or not its input is NaI.

12.5. Compressed arithmetic at Level 2. To come shortly.

50 April 2, 2013

DR
AF
T
7.
1

Chapter 2
P1788/D7.1, April 2, 2013

Draft Standard For Interval Arithmetic §13.4

13. Input and output (I/O) of intervals

13.1. Overview. This clause follows the spirit of the scheme for conversion between floating
point numbers and character sequences in the 754 standard, where §5.4.2 and §5.12 specify the
mathematical properties of conversion while leaving details, mostly of formatting, language- or
implementation-defined. It aims to minimise the risk of incompatible implementations of I/O,
while allowing languages and compilers some freedom.

The term text denotes character sequences generally, in a language-defined character set, and
string denotes a particular finite character sequence. The standard is concerned with the conversion
between intervals internal to a program, and text. It says nothing about how text may be read
from or written to a character stream.

For intervals, containment must hold on both input and output so that, when a program
computes an enclosure of some quantity given an enclosure of the data, this remains true all the
way from text data to text results.

In addition to normal I/O, the standard requires each interval type T to have a public repre-
sentation. This has two parts: operations to convert any internal T-interval x to a string s, and
back again to recover x exactly; and documentation of how to convert s to the Level 1 interval rep-
resented by x. For proprietary types in particular, this makes explicit the mathematical definition
of the type, while letting its Level 3 implementation remain private.
[Note. It follows from the “equal inputs give equal outputs” principle of §11.4 that text output of
an interval x, whether by interval2text or by interval2public, never betrays which of possible
alternative internal representations of x was used. E.g., whether a zero bound of an inf-sup interval is
stored as −0 or +0, or the quantum of a decimal bound (754§2.1.44), shall not be detectable.]

13.2. Input. Implementations shall provide for each supported interval type T a function

type-text2interval(s),

where s is a string. If s is a valid interval literal with value x, the returned value is a T-interval
enclosing x. If s is invalid, Empty is returned.

If T is a 754-conforming type, the returned value shall be the T-hull of x. The tightness of
enclosure for other types is language- or implementation-defined.

13.3. Output. Implementations shall provide a function

interval2text(x, cs)

where x is a bare interval of any supported type T and cs is a string, the conversion specifier. It
converts x to a valid interval literal s whose value encloses x, in a way specified by cs.

The allowed forms of cs are language-defined, and may depend on T, but shall let the user
specify any of the following forms for s, see §11.11.1.

(i) Inf-sup form [l , u], where the layouts of l and u can be specified independently.
(ii) Mid-rad form < m +- r >, where the layouts of m and r can be specified independently.
(iii) 4! Some of the forms given in the Vienna proposal, Part 6—to be decided.

In either of cases (i) and (ii) the resulting string shall be a valid interval literal.
Here layout of a number means the way it is output as a string. It shall be possible to specify

output to a given number of places after the point or to a given number of significant figures. (For
instance, by conversion specifiers like f12.5 and e12.5 in Fortran, or %12.5f and %12.5e in C.)

If T is a 754-conforming type, the enclosure represented by s shall be tightest possible. Namely
let x = [x, x] be a T-interval. For inf-sup form, l is the largest number of the specified layout that
is ≤ x and u is the smallest number of the specified layout that is ≥ x; either may be infinite in
case of overflow. For mid-rad form, m is the number of the specified layout that is closest to the
exact midpoint; then r is the smallest number of the specified layout such that the exact interval
[m− r,m+ r] contains x. The treatment of infinite values, overflow and tie-breaking shall follow
that of the inf, sup, mid and rad functions in §11.11.9.

For other types the tightness of enclosure of x by s is language- or implementation-defined.

51 April 2, 2013

DR
AF
T
7.
1

Chapter 2
P1788/D7.1, April 2, 2013

Draft Standard For Interval Arithmetic §13.4

13.4. Public representation. For any supported interval type T an implementations shall
provide functions type-interval2public and type-public2interval, as follows.

– For any T-interval datum x the value type-interval2public(x) is a string s, the public rep-
resentation of x. It is such that type-public2interval(s) is the same as x in the sense of
§11.4.

The string s need not contain anything (such as a typename) to identify the type T.
– The implementation’s documentation shall explain how to convert s to the mathematical interval

[l, u] represented by the datum x. This shall comprise an effective algorithm for obtaining l and
u as decimal or binary numbers, exactly or to any desired accuracy.

A public representation should (this is subjective) be simple. For instance if x represents
an interval with small integer bounds such as [1, 2], it should be straightforward to convert s by
hand or with the help of a pocket calculator. A good public representation exposes the values
of the parameters on which the mathematical model of the type is based.
[Example. Suppose T is an inf-sup type whose bounds l, u are rational numbers stored to a fixed
number of bits in “floating slash” form. That is, l = pl/ql where pl and ql (ql > 0) are integers written
in binary, occupying kl and m−kl bits respectively where kl (the slash-position) is an integer between
0 and m, and m is a constant of the type. u is similar, involving integers ku, pu, qu. The numbers
kl, pl, ql, ku, pu, qu are the parameters of the mathematical model. A good public representation might
consist of hexadecimal forms of these six numbers, embedded in suitable punctuation characters.]

If T is a 754-conforming type then the public representation s of x shall be a valid interval
literal (§11.11.1) that, for nonempty x, is of inf-sup form. Its bounds l, u shall be represented as
exact decimal numbers if T is a decimal type, or in the hexadecimal-significand form of 754§5.12.3
if T is a binary type.

52 April 2, 2013

DR
AF
T
7.
1

Chapter 2
P1788/D7.1, April 2, 2013

Draft Standard For Interval Arithmetic §13.6

This is “EXTRA BITS” — much will be discarded from final text.

4! Q for the ”Operations on decorated intervals” clause: We need to specify how the interval part
of a ill interval behaves w.r.t. real-valued functions like radius (always NaN?) . Also w.r.t. “forget
decoration” (gives Empty?).

13.5. Representations. [Note. Some of these ideas appeared in previous drafts of the standard
or in position papers, others didn’t.]

• A representation of an interval type comprises a set IF called an interval level-3 type, and whose
members are called (level 3) interval objects, together with a map r from a subset of IF (the
“valid” objects) to T. If object X maps to datum x, we say X represents x. (DS§3.1 Table 1
note b: “Not every interval object necessarily represents an interval datum, but when it does,
that datum is unique. Each interval datum has at least one representation, and may have more
than one.”)
[Note. A representation is not an approximation—it means just what it says. E.g., an interval object
in mid-rad form with midpoint m = 1 and radius r = 1e–300 means precisely the mathematical
interval [1− 10−300, 1 + 10−300].]

• A text representation of an interval type is a representation whose interval level-3 type is a set
IT of text strings.

• A representation is standardized if there is also provided a map s from the whole of T into IF,
such that s(x) is a representation of x:

r(s(x)) = x for each x in T.

