
DR
AF
T
04
.2

P1788: IEEE Standard For Interval Arithmetic Version 04.2

John Pryce and Christian Keil, Technical Editors

DR
AF
T
04
.2

DR
AF
T
04
.2

4! To the P1788 reader.

General. Passages in this color are my editorial comments: mostly asking for answers to or debate
on a question; or giving my opinion; or noting changes made.

Ignore text like this: (some text)→delete1. It belongs in the full text but isn’t relevant to the part !
currently under discussion, and it didn’t seem worth rewriting the whole sentence.

Definitions. Christian has done a lot of work on these. We believe they are now reasonably com-
plete, and consistent with each other and the text. Only those definitions relevant to Level 1 are
included in the current text.

Required and recommended elementary point functions. The lists in §5.6, 5.7 have not been voted
on in their present form. I formed those in §5.6.2, 5.7.1 from the original lists of Jürgen Wolff von
Gudenberg in Motion 10, much modified by subsequent discussion.

Maybe the group will accept them as they are; but if they prove controversial, we shall need sepa-
rate motions to discuss them.

Provisional items. The subclauses §5.6.7 Constructors, and §5.6.8 Numeric functions of intervals
Boolean functions of intervals, are purely provisional, and are not part of the present motion. I look
forward to people starting discussion and submitting motions to decide these items.

Notes to version of 2012/01/23. Main changes from the previous version of 2011/12/05
are as follows.

(a) §5.6.9, Boolean functions of intervals. This is now part of the text to be voted on. I had
forgotten we passed 2 motions on comparisons!

The 7 Kulisch comparisons are included as Required operations. So are isEmpty, isEntire,
and areDisjoint, following the Vienna proposal.

(b) I have made the motion 21 “overlapping” function a Recommended operation (this is open to
change) and given a brief explanation of how it can be used as a primitive for implementing
other comparisons.

(c) I had also forgotten inner addition and subtraction (Motion 12). These are in §5.6.5 but not
exactly as in Motion 12. See my justification there.

(d) A new subclause “Constants” is inserted at the start of §5.6 “Required operations”. Ian
McIntosh made me realize something on this is needed. This is very much a first attempt.

(e) Text strings are explicitly stated (§5.1) to be things one can talk about at Level 1.
(f) In the numeric functions of intervals, “diameter” renamed “width” as being shorter, and the

function renamed from diam to wid.

1CK

3

DR
AF
T
04
.2

Draft 04.2
IEEE Std P1788

IEEE Standard For Interval Arithmetic §3.2

3. Notation, abbreviations, definitions

3.1. Notation and abbreviations.

754 IEEE-Std-754-2008 “IEEE Standard for Floating-Point Arithmetic”.
R the set of real numbers.
R∗ the set of extended real numbers, R ∪ {−∞,+∞}}.
IR the set of bounded, nonempty closed real intervals.
IR the set of closed real intervals, including unbounded intervals and the empty set.
F the subset of R∗ representable in a given floating point format.
IF the intervals of IR whose bounds are in F.
IF the intervals of IR whose bounds are in F.
Empty the empty set.
Entire the whole real line.
NaI Not an Interval.
NaN Not a Number.
qNaN quiet NaN.
sNaN signaling NaN.
x, y, . . . [resp. f, g, . . .] generic notation for a numeric value [resp. numeric function].
x,y, . . . [resp. f , g, . . .] generic notation for an interval value [resp. interval function].
f, g, . . . generic notation for an expression, producing a function by evaluation.
Domain(f) domain of a point-function f .
Range(f | s) range of a point-function f over a set s.

Same as image of s under f .

3.2. Definitions.

4! Definitions belonging to Levels 2 onward have been temporarily removed.
Dan Zuras notes that the Definitions subclause should be self-contained, i.e. one does not need to

look outside it to understand a definition, at least in outline. Please check if this rule is flouted.
3.2.1. arithmetic operation. A function provided by an implementation (see Definition 3.2.9).

It comes in three forms: the point operation, which is a mathematical real function of real vari-
ables such as log(x); one or more interval versions, each being an interval extension of the point
operation. (; and one or more decorated interval versions, each being a decorated interval!
extension of the point operation)→delete2

Together with the interval non-arithmetic operations (§5.4.1), these form the implementation’s
library, which splits into the point library containing point functions and the interval library
containing interval functions.

A basic arithmetic operation is one of the seven functions +, −, ×, ÷, fused multiply-add
fma, square root sqrt, and exact dot product edot.

Constants such as 3.456 and π are regarded as arithmetic operations whose number of argu-
ments is zero. Details in §5.4.4.

3.2.2. box. See Definition 3.2.11.
3.2.3. domain. For a function with arguments taken from some set, the domain comprises

those points in the set at which the function has a value. The domain of an arithmetic operation is
part of its definition. E.g., the (point) arithmetic operation of division x/y, in this standard, has
arguments (x, y) in R2, and its domain is the set { (x, y) ∈ R2 | y 6= 0 }. See also Definition 3.2.16.

3.2.4. edot. Exact dot product operation, that computes
∑n

i=1 xiyi. One of the basic arith-
metic operations.

3.2.5. elementary function. Synonymous with arithmetic operation.
3.2.6. expression. A symbolic object f that is either a symbolic variable or, recursively, of the

form φ(g1, . . . , gk), where φ is the name of a k-argument arithmetic or non-arithmetic operation
and the gi are expressions. It is an arithmetic expression if all its operations are arithmetic
operations. Writing f(z1, . . . , zn) makes f a bound expression, giving it an argument list
comprising the variables zi in that order, which must include all those that occur in f.

Details in §5.5.1. For the ways in which an expression defines a function, see §5.5.2, 5.5.3.

2CK 2011-10-15 Not in the motion.