The object s(x) is called the “standard representation” of the datum x.
[Example. In an inf-sup representation, r might map both the objects (-0,3) and (+0,3) to the
interval datum [0, 3]. Suppose the standardized representation always uses +0; then s would map
[0, 3] to (+0,3).]
[Note. A standardized text representation of T essentially defines a way to write any T-interval out
in text form and read it back exactly. Think of map s as “write” and r as “read”. See §13.6.2.]

13.6. Rationale for defined hulls, text representation, and reproducibility.
13.6.1. The hull. The decision whether the hull operation is made part of an interval type’s

definition affects (a) inter-interval type conversion, which is done by forming the hull; (b) the
definition of “tightest” standard functions; (c) hence reproducibility.
[Example. Use the notation m±r to mean the interval [m−r,m+r] written in mid-rad form. Let
T comprise all intervals m±r where m and r belong to the set F of 4-digit decimal floating point
numbers, with some finite exponent range that is irrelevant here.

What is the conversion of the inf-sup interval [1, 1.003] to mid-rad? If hullT is not part of the
definition of T, one implementation can choose 1.001±0.002000, another can choose 1.002±0.002000,
and both are right.]

Whether one approves of this non-uniqueness depends on one’s philosophy of the standard:
should it specify minimum demands consistent with the FTIA, or should it tie things down more
closely?

Personally I agree with Dan Zuras (754 chair for a number of years) that one of the main
reasons why the 754 floating point standard has been so successful is because it took the hard road
of specifying things down to the last bit. The parallel LIA standard, which didn’t, has sunk with
barely a trace.

So let’s tie things down. What, and how far? I think requiring mid-rad implementors to define
an unambiguous, platform-independent hull operation is not too much to ask. Nate Hayes agrees
(Clause ?? item 7).

13.6.2. Standardised text representation. In Motion 17, persuaded by Michel Hack, I included
the requirement that—for a 754-conforming inf-sup type T only—there should be a way to dump
any T-interval x to text using 754’s “hexadecimal significand” form; but we forgot to require it
should be readable back again.

The current motion goes beyond inf-sup to allow any level 3 representation whatever of in-
tervals, which, I believe, makes it especially important that there should be an exact textual
representation y of any interval datum x, documented so that the user can, if desired, manually

53 April 2, 2013

DR
AF
T
7.
1

Chapter 2
P1788/D7.1, April 2, 2013

Draft Standard For Interval Arithmetic §13.6

construct the mathematical interval represented. The two-way mapping (functions r and s) makes
it possible to confirm that what one sees as text is what is actually being computed with.

The requirement that y depend only on the level 2 datum x, not on the possibly non-unique
internal representation of x, is deliberate. It simplifies matters for the user and protects the
implementer.

13.6.3. Reproducibility. I believe reproducibility, important for floating point, is doubly im-
portant for interval computing. With default compiler options, running the same interval code
on different platforms is not expected to produce the same results down to the last bit. But a
user should be able to choose a mode that (presumably at the expense of speed) ensures identical
results on all platforms, for code restricting itself to some subset of language features.

There is a counter-argument that reproducibility is less important for interval computing: if
different platforms give different results, good, because they both enclose the true result. I accept
that but am unmoved by it. As Dan Zuras (13 July 2010) says, why should I trust either result?
For instance, what if a specialised interval computing chip has something like the famous Pentium
bug? The bug will probably be far easier to find if I can run the chip in “reproducibility mode”.

The key to reproducibility is reproducible behaviour of interval standard functions. The only
reasonable way to specify this is to require these functions to return “tightest” results for all
arguments. The remarkable work of the French experts means it will soon be practical to compute
results correct to the last bit in either rounding direction for all (point) standard functions, all
arguments and all sensible number formats, with little loss of speed. For inf-sup interval types this
makes “tightest”, hence reproducible, standard functions entirely practicable.

For general interval types I do not know how hard it is to achieve the same level of tightness
(but see Nate Hayes’ view below). In general, I believe any steps that promote reproducibility
will in the long term make systems programmers and users alike more confident that our interval
systems are correct.

54 April 2, 2013

DR
AF
T
7.
1

Chapter 2
P1788/D7.1, April 2, 2013

Draft Standard For Interval Arithmetic §14.4

14. Level 3 description

14.1. Representation of intervals by lower/upper bounds.
An implementation may choose any means to represent a level 2 interval datum x, provided

that it shall be possible to retrieve the bounds of any nonempty x exactly. This is captured by the
following definition.

A concrete interval format (ci-format) is a surjective mapping from a set C of instances
of a data structure to an associated level 2 i-format.
[Note. Typical choices are

– inf-sup representation. The data structure is an ordered pair (f1, f2) of floating point datums. A
nonempty F-interval x = [x, x] is represented by (x, x).

– neginf-sup representation. As the previous, but x = [x, x] is represented by (−x, x).

The above two ci-formats use essentially the same data structure, and represent the same i-format, but
the mappings are different.
Multi-precision interval packages may represent an interval x = [x, x] by a triple (x̂, δ, δ) where x̂ is
some point in x, and δ and δ are very small numbers, and x = [x̂+ δ, x̂+ δ] exactly; or in other ways.
]

14.2. Format conversion.
On 754 systems, level 2 interval format conversion (the hull operation) shall be implemented

in terms of the floating-point operations formatOf -convertFormat defined in 754§5.4.2, with the
appropriate outward rounding.

14.3. Interchange formats.

4! We need a motion on this subclause, which was my invention.
The purpose of interchange formats is to allow the loss-free exchange of level 2 interval data

between 754-conforming implementations. This is done by imposing a standard level 3 and level 4
representation. Let F be a 754 format and x a (bare) nonempty F-interval datum, so that its lower
bound x and upper bound x are F-numbers. An interchange format of x is the concatenation of
the bit strings of the F-representations of x and x in that order, where:

• 0 shall be represented as +0.
• For decimal formats, any member of the number’s cohort is permitted. The choice is

implementation-defined.
• When x is the empty set, x and x are taken as NaN. Whether qNaN or sNaN is used,

and any payload, are implementation-defined.

[Note. The above rules imply an interval has a unique interchange representation if it is nonempty and
in a binary format, but not generally otherwise. The reason for the rules is that the sign of a zero
endpoint cannot convey any information relevant to intervals; but an implementation may potentially
use cohort information, or a NaN payload.]

The interchange format for a decoration comprises 4! TBW. Thus a decoration occupies one
byte.

The interchange format for a decorated interval is the concatenation of those for its interval
and decoration parts, in that order.

A 754-conforming implementation shall provide an interchange format for each supported 754
interval format. Interchange formats for non-754 interval formats, and on non-754 systems, are
implementation-defined. If an implementation provides other decoration attributes besides the
standard ones, then how it maps them to an interchange format is implementation-defined.

14.4. Support levels for interval elementary functions. The Fundamental Theorem of
Interval Arithmetic (FTIA) relies on each point elementary function e in a real expression being
replaced by an interval version e. Mathematically, e may be an arbitrary interval extension of e,
and its arguments and result are not limited by any concrete interval format.

A level 2 interval version is implemented at level 3 in terms of concrete formats such as binary64.
The standard defines three levels of mixed format support, below. For each one, e delivers a result
of a specified ci-format F, from operands of a limited number of ci-formats.

Implementations shall give at least SRSF support to all supported elementary functions. 754-
conforming implementations shall give at least SRMF support.

55 April 2, 2013

DR
AF
T
7.
1

Chapter 2
P1788/D7.1, April 2, 2013

Draft Standard For Interval Arithmetic §14.5

SRSF. Single-radix, single-format. In SRSF support, e has an interval version e that takes F-
interval operand(s) and gives an F-interval result. Thus explicit format conversion is needed for
any operand of a different format from F.
SRMF. Single-radix, mixed-format. In SRMF support, e has an interval version e that takes
operand(s) of any supported interval format of the same radix as F, and gives an F-interval result.
Thus explicit format conversion is needed for any operand whose format has a different radix from
that of F.
MRMF. Mixed-radix, mixed-format. In MRMF support, e has an interval version e that takes
operand(s) of any supported interval format, and gives an F-interval result. Thus no explicit
format conversion is required for any operand.

SRMF includes SRSF (SRMF support provides SRSF in particular); and MRMF includes SRMF.
MRMF support and mixed-format interval expressions of more than one operation are consid-

ered to be language issues.
[Note. For a 754 formatOf floating-point operation, for any combination of input and output formats
of the same radix, the correctly rounded result is produced, eliminating the risk of “double rounding”
error in mixed-format operations.
Most algorithms for the basic interval operations, in particular those in §14.5, can exploit the formatOf
feature. That is, they can be written in terms of point operations so that arbitrary mixed formats of the
same radix can be handled by essentially the same code, while remaining optimally tight at the level of
a single interval operation.]

14.5. Operation tables for basic interval operations.
The tables in this subclause are an explicit realization of the general definition of interval

operations given in §9.4.3. They are not normative, but are one possible basis for coding the
interval versions of +, −, ∗, /. For fuller details see [1], [2].

Notation. In addition to the notation in §4.1 this subclause also uses, for a specified n-format
F:

5 , 4 : the roundings downwards and upwards to the next element of F,
5+ , etc. : the operations for elements of F with rounding downwards,

4+ , etc. : the operations for elements of F with rounding upwards.

♦ s : the same as hullF(s), the F-hull of a subset s of R.

For intervals a and b ∈ IR (the bounded, nonempty mathematical intervals), arithmetic operations
are defined as set operations in R by:

a ◦ b := { a ◦ b | a ∈ a ∧ b ∈ b ∧ a ◦ b is defined }, (40)

for all a and b ∈ IR and ◦ ∈ {+,−, ∗, /}. If 0 /∈ b in case of division, then for all a and b ∈ IR
also a ◦ b ∈ IR.

Then binary arithmetic operations in IF (the bounded, nonempty level 2 interval datums) are
uniquely defined by:

a ♦◦ b := ♦ (a ◦ b), (41)

for all a and b ∈ IF and all ◦ ∈ {+,−, ∗, /}. For division we assume again that 0 /∈ b.

For intervals a = [a1, a2] and b = [b1, b2] ∈ IF these operations ♦◦ , for ◦ ∈ {+,−, ∗, /}, have
the property

a ♦◦ b =

[
min
i,j=1,2

(ai 5◦ bj), max
i,j=1,2

(ai 4◦ bj)
]
,

or with the monotone roundings 5 and 4 ,

a ♦◦ b =

[
5 min

i,j=1,2
(ai ◦ bj), 4 max

i,j=1,2
(ai ◦ bj)

]
.

These operations and the unary operation −a can be expressed by more explicit formulas as
shown in Tables 9–12. There the operators for intervals are simply denoted by +,−, ∗, and /.

These tables assume that a and b are nonempty and bounded. To extend them to general
intervals, the first rule is that any operation with the empty set ∅ returns the empty set. Then, the
tables extend to possibly unbounded intervals of IF by using the standard formulae for arithmetic

56 April 2, 2013

DR
AF
T
7.
1

Chapter 2
P1788/D7.1, April 2, 2013

Draft Standard For Interval Arithmetic §14.6

operations involving ±∞, which are implemented in 754, together with one rule that goes beyond
754 arithmetic:

0 ∗ (−∞) = (−∞) ∗ 0 = 0 ∗ (+∞) = (+∞) ∗ 0 = 0.

This rule is not a new mathematical law, merely a short cut to compute the bounds of the result
of multiplication on unbounded intervals.

Negation −a = [−a2,−a1].

Addition [a1, a2] + [b1, b2] = [a1 5+ b1, a2 4+ b2].

Subtraction [a1, a2]− [b1, b2] = [a1 5− b2, a2 4− b1].
Table 9. Negation, addition, subtraction.

Multiplication [b1, b2] [b1, b2] [b1, b2]
[a1, a2] ∗ [b1, b2] b2 ≤ 0 b1 < 0 < b2 b1 ≥ 0

[a1, a2], a2 ≤ 0 [a2 5∗ b2, a1 4∗ b1] [a1 5∗ b2, a1 4∗ b1] [a1 5∗ b2, a2 4∗ b1]

a1 < 0 < a2 [a2 5∗ b1, a1 4∗ b1] [min(a1 5∗ b2, a2 5∗ b1), [a1 5∗ b2, a2 4∗ b2]

max(a1 4∗ b1, a2 4∗ b2)]

[a1, a2], a1 ≥ 0 [a2 5∗ b1, a1 4∗ b2] [a2 5∗ b1, a2 4∗ b2] [a1 5∗ b1, a2 4∗ b2]

Table 10. Multiplication.

Division, 0 /∈ b [b1, b2] [b1, b2]
[a1, a2]/[b1, b2] b2 < 0 b1 > 0

[a1, a2], a2 ≤ 0 [a2 5/ b1, a1 4/ b2] [a1 5/ b1, a2 4/ b2]

[a1, a2], a1 < 0 < a2 [a2 5/ b2, a1 4/ b2] [a1 5/ b1, a2 4/ b1]

[a1, a2], 0 ≤ a1 [a2 5/ b2, a1 4/ b1] [a1 5/ b2, a2 4/ b1]

Table 11. Division by interval not containing 0.

The general rule for computing the set a/b with 0 ∈ b is to remove its zero from the interval
b and perform the division with the remaining set. Whenever zero is an endpoint of b, the result
of the division can be obtained directly from the above table for division with 0 /∈ b by the limit
process b1 → 0 or b2 → 0 respectively. The results are shown in the following table. Here, the
parentheses stress that the bounds −∞ and +∞ are not elements of the interval.

Division, 0 ∈ b b = [b1, b2] [b1, b2]
[a1, a2]/[b1, b2] [0, 0] b1 < b2 = 0 0 = b1 < b2
[a1, a2] = [0, 0] ∅ [0, 0] [0, 0]

a1 < 0, a2 ≤ 0 ∅ [a2 5/ b1,+∞) (−∞, a2 4/ b2]
[a1, a2], a1 < 0 < a2 ∅ (−∞,+∞) (−∞,+∞)

0 ≤ a1, 0 < a2 ∅ (−∞, a1 4/ b1] [a1 5/ b2,+∞)

Table 12. Division by interval containing 0.