8 January 25, 2012

DR
AF
T
04
.2

Draft 04.2
IEEE Std P1788

IEEE Standard For Interval Arithmetic §3.2

3.2.7. fma. Fused multiply-add operation, that computes x × y + z with only one rounding.
One of the basic arithmetic operations.

3.2.8. hull. (Full name: interval hull.) When not qualified by the name of a finite-precision
interval type, the hull of a subset s of R is the tightest interval containing s.

3.2.9. implementation. When used without qualification, means a realization of an interval
arithmetic conforming to the specification of this standard.

3.2.10. inf-sup. Describes a representation of an interval based on its lower and upper bounds.
3.2.11. interval. A closed connected set of real numbers, may be empty, bounded or un-

bounded. Belongs to the set of intervals IR.
A box or interval vector is an n-dimensional interval, i. e. a tuple (x1, . . . ,xn) where the xi

are 1-dimensional intervals. Often identified with the cartesian product x1 × . . . × xn ⊆ Rn, it is
empty if any of the xi is empty. Details in §5.2.

3.2.12. interval extension. An interval extension of a point function f is a function f from
intervals to intervals such that f(x) belongs to f(x) whenever x belongs to x and f(x) is defined.
Details in §5.4.3.

3.2.13. interval function, interval mapping. A function from intervals to intervals is called
an interval function if it is an interval extension of a point function, and an interval mapping
otherwise. Details in §5.4.3.

3.2.14. interval library. See Definition 3.2.1.
3.2.15. interval version. See Definition 3.2.1.
3.2.16. natural domain. For an arithmetic expression f(z1, . . . , zn), the natural domain is the

set of x = (x1, . . . , xn) ∈ Rn where the expression defines a value for the associated point function
f(x). See §5.5.

3.2.17. number. Any member of the set R ∪ {−∞,+∞} of extended reals: a finite number
if it belongs to R, else an infinite number. See §??

3.2.18. point function, point operation. A mathematical function of real variables: that
is, a map f from its domain, which is a subset of Rn, to Rm, where n ≥ 0,m > 0. It is scalar
if m = 1. Any arithmetic expression f(z1, . . . , zn) defines a (usually scalar) point function, whose
domain is the natural domain of f.

3.2.19. point library. See Definition 3.2.1.
3.2.20. range. The range, Range(f | s), of a point function f over a subset s of Rn is the set of

all values that f assumes at those points of s where it is defined, i.e. { f(x) | x ∈ s and x ∈ Domain f }.
3.2.21. string. A text string, or just string, is a finite sequence of characters belonging to

some alphabet. See §5.1.
3.2.22. tightest. Smallest in the set sense. The tightest set (unique, if it exists) with a given

property is contained in every other set with that property.

9 January 25, 2012

DR
AF
T
04
.2

Draft 04.2
IEEE Std P1788

IEEE Standard For Interval Arithmetic §4.2

Relationships between specification levels for interval arithmetic
(for a given finite-precision interval type T)

Level 1

Number system R.
Set IR of allowed intervals over R.

Principles of how +, −, ×, ÷ and other
arithmetic operations are extended to intervals.

Mathematical
Model level.

↓T-interval hull identity map ↑
total, many-to-onea total, one-to-oneb

Level 2
A finite subset T of IR —the T-interval datums—

and operations on them.
Interval

datum level.

“represents” ↑
partial, many-to-one, ontoc

Level 3
Representation of a T-interval,

e.g. by two floating point numbers.
Representations
of interval data.

“encodes” ↑
partial, many-to-one, ontod

Level 4 Encodings 0111000... Bit strings.

Table 1. Specification levels for interval arithmetic

4. Structure of the standard in levels

4.1. Specification levels overview.
The standard is structured into four levels, summarized in Table 1, that match the levels

defined in the 754 standard, see 754 Table 3.1.
Level 1, in Clause 5, defines the mathematical theory underlying the standard. The entities at

this level are mathematical intervals and operations on them. Conforming implementations shall
implement this theory.

Level 2, in Clause 6, is the central part of the standard. Here the mathematical theory is
approximated by an implementation-defined finite set of entities and operations. A level 2 entity
is called a datum (plural “datums” in this standard, since “data” is often misleading). (In addition!
to an ordinary (bare) interval, this level defines a decorated interval, comprising a bare interval and
a decoration. Decorations implement the P1788 exception handling mechanism.)→delete3

Level 3, in Clause 7, is concerned with the representation of interval datums—usually but
not necessarily in terms of floating point values. A level 3 entity is an interval object. The Level
3 requirements in this standard are few, and concern mappings from internal representations to
external ones, such as interchange formats and I/O.

Level 4, in Clause 8, is concerned with the encoding of interval objects. A level 4 entity is a
bit string. This standard makes no Level 4 requirements.

The arrows in Table 1 denote mappings between levels. The phrases in italics name these
mappings. Each phrase “total, many-to-one”, etc., labeled with a letter a to d, is descriptive of
the mapping and is equivalent to the corresponding labeled fact below.
a. Each mathematical interval (indeed each subset of R) has a unique interval datum as its T-hull.
b. Each interval datum is a mathematical interval.
c. Not every interval object necessarily represents an interval datum, but when it does, that datum

is unique. Each interval datum has at least one representation, and may have more than one.
d. Not every interval encoding necessarily encodes an interval object, but when it does, that object

is unique. Each interval object has at least one encoding and may have more than one.