When zero is an interior point of the denominator, the set [b1, b2] splits into the distinct sets
[b1, 0) and (0, b2], and division by [b1, b2] actually means two divisions. The results of the two
divisions are already shown in Table 11, division with 0 ∈ b.

However, in the user’s program the two divisions appear as a single operation, as division by
an interval b = [b1, b2] with b1 < 0 < b2—an operation that delivers two distinct results.

4! Prof Kulisch’s motion proposed several ways to handle this situation, but listing them does not
seem appropriate for the standard. Suggestions for text here, please.

57 April 2, 2013

DR
AF
T
7.
1

Chapter 2
P1788/D7.1, April 2, 2013

Draft Standard For Interval Arithmetic §14.7

14.6. Care needed with innerPlus and innerMinus. (informative)
[Example. Consider inf-sup intervals using 3 decimal digit floating point arithmetic. Let x = [.0001, 1]
and y = [−1,−.0002]. Thus x is slightly the wider, so z1 = innerMinus(x,y) is defined (its exact
value is [1.0001, 1.0002] whose tightest 3-digit enclosure is [1.00, 1.01]), while z2 = innerMinus(y,x)
is not defined. However, one cannot discriminate these cases using naive 3 digit arithmetic. Comparing
width(x) with width(y) gives the wrong result, because both are computed (rounding upward) as 1.01,
suggesting z2 is defined. Computing the bounds of z2, namely [(−1.00− .0001), (−.0002−1.00)] (with
outward rounding), also gives the wrong result, namely [−1.01,−1.00], again suggesting z2 is defined.
]

Only real or simulated higher precision is guaranteed to give the correct decision in all cases.

14.7. Implementation of bare object arithmetic. (informative)

4! To be written.

58 April 2, 2013

DR
AF
T
7.
1

Chapter 2
P1788/D7.1, April 2, 2013

Draft Standard For Interval Arithmetic §15.0

15. Level 4 description

4! Probably does not need to exist in this standard.

59 April 2, 2013

DR
AF
T
7.
1

DR
AF
T
7.
1

CHAPTER 3

Kaucher Intervals

This Chapter contains the standard for the Kaucher interval flavor.
To be included.

61

DR
AF
T
7.
1

DR
AF
T
7.
1

ANNEX A

Details of flavor-independent requirements

16. List of required functions

TBW

17. List of recommended functions

TBW

63

DR
AF
T
7.
1

DR
AF
T
7.
1

ANNEX B

Including a new flavor in the standard

To be written following discussion with the IEEE MSC working group.

65

DR
AF
T
7.
1

DR
AF
T
7.
1

ANNEX C

Reproducibility

To be written.

4! Moved from earlier, hoping it is useful here.
[Example. Suppose the set-based and Kaucher flavors co-operate by sharing a type T whose intervals
have lower and upper bounds that are binary64 floating point numbers. Suppose they implement
some subset of T’s operations in “tightest” mode, returning the smallest T-interval that encloses the
Level 1 result. This specification makes such operations flavor-independent (when acting on common
intervals). Then any common evaluation, that uses only this shared type and this subset of operations,
gives identical results in both flavors, modulo the embedding map.]

67

DR
AF
T
7.
1

DR
AF
T
7.
1

ANNEX D

Set-based flavor: decoration details and examples

18. Local decorations of arithmetic operations

18.1. Forward-mode elementary functions. For each of the required functions ϕ of §9.6,
with the decoration scheme com > dac > def > trv > ill of Clause 10, Tables 1 to 2 give the
strongest local decoration for arbitrary interval inputs. That is, they give dec(ϕ,x) for an
arbitrary input box x. The following facts are used to shorten the tables:

– If any input is empty, the decoration is trv, so the tables may assume nonempty inputs.
– Functions ϕ(x1, x2, . . .) that are defined and continuous at all real arguments can be handled in

a uniform way. This covers the required functions neg, add, sub, mul, fma, sqr, pown(x, p) for
p ≥ 0, exp and its variants, sin, cos, atan, sinh, cosh, tanh, asinh and abs, together with
min and max of any number of arguments.

The functions ϕ in Table 2 have discontinuities at points within their domain of definition.
Hence, one must note a distinction between dac, which requires that the restriction of ϕ to the
input box x be continuous, and com, which makes the stronger requirement that ϕ be continuous at
each point of x. [Example. For floor(x) on [0, 12], dac is true and com is false.] For these functions,
finding the tightest interval enclosure of the range, and the local decoration, is simplified by noting
that all are increasing step functions, that is, each one satisfies ϕ(u) ≤ ϕ(v) if u ≤ v, and takes
only finitely many values in any bounded interval. Further, each one is defined on the whole real
line. For such an ϕ on an interval [x, x] it is easy to see that

(a) The restriction of ϕ to x is continuous iff ϕ(x) = ϕ(x).
(b) ϕ is continuous at each point of x iff ϕ(x) = ϕ(x) and neither x nor x is a jump point of ϕ.

This gives a simple algorithm (given in the Table) for the range and local decoration. It relies
only on ϕ itself and the set J of jump points of ϕ, so Table 2 merely displays the set J for each
function.

18.2. Interval case function.

4! JDP March 2013. This is probably wrong now. Subclause 9.6.4 defines the function case(c, g, h),
and its required bare interval extension. It propagates decorations like other arithmetic operations,
with local decoration d where

d =


if c is empty then trv

elseif c is a subset of the half- line x < 0
or c is a subset of the half- line x ≥ 0 then dac

else def.

[Note. Comparisons or overlap relations, as a mechanism for handling cases, are incompatible with
the decoration concept since there is no way to account for exceptions. The case function handles
decorations correctly. However, in most cases, functions defined using it give very suboptimal enclosures,
and it is preferable to use methods illustrated in §10.10.]

19. Examples of use of decorations

This subclause gives a number of examples intended to clarify decoration concepts and algo-
rithms.

1. If n = 1, and f is the square root function, then the strongest decoration of (f, [0, 1]) is dac;

of (f, [−1, 1]) is trv; and of (f, [−2,−1]) is emp. The expression f(x) =
√
−1− x2, as a real

function, has no value for any x, so dec(f,x) = ill for all x—though evaluation can never find
this value, see examples below.

69

DR
AF
T
7.
1

Chapter D
P1788/D7.1, April 2, 2013

Draft Standard For Interval Arithmetic §19.0

Table 1. Local decorations of required forward elementary functions. Normal
mathematical notation is used to include or exclude an interval endpoint, e.g.,
(−1, 1] denotes {x ∈ R | −1 < x ≤ 1 }. The specification for each function is
written as a set of mutually exclusive cases.

Function ϕ Strongest local decoration, for all inputs nonempty
Everywhere contin-
uous ϕ(x1, x2, . . .)

{
com if inputs bounded, and result bounded at Level 2;
dac otherwise.

div(x, y)

 com if 0 6∈ y, inputs bounded, and result bounded at Level 2;
trv if 0 ∈ y;
dac otherwise.

recip(x)

 com if 0 6∈ x, x bounded, and result bounded at Level 2;
trv if 0 ∈ x;
dac otherwise.

sqrt(x)

 trv if x 6⊆ [0,+∞];
com if x ⊆ [0,+∞], x bounded, and result bounded at Level 2;
dac otherwise.

case(c, g, h) To be done.
pown(x, p), p ≥ 0 “Everywhere continuous” case.

pown(x, p), p < 0

 com if 0 6∈ x, x bounded, and result bounded at Level 2;
trv if 0 ∈ x;
dac otherwise.

pow(x, y)

 trv if (x,y) 6⊆ D;
com if (x,y) ⊆ D, inputs bounded, and result bounded at Level 2;
dac otherwise;

where D = { (x, y) | x > 0, or x = 0 and y > 0 }.

log,log2,log10(x)

 trv if x 6⊆ (0,+∞];
com if x ⊆ (0,+∞], x bounded, and result bounded at Level 2;
dac otherwise.

tan(x)

 trv if x 6⊆ D;
com if x ⊆ D, x bounded, and result bounded at Level 2;
dac otherwise.

where D = R \ {odd multiples of π/2}.

asin(x), acos(x)

{
com if x ⊆ [−1, 1];
trv otherwise.

atan2(y, x)

 trv if (x,y) 6⊆ D;
com if (x,y) ⊆ D, inputs bounded, and result bounded at Level 2;
dac otherwise;

where D = R2 \ { (x, 0) | x ≤ 0 }.
Note reversal of arguments y, x compared with mathematical definition x, y.

acosh(x)

 trv if x 6⊆ [1,+∞];
com if x ⊆ [1,+∞], x bounded, and result bounded at Level 2;
dac otherwise.

atanh(x)

 trv if x 6⊆ (−1, 1);
com if x ⊆ (−1, 1), and result bounded at Level 2;
dac otherwise.

2. For a function defined by an expression, finding the strongest decoration over a box is typically
hard in the same way and for the same reasons that finding the tightest interval enclosure
of the exact range is hard. Straightforward interval evaluation usually does not find it. A
trivial example is the expression f(x) =

√
x− x. As a real function it gives f(x) = 0, which

is continuous for all x, so that dec(f,x) = dac for any nonempty interval x. But for any x of
more than one point, evaluating f(x) as in §10.6 gives trv as the decoration, because it takes
the square root of an interval containing negative points.

70 April 2, 2013

DR
AF
T
7.
1

Chapter D
P1788/D7.1, April 2, 2013

Draft Standard For Interval Arithmetic §19.0

Table 2. Required forward elementary functions: step functions. The set of jump
points is shown. The range and local decoration are computed by the algorithm
below.

Function ϕ Set J of jump points of ϕ.
sign(x) J = {0}
ceil(x), floor(x) J = Z
trunc(x) J = Z \ {0}
roundTiesToEven(x), roundTiesToAway(x) J = {n+ 1

2 | n ∈ Z }
At an infinite endpoint, the value of ϕ is taken as its limiting value, e.g.
sign(−∞) = −1, ceil(+∞) = +∞.

Input: nonempty x = [x, x], possibly unbounded.

y = ϕ(x), y = ϕ(x)

if y = y

if x 6∈ J and x 6∈ J and x is bounded

d = com

else

d = dac

end if

else

d = def

end if

Output: range enclosure [y, y] and local decoration d.

Similarly, the computed decoration of f(x) =
√
−1− x2 in the example above will be emp

or trv for any x, never the correct ill.
Note also that though trv is trivial in itself, to have dec(f,x) = trv is not trivial: it asserts

pemp and pdef are both false. The first implies that x has a point in Dom(f), the second that x
has a point outside Dom(f); together these imply x is an interval of positive length.

3. Consider exact arithmetic DIE of f(x, y) =
√
x(y − x)− 1 with various input intervals x, y.

Finite precision would produce valid but usually slightly different results. The natural domain
Dom(f) is easily seen to be the union of the regions x > 0, y ≥ x+ 1/x and x < 0, y ≤ x+ 1/x
in the plane.

(i) Let x = [1, 2], y = [3, 4], defining a box (x,y) contained in Dom f . Applying the newDec

function gives initial decorated intervals xdx = [1, 2]dac, ydy = [3, 4]dac. The first operation
is

udu = ydy − xdx = [1, 3]dac.

Namely, subtraction is defined and continuous on all of R2, and bounded on bounded
rectangles (call this property “nice” for short), so the bare result decoration is du′ =
dec(−, (y,x)) = dac, whence by (26) the decoration on u is du = min{du′, dy, dx} =
min{dac, dac, dac} = dac. Multiplication is also “nice”, so the second operation similarly
gives

vdv = xdx × udu = [1, 6]dac.

The constant 1, following §9.4.4, becomes a decorated interval function returning the
constant value [1, 1]dac. The next operation is again “nice”, and gives

wdw = vdv − 1 = [0, 5]dac

Finally
√
· is defined, continuous and bounded on w = [0, 5], so, arguing similarly, one has

the final result

fdf =
√
wdw = [0,

√
5]dac.

71 April 2, 2013

DR
AF
T
7.
1

Chapter D
P1788/D7.1, April 2, 2013

Draft Standard For Interval Arithmetic §20.0

By the FTDIA it is thus proven that for the box z = (x,y) = ([1, 2], [3, 4]),

[0,
√

5] ⊇ Rge(f | z),

pdac(f, z)holds.

That is, f is defined, continuous and bounded on 1 ≤ x ≤ 2, 3 ≤ y ≤ 4, and its range over
this box is a subset of [0,

√
5].

(ii) Let x = [1, 2] as before, but y = [52 , 4]. The box z is still contained in Dom f so the
true value of dec(f, z) is still dac. However the evaluation fails to detect this because
of interval widening due to the dependence problem of interval arithmetic. Namely after
udu = [52 , 3]dac, vdv = [52 , 6]dac, wdw = [− 1

2 , 5]dac, the final result has interval part f =√
[− 1

2 , 5] = [0,
√

5] as before, but
√
· is not everywhere defined on w, so that dw′ =

dec(
√
·,w) = dec(

√
·, [− 1

2 , 5]) = trv giving dec(
√
·,wdw) = min{dw′, dv} = trv, so finally

fdf = [0,
√

5]trv. This is a valid enclosure of the decorated range [0,
√

5]dac, but we have
been unable to verify the dac property.

(iii) If x = [1, 2], y = [1, 1], the box z is now wholly outside Dom f , and evaluation detects
this, giving the exact result fdf = ∅emp. However, if x = [1, 2], y = [1, 32], the box is
still wholly outside Dom f , but owing to widening, evaluation fails to detect this, giving
fdf = [0, 0]trv—a valid enclosure but of little use.