4.2. Conformance requirements. 4! Temporarily omitted since they are almost entirely
about levels 2 onward.

3CK

10 January 25, 2012

DR
AF
T
04
.2

Draft 04.2
IEEE Std P1788

IEEE Standard For Interval Arithmetic §5.4

5. Level 1 description

In this clause, subclauses §?? to §5.5 describe the theory of mathematical intervals and interval
functions that underlies this standard. The relation between expressions and the point or interval
functions that they define is specified, since it is central to the Fundamental Theorem of Interval
Arithmetic. Subclauses §5.6, 5.7 list the required and recommended arithmetic operations (also
called elementary functions) with their mathematical specifications. (Subclause 5.8 describes, at !
a mathematical level, the system of decorations that is used among other things for exception
handling in P1788.)→delete4

5.1. Non-interval Level 1 entities. in addition to intervals, the standard deals with entities
of the following kinds. They may be used as inputs or outputs of operations.

– The set R∗ = R ∪ {−∞,+∞} of extended reals. Following the terminology of 754 (e.g.,
754§2.1.25), any member of R∗ is called a number: it is a finite number if it belongs to R, else
an infinite number.

An interval’s members are finite numbers, but its bounds can be infinite. Finite or infinite
numbers can be input to interval constructors, as well as output from operations, e.g., the interval
width operation.

– The set of (text) strings, that is finite sequences of characters chosen from some alphabet.
Since Level 1 is primarily for human communication, the standard makes no Level 1 restrictions
on the alphabet used. Strings may be inputs to interval constructors, as well as inputs or outputs
of read/write operations.

5.2. Intervals. The set of mathematical intervals in R, denoted IR, comprises5 all closed
intervals of real numbers

x = [x, x] := {x ∈ R | x ≤ x ≤ x },
where the bounds x, x are extended-real numbers satisfying −∞ ≤ x ≤ x ≤ +∞.
[Notes.

– In particular, the empty interval [−∞,−∞] = [+∞,+∞] = ∅ belongs to IR.
– The above definition implies −∞ and +∞ can be bounds of an interval, but are never members of it.
– The round bracket or outward bracket notations for closed intervals in R with an infinite end point

(e.g., [2,+∞) or [2,+∞[instead of [2,+∞]) are not used in this document but are not considered
wrong.

]
A box or interval vector is an n-tuple (x1, . . . ,xn) whose components xi are intervals, that is

a member of IRn
. Usually x is identified with the cartesian product x1×. . .×xn of its components,

a subset of Rn. In particular x ∈ x, for x ∈ Rn, means xi ∈ xi for all i = 1, . . . , n; and x is empty
if (and only if) any of its components xi is empty.

5.3. Hull. The (interval) hull of an arbitrary subset s of Rn, written hull(s), is the tightest

member of IRn
that contains s. (The tightest set with a given property is the intersection of all

sets having that property, provided the intersection itself has this property.)

5.4. Functions.
5.4.1. Function terminology. In this standard, operations are written as named functions; in

a specific implementation they might be represented by operators (i.e., using some form of infix
notation), or by families of type-specific functions, or by operators or functions whose names might
differ from those in this standard.

The terms operation, function and mapping are broadly synonymous. The following summa-
rizes the usage in this standard, with references in parentheses to precise definitions of terms.

– A point function (§5.4.2) is a mathematical real function of real variables. Otherwise, function
is usually used with its general mathematical meaning.

– A (point) arithmetic operation (§5.4.2) is a mathematical real function for which an implemen-
tation provides versions in the implementation’s library (§5.4.2).

4CK Decorations are not part of the motion
5The overline is for compatibility with older notation, which uses IR for the set of closed and bounded real

intervals.

11 January 25, 2012

DR
AF
T
04
.2

Draft 04.2
IEEE Std P1788

IEEE Standard For Interval Arithmetic §5.4

– A version of a point function f means a function derived from f , such as an interval extension
(§5.4.3) of it; usually applied to library functions.

– An interval arithmetic operation is an interval version of a point arithmetic operation (§5.4.3).
– An interval non-arithmetic operation is an interval-to-interval library function that is not an

interval arithmetic operation (§5.4.3).
– A constructor is a function that creates an interval from non-interval data (§6.6.4).

5.4.2. Point functions. A point function is a (possibly partial) multivariate real function:
that is, a mapping f from a subset D of Rn to Rm for some integers n ≥ 0,m > 0. The function is
called a scalar function if m = 1, otherwise a vector function. When not otherwise specified, scalar
is assumed. The set D where f is defined is its domain, also written Domain f . To specify n, call
f an n-variable point function, or denote values of f as

f(x1, . . . , xn). (1)

The range of f over an arbitrary subset s of Rn is the set

Range(f | s) := { f(x) | x ∈ s and x ∈ Domain f }. (2)

Thus mathematically, when evaluating a function over a set, points outside the domain are ignored
(e.g., Range(sqrt | [−1, 1]) = [0, 1]).

Equivalently, for the case where f takes separate arguments s1, . . . , sn, each being a subset
of R, the range is written as Range(f | s1, . . . , sn). This is an alternative notation when s is the
cartesian product of the si.

A (point) arithmetic operation is a function for which an implementation provides versions
in a collection of user-available operations called its library. This includes functions normally
written in operator form (e.g., +, ×) and those normally written in function form (e.g., exp,
arctan). It is not specified how an implementation provides library facilities.

5.4.3. Interval-valued functions. A box is an interval vector x = (x1, . . . ,xn) ∈ IRn
. It is

usually identified with the cartesian product x1 × . . . × xn ⊆ Rn; however, the correspondence is
one-to-one only when all the xj are nonempty.

Given an n-variable scalar point function f , an interval extension of f is a (total) mapping

f from n-dimensional boxes to intervals, that is f : IRn → IR, such that f(x) ∈ f(x) whenever
x ∈ x and f(x) is defined, equivalently

f(x) ⊇ Range(f |x)

for any box x ∈ IRn
, regarded as a subset of Rn. The natural interval extension of f is defined

by

f(x) := hull(Range(f |x)).