20. Implementation of compressed interval arithmetic

Table 3 gives tables of compressed arithmetic, §10.12, for the four basic operations. Here c, d
are bare decorations less than the threshold τ , and x,y are bare intervals. Independently of τ , if
any input is the decoration ill the result is ill, else if any input is the interval ∅ the result is ∅.
The tables below give the remaining cases where

trv ≤ c < τ , trv ≤ d < τ , and x, y are nonempty. (42)

Table 3. Compressed interval operations for +,−,×,÷ and
√
· with threshold

τ ∈ {trv, def, dac, com}.

Binary operations, where x or c is the left operand and y or d is the right operand.
+,−,× y d

x
Normal bare

interval result
d

c c min(c, d)

÷ y = [0, 0] 0 ∈ y 6= [0, 0] 0 /∈ y d

x emp
If τ>trv then trv, else

normal bare interval result
Normal bare

interval result
trv

c emp trv c trv

Square root, where x = [x, x].

case
√
x x < 0 emp

x < 0 ≤ x If τ>trv then trv, else normal bare interval result

x ≥ 0 Normal bare interval result
√
c trv

Some examples of compressed arithmetic follow. In items (b) onwards, conditions (42) are
assumed.

72 April 2, 2013

DR
AF
T
7.
1

Chapter D
P1788/D7.1, April 2, 2013

Draft Standard For Interval Arithmetic §21.0

(a) Justification for emp + x = emp, independent of τ .
This promotes to (∅, emp) + (x, τ) =

(
∅,min(emp, τ, emp)

)
. Since emp < τ this equals (∅, emp)

which gives an exception (again because emp < τ) so is recorded as the bare decoration emp.
The same holds if + is replaced by −,× or ÷.

(b) Justification for x× d = d independent of τ .
Since x is nonempty and d ≥ trv, this promotes to (x, τ)× (y, d) with arbitrary nonempty y,
giving

(
x× y,min(τ, d, e)

)
where e is dac if x× y is bounded, otherwise def. Now d < τ so d

cannot exceed def, hence d ≤ e, so min(τ, d, e) = d.
(c) Justification for c/d = trv independent of τ .

Since c, d ≥ trv, c/d promotes to (x, c)/(y, d) with arbitrary nonempty x,y, giving
(
x/y,min(c, d, e)

)
where e = emp if y = [0, 0], else e = trv if 0 ∈ y, else e = dac. So min(c, d, e) ≥ trv and can
equal trv, so the tightest enclosing decoration is trv.

(d) Justification for x/y when 0 ∈ y 6= [0, 0].
x/y promotes to (x, τ)/(y, τ) giving

(
x/y,min(τ, τ, trv)

)
= (x/y, trv). If τ > trv this gives

an exception so the decoration trv is returned; if τ = trv it is not an exception, so the interval
x/y is returned.

(e) Justification for
√
x with x = [x, x] and x < 0 ≤ x.√

x promotes to
√

(x, τ), giving (
√
x, trv) which in the given case equals ([0,

√
x], trv). As

with the previous item, if τ > trv then trv is returned; if τ = trv then
√
x is returned.

21. Proofs of correctness for compressed interval arithmetic

4! To be completed.

73 April 2, 2013

DR
AF
T
7.
1

Chapter D
P1788/D7.1, April 2, 2013

Draft Standard For Interval Arithmetic §22.0

22. The fundamental theorem of decorated interval arithmetic

We assume the seven-decoration set D of decorations defined by (17). However the proof of
the fundamental theorem is largely independent of the particular set of decorations chosen.

It is necessary first to clarify the case of a zero-argument arithmetic operation ϕ, which repre-
sents a real constant. A point argument of a general k-ary ϕ is a tuple u = (u1, . . . , uk) ∈ Rk. For
k = 0 this is the empty tuple (), which is the unique element of R0.

For an interval version, an argument for general k is u = (u1, . . . ,uk), representing the subset
of Rk specified by k constraints u1 ∈ u1, . . . , uk ∈ uk. For k = 0 there are no such constraints, so
the input “box” to an interval version cannot be empty: it is always the whole of R0 = {()}.

However ϕ can have empty domain, in which case it is the “Not a Number” function NaN;
otherwise its domain is R0 and it has a real value. Clearly, if ϕ is NaN then pill(ϕ,R0) holds,
otherwise pbnd(ϕ,R0) holds.

We now prove:

Theorem 22.1 (Fundamental Theorem of Decorated Interval Arithmetic, FTDIA).
Let fdf = f(x) be the result of evaluating an arithmetic expression f(z1, . . . , zn) over a bare

box x = (x1, . . . ,xn) ∈ IRn using any decorated interval version f of f. Then in addition to the
enclosure

f ⊇ Rge(f |x) (43)

given by Moore’s FTIA Theorem (page 10), we have

pdf (f,x) holds. (44)

Proof. The case where x is empty is a special case. By case (Eval1) of the definition of a decorated
interval version in §10.6, fdf = ∅ein. Also Rge(f |x) = ∅ and by definition, pein(f,x) holds, so
that (43, 44) hold.

Otherwise x is nonempty (so each of its components is nonempty) and we proceed by induction
on the number of operations in f.

The base case, where this number is zero, is that f is a variable, say zi. Then it defines the
function f(x) = xi. By case (Eval2) in §10.6, f = xi = Rge(f |x) and df is such that pdf (Id,xi)
holds, where Id is the identity function Id(x) = x on R (specifically, df = bnd if xi is bounded,
and df = dac otherwise). Then pdf (f,x) = pdf (Id,xi) holds. Thus (43, 44) hold.

Otherwise x is nonempty and f = ϕ(g1, . . . , gk) where ϕ is an arithmetic operation of arity
k ≥ 0, and the gi are expressions having fewer operations than does f. When f and the gi are
regarded as point functions, this means f(x) = ϕ(g1(x), . . . , gk(x)) for x ∈ Rn.

By the inductive hypothesis the theorem holds for each gi. (The case k = 0, where ϕ is a real
constant or NaN, needs no special treatment.) So (43, 44) applied to gi give for i = 1, . . . , k

gi ⊇ Rge(gi |x), (45)

pdgi(gi,x) holds. (46)

By the definition of a decorated interval version of f, fdf is computed using a decorated interval
extension of ϕ, hence by the definition in §10.6,

f ⊇ Rge(ϕ | g), (47)

df = min{dϕ, dg1, . . . , dgk} (48)

for some dϕ such that

pdϕ(ϕ, g) holds. (49)

We show first (43) and then (44). Denote here uk = gi(x) for some x ∈ x. Then

uk = gi(x) ∈ Rge(gi |x) ⊆ gi. (50)

For any v ∈ Rge(f |x), there is x ∈ x such that v = f(x). Then, using (50, 47),

v = f(x) = ϕ
(
g1(x), . . . , gk(x)

)
= ϕ

(
u1, . . . , uk

)
= ϕ(u) ∈ Rge(ϕ | g) ⊆ f .