Equivalently, using multiple-argument notation for f , an interval extension satisfies

f(x1, . . . ,xn) ⊇ Range(f |x1, . . . ,xn),

and the natural interval extension is defined by

f(x1, . . . ,xn) := hull(Range(f |x1, . . . ,xn))

for any intervals x1, . . . ,xn.
In some contexts it is useful for x to be a general subset of Rn, or the xi to be general subsets

of R; the definition is unchanged.
The natural extension is automatically defined for all interval or set arguments. (The deco-!

ration system introduced below in §5.8 gives a systematic way of diagnosing when the underlying
point function has been evaluated outside its domain.)→delete6

When f is a binary operator • written in infix notation, this gives the usual definition of its
natural interval extension as

x • y = hull({x • y | x ∈ x, y ∈ y, and x • y is defined }).

[Example. With these definitions, the relevant natural interval extensions satisfy
√

[−1, 4] = [0, 2] and√
[−2,−1] = ∅; also x× [0, 0] = [0, 0] for any nonempty x, and x/[0, 0] = ∅, for any x.]

6CK Not part of the motion.

12 January 25, 2012

DR
AF
T
04
.2

Draft 04.2
IEEE Std P1788

IEEE Standard For Interval Arithmetic §5.5

When f is a vector point function, a vector interval function with the same number of inputs
and outputs as f is called an interval extension of f if each of its components is an interval extension
of the corresponding component of f .

An interval-valued function in the library is called an interval arithmetic operation if
it is an interval extension of a point arithmetic operation, and an interval non-arithmetic
operation otherwise. Examples of the latter are interval intersection and union, (x,y) 7→ x ∩ y
and (x,y) 7→ hull(x ∪ y).

5.4.4. Constants. A real scalar function with no arguments—a mapping Rn → Rm with n = 0
and m = 1—is a real constant. Languages may distinguish between a literal constant (e.g., the
decimal value defined by the string 1.23e4) and a named constant (e.g., π) but the difference is
not relevant on Level 1 (and easily handled by outward rounding on Level 2).

From the definition, an interval extension of a real constant is any zero-argument interval
function that returns an interval containing c. The natural extension returns the interval [c, c].

5.5. Expressions and the functions they define.
5.5.1. Expressions. A variable is a symbolic name. A scalar expression in zero or more (inde-

pendent) variables is a symbolic object defined to be either one of those variables or, recursively, of
the form φ(g1, . . . , gk) where φ is a symbolic arithmetic or non-arithmetic operation that takes k ar-
guments (k ≥ 0) and returns a single result, and the gi are expressions. Other syntax may be used,
such as traditional algebraic notation and/or program pseudo-code. An arithmetic expression
is one in which all the operations are arithmetic operations.

A vector-valued expression is regarded, for purposes of definition in this standard, as a tuple
of scalar expressions (see second example below).
[Examples.

– The object f where

f = (ex + e−x)/2y

is an arithmetic expression in two variables x, y that may be written in the above form as

div(plus(exp(x), exp(uminus(x))), times(2(), y)),

where uminus, plus, times, div and exp name the arithmetic operations “unary minus”, +, ×, ÷
and exponential function. The literal constant 2 is regarded as a zero-argument arithmetic operation
2(), see §5.4.4.

The expression may be split (e.g., by a compiler) into simple assignments each involving a single
operation, that may be sequenced in several ways. In the example above, one of these is

v1 = exp(x)
v2 = uminus(x)
v3 = exp(v2)
v4 = plus(v1, v3)
v5 = 2()
v6 = times(v5, y)
f = div(v4, v6).

All these forms are regarded as defining the same expression f.
– A vector expression that returns the two roots of ax2+bx+c = 0 is regarded for definitional purposes

as the two separate expressions (−b−
√
b2 − 4ac)/2a and (−b+

√
b2 − 4ac)/2a, although in practical

code it would be simplified so that common subexpressions are only evaluated once.
– An expression that uses the interval intersection or union operation is a non-arithmetic expression.

]
To define functions of variables, an expression must be made into a bound expression by

giving it a formal argument list with notation such as

f(z1, . . . , zn) = expression.

This defines f to be the indicated expression with the formal argument list z1, . . . , zn, which must
include at least the variables that actually occur in the right-hand side. An expression without
such an argument list is a free expression.

13 January 25, 2012

DR
AF
T
04
.2

Draft 04.2
IEEE Std P1788

IEEE Standard For Interval Arithmetic §5.5

5.5.2. Generic functions. An arithmetic operation name such as +, or a bound arithmetic
expression such as f(x, y) = x + sin y, may be used to refer to different, related, functions: such
operations and expressions, or the resulting functions, are called generic (or polymorphic). Whether
generic function syntax can be used in program code is language-defined.

An implementation provides a number of arithmetic operation names φ, each representing
various functions as follows.

(a) The point function of φ. This is unique, theoretical and generally non-computable in finite
precision.

(b) Various interval versions of φ, among them in particular
(b1) The natural interval extension of the point function. This also is unique, theoretical and

generally non-computable.
(b2) Computable interval extensions of the point function.!

(c) (Decorated interval versions of φ, see §5.8.)→delete7

The implementation’s library contains all computable versions of all provided arithmetic opera-
tions: see §5.6 for those that are required, and §5.7 for those recommended.

An arithmetic operation or expression may also denote a floating point function; these are not
defined by this standard.

5.5.3. Point functions and interval versions of expressions. A bound arithmetic expression
f = f(z1, . . . , zn) represents various functions in the categories (a), (b1), (b2)(, (c))→delete8 above.!