74 April 2, 2013

DR
AF
T
7.
1

Chapter D
P1788/D7.1, April 2, 2013

Draft Standard For Interval Arithmetic §22.0

Since v was arbitrary, this proves (43).
It remains to prove (44). Corresponding to the different meanings of the decorations, this is

verified on a case by case basis, starting with the least decoration.
Case df = ill. Then either some dgi = ill or dϕ = ill.

• If dgi = ill, by (46) Domϕ is empty.
• If dϕ = ill, hence by (49) Domϕ is empty.

In either case, by the definition of the point function f , Dom f is empty so (44) holds.
Case df = emp. Then either some dgi = emp or dϕ = emp.

• If dgi = emp, by (46) x is disjoint from Dom gi.
• If dϕ = emp, by (49) g is disjoint from Domϕ.

In either case there is no x ∈ x for which f(x) is defined. That is, x is disjoint from Dom f , and
(44) holds.

Case df = trv. This is always true, and nothing needs to be shown.
Case df = def. Then each dgi ≥ def, and dϕ ≥ def. Thus by (46, 49), each gi is everywhere

defined on x, with values in gi by (45), and ϕ is everywhere defined on g. Hence f is everywhere
defined on x so again (44) holds.

Case df = dac. This is as the def case with the addition that the restriction of each gi to
x is everywhere defined and continuous, and the restriction of ϕ to g is everywhere defined and
continuous. Hence the restriction of f to x is everywhere defined and continuous so again (44)
holds.

Case df = bnd. Then each dgi ≥ bnd, and dϕ ≥ bnd. By similar reasoning, the restriction of
f to x is everywhere defined, continuous and bounded so again (44) holds.
(In fact all one needs to deduce this is that each dgi ≥ dac, and dϕ ≥ bnd.)

Case df = ein. This cannot occur since x was assumed nonempty.
Hence all cases have been covered. This completes the induction step and the proof. �

75 April 2, 2013

DR
AF
T
7.
1

DR
AF
T
7.
1

ANNEX E

Further material for set-based standard (informative)

This may possibly be included in some form in the Annexes to the standard.

23. Type conversion in mixed operations

4! This needs checking by language and compiler experts and should be the subject of a separate
motion. Also, does it all belong in the decorations section? Indeed should it be in Level 1 at all?

Decorated interval arithmetic is designed for maximal safety, while being simple to handle by
inexperienced users. Safety requirements can be enforced only by restrictions on the kinds of type
conversions permitted.

Operations between integers and decorated intervals are well-defined and hence permitted,
with integers treated as constant functions.

Operations between floats and decorated intervals are error-prone and hence forbidden, since,
e.g., (2/3) ∗ x in program text would generate uncovered roundoff, and 0.2 ∗ x would generate
uncovered conversion errors. This ensures that the user must call explicitly a conversion function
iconst that performs the outward rounding, see §13, to convey the precise semantics of such mixed
expressions. This avoids a loss of containment because of rounding errors or conversion errors.

In particular, there is no implicit type casting for real times decorated interval. Therefore,
2/3∗x with reals or integers 2 and 3 and a decorated interval x results in a type error when trying
to evaluate the multiplication.

However, implicit type casting for text constants times interval is harmless, as text constants
have no arithmetic operations defined on them, hence they can be unambiguously type cast to
decorated intervals when occurring in an interval expression if the implementation language allows
that. Therefore, 2/3 ∗ x is allowed if the compiler translates 2 and 3 into constant functions.

Mixed operations between bare intervals and decorated intervals are also forbidden, to avoid
loss of rigor through non-arithmetic operations; again, explicit conversion using the function
newDec must be used. However, explicit, constant bare intervals in program code may be treated
by the compiler as constant functions with uncertain value when the bare interval is nonempty,
and as the ill-formed constant when the bare interval is empty or ill-formed.

24. The “Not an Interval” object

4! TO BE REVISED
From §9.4.4, a real scalar function with no arguments—a mapping Rn → Rm with n = 0 and

m = 1—is a real constant.
This specification of constants gives a Level 1 definition of NaN, “Not a Number”—not as a

value, but as a constant function. R0 is the zero-dimensional vector space {0}—it has one element,
conventionally named 0. The real numbers c are in one-to- one correspondence with the mappings
c() : 0 7→ c, so that R can be identified with the total functions R0 → R. There is one non-total
c(), the function NaN() with empty domain and, therefore, no value.

From the definition in §9.4.3, an interval extension of a real constant with value c is any zero-
argument interval function that returns an interval containing c. The natural extension returns
the interval [c, c].

Its natural interval extension is the constant interval function whose value is the empty interval.
the zero-argument function with empty domain is the real constant function with value NaN,

“Not a Number”. It is easily seen that NaN’s natural interval extension is the interval constant
function with value ∅, and its natural decorated interval extension is the decorated interval constant
function with value NaI = (∅, ill). (This was pointed out by Arnold Neumaier.)

77

DR
AF
T
7.
1

Chapter E
P1788/D7.1, April 2, 2013

Draft Standard For Interval Arithmetic §24.0

The decorated interval NaI has behaviour that qualifies it for the role of “Not an Interval”.
By definition it signals that it is the result of evaluating a null function, with empty domain.

It is returned by any invalid call to an interval constructor, such as “the interval from 3
to NaN”. It is unconditionally “sticky” within arithmetic expressions, in the sense that if any
argument to an arithmetic operation is NaI, then that operation’s output is NaI.

However, it cannot be generated “new” during evaluation of any expression that uses normal
operations, even if the theoretical function being defined has empty domain. For example, the
expression

f(x) =
√
−1− x2

clearly defines, over the reals, a function with empty domain; but decorated interval evaluation
can never notice this. With any non-NaI input, it will return (∅, emp) and not (∅, ill).

Hence, in practice, NaI behaves as one expects it to do: it records the “taint of illegitimacy”
of an interval’s ancestry. A decorated interval is NaI iff it is the result of an ill-formed construction
or is the computational descendant of such a result.

78 April 2, 2013

DR
AF
T
7.
1

Bibliography

[1] Allen, James F. Maintaining knowledge about temporal intervals. Communications of the ACM 26, 832–843,
(November 1983).

[2] Kulisch, Ulrich. Complete Interval Arithmetic and its Implementation on the Computer. Position paper, and

the Dagstuhl 2008 proceedings.
[3] Kulisch, Ulrich. Computer Arithmetic and Validity: Theory, Implementation, and Applications. de Gruyter,

Berlin, New York, (2008).

[4] Kulisch, Ulrich and Snyder, Van. The exact dot product as basic tool for long interval arithmetic. Position
paper, P1788 Working Group, version 11, July 2009.

[5] Moore, Ramon E. Interval Analysis. Prentice-Hall, Englewood Cliffs, N.J., (1966).

[6] Nehmeier, Marco and Siegel, Stefan and Wolff von Gudenberg, Jürgen. Specification of hardware for interval
arithmetic. Computing 94, 243-255, (2012).

[7] Neumaier, Arnold. Vienna Proposal for Interval Standardization. Faculty of Mathematics, University of Vienna,

(December 2008). http://www.mat.univie.ac.at/~neum
[8] Pryce, John D. and Corliss, George F. Interval arithmetic with containment sets. Computing 78, 251–276,

(2006).
[9] Pryce, John D. P1788 Motion 6: Multi-Format Support: Text and Rationale, (2009).

79

http://www.mat.univie.ac.at/~neum

	Frontmatter
	Introduction
	Mathematical context
	Specification Levels
	The Fundamental Theorem
	Operations
	Decorations

	Chapter 1. General Requirements
	1. Overview
	1.1. Scope
	1.2. Purpose
	1.3. Inclusions
	1.4. Exclusions
	1.5. Word usage
	1.6. The meaning of conformance
	1.7. Programming environment considerations
	1.8. Language considerations

	2. Normative references
	3. Conformance Clause
	3.1. Set-based interval arithmetic
	3.2. Kaucher interval arithmetic

	4. Notation, abbreviations, definitions
	4.1. Frequently used notation and abbreviations
	4.2. Definitions
	4.2.1. arithmetic operation
	4.2.2. box
	4.2.3. domain
	4.2.4. elementary function
	4.2.5. expression
	4.2.6. fma
	4.2.7. hull
	4.2.8. implementation
	4.2.9. inf-sup
	4.2.10. interval
	4.2.11. interval extension
	4.2.12. interval function, interval mapping
	4.2.13. interval library
	4.2.14. natural domain
	4.2.15. no value vs. undefined
	4.2.16. non-arithmetic operation
	4.2.17. number
	4.2.18. point function, point operation
	4.2.19. point library
	4.2.20. range
	4.2.21. string
	4.2.22. tightest
	4.2.23. version

	5. Structure of the standard in levels
	6. Expressions and the functions they define
	7. Flavors
	7.1. Flavors overview
	7.2. Definition of common intervals and common evaluations
	7.3. Loose common evaluations
	7.4. Relation of common evaluations to flavors
	7.5. Flavors and the Fundamental Theorem

	8. Decoration system
	8.1. Decorations overview
	8.2. Decoration definition and propagation
	8.3. Recognizing common evaluation

	Chapter 2. Set-Based Intervals
	9. Level 1 description
	9.1. Non-interval Level 1 entities
	9.2. Intervals
	9.3. Hull
	9.4. Functions
	9.4.1. Function terminology
	9.4.2. Point functions
	9.4.3. Interval-valued functions
	9.4.4. Constants

	9.5. Expressions
	9.6. Required operations
	9.6.1. Interval literals
	9.6.2. Interval constants
	9.6.3. Forward-mode elementary functions
	9.6.4. Interval case expressions and case function
	9.6.5. Reverse-mode elementary functions
	9.6.6. Cancellative addition and subtraction
	9.6.7. Non-arithmetic (set) operations
	9.6.8. Constructors
	9.6.9. Numeric functions of intervals
	9.6.10. Boolean functions of intervals
	9.6.11. Dot product function

	9.7. Recommended operations (optional)
	9.7.1. Forward-mode elementary functions
	9.7.2. Extended interval comparisons
	9.7.3. Slope functions

	10. The decoration system at Level 1
	10.1. Decorations and decorated intervals overview
	10.2. Definitions and basic properties
	10.3. The ill-formed interval
	10.4. Permitted combinations
	10.5. Initial decoration
	10.6. Decorations and arithmetic operations
	10.7. Decorations and non-arithmetic operations
	10.8. Boolean functions of decorated intervals
	10.9. Operations on decorations
	10.10. User-supplied functions
	10.11. The com decoration
	10.12. Compressed arithmetic with a threshold (optional)
	10.12.1. Motivation
	10.12.2. Compressed interval types
	10.12.3. Operations

	11. Level 2 description
	11.1. Level 2 introduction
	11.2. Naming conventions for operations
	11.3. 754-conformance
	11.3.1. 754-conforming mixed-type arithmetic

	11.4. Tagging, and the meaning of equality at Level 2
	11.5. Number formats
	11.6. Bare interval types
	11.6.1. Definition
	11.6.2. Inf-sup and mid-rad types

	11.7. Multi-precision interval types
	11.8. Explicit and implicit types, and Level 2 hull operation
	11.8.1. Hull in one dimension
	11.8.2. Hull in several dimensions
	11.8.3. Interval type conversion

	11.9. Level 2 interval extensions
	11.10. Accuracy requirements
	11.10.1. Measures of accuracy
	11.10.2. Documentation requirements
	11.10.3. Recommended accuracies

	11.11. Required operations on bare intervals
	11.11.1. Interval literals
	11.11.2. Interval constants
	11.11.3. Forward-mode elementary functions
	11.11.4. Interval case expressions and case function
	11.11.5. Reverse-mode elementary functions
	11.11.6. Cancellative addition and subtraction
	11.11.7. Set operations
	11.11.8. Constructors
	11.11.9. Numeric functions of intervals
	11.11.10. Boolean functions of intervals
	11.11.11. Complete arithmetic, dot product function

	11.12. Recommended operations

	12. The decoration system at Level 2
	12.1. Decorated interval types
	12.2. Required decorated types
	12.3. Decorated versions of an operation
	12.4. Required operations on decorated intervals
	12.4.1. Interval literals
	12.4.2. Interval constants
	12.4.3. Forward-mode elementary functions
	12.4.4. Interval case expressions and case function
	12.4.5. Interval-valued non-arithmetic operations
	12.4.6. Constructors
	12.4.7. Numeric functions of intervals
	12.4.8. Boolean functions of intervals

	12.5. Compressed arithmetic at Level 2

	13. Input and output (I/O) of intervals
	13.1. Overview
	13.2. Input
	13.3. Output
	13.4. Public representation
	13.5. Representations
	13.6. Rationale for defined hulls, text representation, and reproducibility
	13.6.1. The hull
	13.6.2. Standardised text representation
	13.6.3. Reproducibility

	14. Level 3 description
	14.1. Representation of intervals by lower/upper bounds
	14.2. Format conversion
	14.3. Interchange formats
	14.4. Support levels for interval elementary functions
	14.5. Operation tables for basic interval operations
	14.6. Care needed with innerPlus and innerMinus
	14.7. Implementation of bare object arithmetic

	15. Level 4 description

	Chapter 3. Kaucher Intervals
	Annex A. Details of flavor-independent requirements
	16. List of required functions
	17. List of recommended functions

	Annex B. Including a new flavor in the standard
	Annex C. Reproducibility
	Annex D. Set-based flavor: decoration details and examples
	18. Local decorations of arithmetic operations
	18.1. Forward-mode elementary functions
	18.2. Interval case function

	19. Examples of use of decorations
	20. Implementation of compressed interval arithmetic
	21. Proofs of correctness for compressed interval arithmetic
	22. The fundamental theorem of decorated interval arithmetic

	Annex E. Further material for set-based standard (informative)
	23. Type conversion in mixed operations
	24. The ``Not an Interval'' object

	Bibliography