The point function of (or defined by) f is a function f : Domain f ⊆ Rn → R. The natural
domain Domain f of f is the set of all x = (x1, . . . , xn) ∈ Rn where its value is defined according
to the following rules:

– If f is the variable zi, f(x) is the number xi. It is defined for all x ∈ Rn.
– Recursively, if f = φ(g1, . . . , gk), f(x) is the value of the point function of φ at u = (u1, . . . , uk)

where ui is the value of the point function of gi at x. It is defined for those x ∈ Rn such that
each of u1, . . . , uk is defined and the resulting u is in φ’s domain Domainφ, which is part of its
mathematical definition.

In the recursive clause of this definition, φ can be a constant (a function with k = 0 argu-
ments), so that f(x) = φ(). Then, see §5.4.4, there are two cases: (a) φ has a real value c; then
f(x) = c for all x ∈ Rn; (b) φ is the undefined function NaN, in which case f(x) is not defined
for any x ∈ Rn.

[Example. The specifications

f(x, y) = (ex + e−x)/(2y),

f(y, x) = (ex + e−x)/(2y),

f(w, x, y, z) = (ex + e−x)/(2y)

are all valid and different (they define different functions), while

f(y) = (ex + e−x)/(2y)

is invalid since the argument list does not include the variable x, which occurs in f.]
[Example. The natural domain of f(x, y) = 1/(

√
x− 1−y) is the set of (x, y) in the plane that do not

cause either square root of a negative number or division by zero, i.e., where x ≥ 1 and y 6=
√
x− 1.]

An interval version of f(z1, . . . , zn) is a (total) function f : IRn → IR. Its value at an actual

argument x = (x1, . . . ,xn) ∈ IRn
, a box, is recursively constrained as follows:

– If f is the variable zi, the value is some interval containing xi.
– If f = φ(g1, . . . , gk), the value is some interval extension of φ evaluated at (u1, . . . ,uk) where ui

is the value of some interval version of gi at x.

The natural interval version of f is the unique interval version such that when f is zi, the value
equals xi, and that uses the natural interval extension of each φ.

Moore’s theorem states:

Theorem 5.1 (Fundamental Theorem of Interval Arithmetic, FTIA).
(i) Every interval version of an arithmetic expression f(z1, . . . , zn) is an interval extension of the

7CK 2011-10-15 Not part of the motion
8CK 2011-10-15 Not part of the motion.

14 January 25, 2012

DR
AF
T
04
.2

Draft 04.2
IEEE Std P1788

IEEE Standard For Interval Arithmetic §5.5

point function defined by the expression.
(ii) If every variable occurs at most once in f and, for some x ∈ IRn

, all elementary operations
occurring in f evaluate to their range, then f(x) = Range(f |x).

[Note. To part (ii). Using exact arithmetic, that is, the natural interval version of f, it is known that an
elementary operation evaluates to its range if it is continuous on its input box. (This can be checked !
by the decoration system (§5.8), so the conditions of (ii) are computable. The result is that in finite
precision, it is often verifiable at run time that f(x) equals Range(f |x) up to roundoff error.)→delete9

]

9CK 2011-10-15 Not part of the motion.

15 January 25, 2012

DR
AF
T
04
.2

Draft 04.2
IEEE Std P1788

IEEE Standard For Interval Arithmetic §5.6

5.6. Required operations.
For the functions listed in this subclause, an implementation shall provide interval versions

appropriate to its supported interval types. For the forward and reverse arithmetic operations in
§5.6.2, 5.6.3, 5.6.4, each interval version shall be an interval extension of the corresponding point
function. The required rounding behavior of these, and of the numeric functions of intervals in
§5.6.8, is detailed in §6.5, 6.6.

The names of operations in this standard, as well as symbols used for operations (e.g., for the
comparisons in §5.6.9), may not correspond to those that any particular language would use.

5.6.1. Constants.

4! NEW. Ian McIntosh’s comments made me aware we need requirements about denoting (a) exact
numbers (possibly non-computable in a given precisioin), (b) intervals with exact number endpoints
(also possibly non-computable), (c) finite precision hulls of such intervals (computable). This is my
first attempt. It needs cleaning up by a language expert.

An implementation shall provide means to denote exact point (numerical) constants including
±∞, and exact intervals whose endpoints are such constants.

The denotable point constants shall include all values expressible as floating constants in the
C language, in decimal or hexadecimal form, and of arbitrary finite precision. This standard writes
such denotations as strings using C syntax and calls them literal constants, e.g. the decimal literal
"1.234e-5" denoting 1.234× 10−5, or the hexadecimal literal "3.Fp+10" denoting 3 15

16 × 210. An
implementation may also provide named constants, e.g. "Pi" representing π.

Denotations of intervals are written as strings following the syntax for input/output of intervals
in §6.11: e.g., "[1.234e5,Inf]" or "Entire".

Where needed, the map from a denotation to its value is written eval. For instance,
eval("[1.234e-5,Inf]") equals [1.234× 10−5,+∞]. [Note. This map is a notational device, not an
operation to be implemented, but for denotations of intervals it is equivalent to the Level 1 operation
text2interval.]

How an implementation provides constants is language-defined or implementation-defined as
well as locale-dependent. E.g., it may represent numerical constants in the style ’1.234e5’ of a
lexical type “symbol” that is distinct from “string”. It may categorize constants otherwise than as
“literal” or “named”.

An implementation may provide other ways to denote exact intervals, e.g., a denotation using
midpoint and radius as part of support for a mid-rad interval type.

5.6.2. Forward-mode elementary functions.
Table 2 on page 17 lists required arithmetic operations. The term operation includes functions

normally written in function notation f(x, y, . . .), as well as those normally written in unary or
binary operator notation, •x or x • y.
[Note. The list includes all general-computational operations in 754§5.4 except convertFromInt, and
some recommended functions in 754§9.2.]

Proving the correctness of interval computations relies on the Fundamental Theorem of Interval
Arithmetic, which in turn relies on the relation between a point-function and its interval versions.
Thus the domain of each point-function and its value at each point of the domain are specified to
aid a rigorous implementation. This is mostly straightforward but needs care for functions with
discontinuities, such as pow() and atan2().

4! We probably should have a version of interval division x/y that returns two intervals so that
it doesn’t lose information when 0 is an interior point of y. Several solutions exist, e.g. Kulisch’s;
Kearfott’s, which is similar; and Vienna proposal’s “division with gap”. A motion please!

5.6.3. Interval case expressions and case function.
Functions are often defined by conditionals: f(x) equals g(x) if some condition on x holds,

and h(x) otherwise. To handle interval extensions of such functions in a way that automatically
conforms to the Fundamental Theorem of Interval Arithmetic, the ternary function case(c, g, h)
is provided. To simplify defining its interval extension, the argument c specifying the condition is
real (instead of boolean), and the condition means c < 0 by definition. That is,

case(c, g, h) =

{
g if c < 0,
h otherwise.

16 January 25, 2012

DR
AF
T
04
.2

Draft 04.2
IEEE Std P1788

IEEE Standard For Interval Arithmetic §5.6

Table 2. Required forward elementary functions.

Name Definition Point function domain Point function range Note
add(x, y) x+ y R2 R
sub(x, y) x− y R2 R
mul(x, y) xy R2 R
div(x, y) x/y R2 \ {y = 0} R a
recip(x) 1/x R \ {0} R \ {0}
sqrt(x)

√
x [0,∞) [0,∞)

hypot(x, y)
√
x2 + y2 R2 [0,∞)

case(b, g, h) See §5.6.3.
sqr(x) x2 R [0,∞)

pown(x, p) xp, p ∈ Z
{
R if p ≥ 0
R\{0} if p < 0

R if p > 0 odd
[0,∞) if p > 0 even
{1} if p = 0
R\{0} if p < 0 odd
(0,∞) if p < 0 even

b

pow(x, y) xy {x>0} ∪ {x=0, y>0} [0,∞) c, a
exp,exp2,exp10(x) bx R (0,∞) d
log,log2,log10(x) logb x (0,∞) R d
sin(x) R [−1, 1]
cos(x) R [−1, 1]
tan(x) R\{(k + 1

2)π|k ∈ Z} R
asin(x) [−1, 1] [−π/2, π/2] e
acos(x) [−1, 1] [0, π] e
atan(x) R (−π/2, π/2) e
atan2(y, x) R2 \ {(0, 0)} (−π, π] f, e
sinh(x) R R
cosh(x) R [1,∞)
tanh(x) R (−1, 1)
asinh(x) R R
acosh(x) [1,∞) [0,∞)
atanh(x) (−1, 1) R
sign(x) R {−1, 0, 1} g
ceil(x) R Z h
floor(x) R Z h
round(x) R Z h
trunc(x) R Z h
abs(x) |x| R [0,∞)
min(x1, . . . , xk) Rk for k = 2, 3, . . . R i
max(x1, . . . , xk) Rk for k = 2, 3, . . . R i

Notes to Table 2

a. In describing the domain, notation such as {y = 0} is short for { (x, y) ∈ R2 | y = 0 }, and so
on.

b. Regarded as a family of functions parameterized by the integer argument p.
c. Defined as ey ln x for real x > 0 and all real y, and 0 for x = 0 and y > 0, else undefined.
d. b = e, 2 or 10, respectively.
e. The ranges shown are the mathematical range of the point function. To ensure containment,

an interval result may include values just outside the mathematical range.
f. atan2(y, x) is the principal value of the argument (polar angle) of (x, y) in the plane.
g. sign(x) is −1 if x < 0; 0 if x = 0; and 1 if x > 0.
h. ceil(x) is the smallest integer ≥ x. floor(x) is the largest integer ≤ x. round(x) is the nearest

integer to x, rounding halfway cases away from zero. trunc(x) is the nearest integer to x in the
direction of zero. (As defined in the C standard §7.12.9.)

i. Smallest, or largest, of its real arguments. Regarded as a family of functions parameterized by
the arity k.

17 January 25, 2012

DR
AF
T
04
.2

Draft 04.2
IEEE Std P1788

IEEE Standard For Interval Arithmetic §5.6

Its natural interval extension is

case(c, g,h) =

∅ if c is empty
g elseif c < 0
h elseif c ≥ 0

hull(g ∪ h) otherwise.

(3)

for any intervals c, g,h, where c = [c, c] when nonempty.
The function f above may be encoded as f(x) = case

(
c(x), g(x), h(x)

)
. Then, if c, g, h are

interval extensions of c, g and h, the function

f(x) = case
(
c(x), g(x),h(x)

)
(4)

is automatically an interval extension of f .
[Notes.

1. This method is less awkward than using interval comparisons as a mechanism for handling such
functions. However, the resulting interval function is usually not the tightest extension of the
corresponding point function. E.g., the absolute value f(x) = |x| may be defined by

f(x) = case(x,−x, x).

Then it is easy to see that formula (4), applied to a nonempty x = [x, x], gives the exact range
{ |x| | x ∈ x } when x < 0 or 0 ≤ x, but the poor enclosure (−x) ∪ x when x < 0 ≤ x.

2. case(c, g, h) is equivalent to the C expression (c < 0 ? g : h).
3. Compound conditions may be expressed using the max and min operations: e.g., a real function
f(x, y) that equals sin(xy) in the positive quadrant of the plane, and zero elsewhere, may be written

f(x, y) = case(min(x, y), 0, sin(xy)),

since min(x, y) < 0 is equivalent to (x < 0 or y < 0).

]

5.6.4. Reverse-mode elementary functions.
Constraint-satisfaction algorithms use the functions in this subclause for iteratively tightening

an enclosure of a solution to a system of equations.
Given a unary arithmetic operation φ, a reverse interval extension of φ is a binary interval

function φRev such that

φRev(z,x) ⊇ {x ∈ x | φ(x) is defined and in z }, (5)

for any intervals z,x.
Similarly, a binary arithmetic operation • has two forms of reverse interval extension, which

are ternary interval functions •Rev1 and •Rev2 such that

•Rev1(b, c,x) ⊇ {x ∈ x | b ∈ b exists such that x • b is defined and in c }, (6)

•Rev2(a, c,x) ⊇ {x ∈ x | a ∈ a exists such that a • x is defined and in c }. (7)

If • is commutative then •Rev1 and •Rev2 agree and may be implemented simply as •Rev.
In each of (5, 6, 7), the unique natural reverse interval extension is the one whose value

is the interval hull of the right-hand side. Clearly, any reverse interval extension encloses this hull.
The last argument x in each of (5, 6, 7) is optional, with default x = R if absent.

[Note. The argument x can be thought of as giving prior knowledge about the range of values taken by
a point-variable x, which is then sharpened by applying the reverse function: see the example below.]

Reverse operations shall be provided as in Table 3. Note pownRev(x, p) is regarded as a family
of unary functions parametrized by p.
[Example.

– Consider the function sqr(x) = x2. Evaluating sqrRev([1, 4]) answers the question: given that
1 ≤ x2 ≤ 4, what interval can we restrict x to? Using the natural reverse extension, we have

sqrRev([1, 4]) = hull{x ∈ R | x2 ∈ [1, 4] } = hull([−2,−1] ∪ [1, 2]) = [−2, 2].

– If we can add the prior knowledge that x ∈ x = [0, 1.2], then using the optional second argument
gives the tighter enclosure

sqrRev([1, 4], [0, 1.2]) = hull{x ∈ [0, 1.2] | x2 ∈ [1, 4] } = hull
(
[0, 1.2] ∩ ([−2,−1] ∪ [1, 2])

)
= [1, 1.2].

18 January 25, 2012

DR
AF
T
04
.2

Draft 04.2
IEEE Std P1788

IEEE Standard For Interval Arithmetic §5.6

Table 3. Required reverse elementary functions.

Unary
sqrRev(x)

invRev(x)

absRev(x)

pownRev(x, p)

sinRev(x)

cosRev(x)

tanRev(x)

coshRev(x)

Binary
mulRev(x, y)

divRev(x, y)

powRev(x, y)

atan2Rev(x, y)

– One might think it suffices to apply the operation without the optional argument and intersect the
result with x. This is less effective because “hull” and “intersect” do not commute. E.,g., in the
above, this method evaluates

sqrRev([1, 4]) ∩ x = [−2, 2] ∩ [0, 1.2] = [0, 1.2],

so no tightening of the enclosure x is obtained.

]

5.6.5. Inner addition and subtraction.

4! I have made this only apply to bounded intervals, since it really seems hard to frame a specification
for unbounded ones that translates unambiguously to the finite precision (Level 2) situation.

Also I have deviated from the Motion 12 spec, by making the operations defined only when
width(x) ≥ width(y). IMO it is actively harmful in applications to make it always defined. This

is for the same reasons that it is harmful to replace
√
x by the everywhere defined

√
|x|: an application

MUST test for definedness, and making it always defined leads to un-noticed wrong results from code
that forgets to test.

Inner subtraction solves the problem: Recover interval z from intervals x and y, given that
one knows x was obtained as the sum z + y.
[Example. In some applications one has a list of intervals a1, . . . ,an, and needs to form each interval
sk which is the sum of all the ai except ak, that is sk =

∑n
i=1, i 6=k ai, for k = 1, . . . , n.

Evaluating all these sums independently costs O(n2) work. However, if one forms the sum s of all the
ai, one can obtain each sk from s and ak by inner subtraction. This method only costs O(n) work.

This example illustrates that in finite precision, computing x (as a sum of terms) typically incurs
at least one roundoff error, and may incur many. Thus one should think of x as an enclosure of an
unknown true sum x0, whereas y is “exact”. The computed z is thus an enclosure of an unknown
true z0 such that z0 + y = x0.]

There is an operation innerPlus(x,y), equivalent to innerMinus(x,−y) and therefore not
specified separately.

There is an operation innerMinus(x,y) that returns for any two bounded intervals x and y
the tightest interval z such that

z + y ⊇ x (8)

if such a z exists, and is undefined otherwise.
This specification leads to the following Level 1 algorithm. If x = ∅ then z = ∅. If x 6= ∅ and

y = ∅ then z is undefined. If x = [x, x] and y = [y, y] are both nonempty and bounded, define
z = x−y and z = x−y. Then z is defined to be [z, z] if z ≤ z (equivalently if width(x) ≥ width(y)),
and is undefined otherwise. Otherwise (if either interval is unbounded), z is undefined.
[Note. Because of the cancellative nature of these operations, care is needed in finite precision to
determine whether the result is defined or not. More details are given at Level 3 in §7.5.

E.g., 4! (Maybe this should move to Level 3) consider inf-sup intervals using 3 decimal digit
floating point arithmetic. Let x = [.0001, 1] and y = [−1,−.0002]. Thus x is slightly the wider, so
z1 = innerMinus(x,y) is defined and is [1.0001, 1.0002]; while z2 = innerMinus(y,x) is not defined.
However, one cannot discriminate these cases using naive 3 digit arithmetic. Comparing width(x) with
width(y) gives the wrong result, because both are computed (rounding upward) as 1.01, suggesting
z2 is defined. Computing the bounds of z2, namely [(−1.00− .0001), (−.0002− 1.00)] (with outward

19 January 25, 2012

DR
AF
T
04
.2

Draft 04.2
IEEE Std P1788

IEEE Standard For Interval Arithmetic §5.6

Table 4. Required numeric functions of an interval x = [x, x].
Note inf can return −∞; each of sup, wid, rad and mag can return +∞.

Name Definition

inf(x)

{
lower bound of x if x is nonempty

undefined if x is empty

sup(x)

{
upper bound of x if x is nonempty

undefined if x is empty

mid(x)

{
midpoint (x+ x)/2 if x is nonempty bounded

undefined if x is empty or unbounded

wid(x)

{
width x− x if x is nonempty

undefined if x is empty

rad(x)

{
radius (x− x)/2 if x is nonempty

undefined if x is empty

midRad(x)

{
returns the pair (mid(x), rad(x))

undefined if either member is undefined

mag(x)

{
magnitude sup{ |x| | x ∈ x } if x is nonempty

undefined if x is empty

mig(x)

{
mignitude inf{ |x| | x ∈ x } if x is nonempty

undefined if x is empty

4! I have gone for simplicity. Also I have presumptuously backed my own view that at Level 1 it is
more consistent with math conventions for a function to be simply “undefined” outside its domain,
than for it to return a special value. At Level 2 this translates into returning a value such as NaN.

rounding), also gives the wrong result, namely [−1.01,−1.00], again suggesting z2 is defined. Only
real or simulated higher precision is guaranteed to give the correct decision in all cases.]

5.6.6. Non-arithmetic operations.
The following operations shall be provided, the arguments and result being intervals.

Name Definition
intersection(x,y) x ∩ y
convexHull(x,y) interval hull of x ∪ y

5.6.7. Constructors.
The following operations shall be provided, that create an interval from non-interval data.
The operation nums2interval(l, u), where l and u are extended-real values, returns the set

{x ∈ R | l ≤ x ≤ u }. If (see §5.2) the conditions l ≤ u, l < +∞ and u > −∞ hold, this set is the
nonempty interval [l, u] and the operation is said to succeed. Otherwise the operation is said to
fail, and returns Empty.

Success and failure are used in specifying how decorations are set by the corresponding con-
structors of decorated intervals at Level 2.

The operation num2interval(x) is equivalent to nums2interval(x, x). It fails if and only if x
is infinite.

The operation text2interval(t) succeeds and returns the interval denoted by the text string
t, if t denotes an interval. Otherwise, it fails and returns Empty.
[Note. Since Level 1 is mainly for human-human communication, any understandable t is acceptable,
e.g. "[3.1,4.2]" or "[2π,∞]”. Rules for the strings t accepted at an implementation level are given
in the Level 2 Subclause 6.11 on I/O and may optionally be followed.]

5.6.8. Numeric functions of intervals.
The operations in Table 4 shall be provided, the argument being an interval and the result a

number, which for some of the operations may be infinite.

5.6.9. Boolean functions of intervals.
The following operations shall be provided, which return a boolean (1 = true, 0 = false) result.

20 January 25, 2012

DR
AF
T
04
.2

Draft 04.2
IEEE Std P1788

IEEE Standard For Interval Arithmetic §5.7

Table 5. Comparisons for nonempty intervals a = [a, a] and b = [b, b]. Recall
that a, b may be −∞ and a, b may be +∞.

Name Symbol Definition Description

isEqual(a, b) a = b a = b ∧ a = b a equals b

containedIn(a, b) a ⊆ b b ≤ a ∧ a ≤ b a is a subset of b

lessEqual(a, b) a ≤ b a ≤ b ∧ a ≤ b a is less than or equal to b
precedesEqual(a, b) a � b a ≤ b a precedes or touches b

containedInInterior(a, b) a ⊂ b b < a ∧ a < b a is interior to b

less(a, b) a < b a < b ∧ a < b a is strictly less than b
precedes(a, b) a ≺ b a < b a precedes b

areDisjoint(a, b) a∩/ b a < b ∨ b < a a and b are disjoint

There is a function isEmpty(x), which returns 1 if x is the empty set, 0 otherwise. There is a
function isEntire(x), which returns 1 if x is the whole line, 0 otherwise.

There are eight comparison relations, which take two interval inputs and return a boolean
result. For nonempty intervals a and b, these are defined in Table 5. If in any of a = b, a ⊆ b or
a ≤ b both operands are the empty set ∅, the result is true. If either operand is ∅ in a∩/ b, the
result is true. If a = ∅ in a ⊆ b or a ⊂ b, the result is true. Otherwise the result is false if in any
of the first seven relations either operand is ∅.
[Note. All these relations, except a∩/ b, are transitive. The first three are reflexive. Relation a � b,
though its symbol suggests it is reflexive, is not so.]

5.6.10. Dot product function.
The function dotProduct(x, y) is provided, where x and y are real vectors with the same

number of elements. It returns
∑

i xiyi.
This is a point-function; an interval extension of it is not required. The most significant part

of its definition concerns its rounding properties in finite precision, which are specified in §6.6.

5.7. Recommended operations (informative).
Language standards should define interval versions of some or all functions in this subclause,

and some or all supported types, as is most appropriate to the language.

5.7.1. Forward-mode elementary functions.
The list of recommended functions is in Table 6. Each interval version provided is required to

be an interval extension of the point function.

5.7.2. Extended interval comparisons.
The interval overlapping operation overlap(a, b), also written a◦◦ b, arises from the

work of J.F. Allen [?] on temporal logic. It may be used as an infrastructure for other inter-
val comparisons. If implemented, it should also be available at user level; how this is done is
implementation-defined or language-defined.

Allen identified 13 states of a pair (a, b) of nonempty intervals, which are ways in which they
can be related with respect to the usual order a < b of the reals. Together with three states for
when either interval is empty, these define the 16 possible values of overlap(a, b).

To describe the states for nonempty intervals of positive width, it is useful to think of b = [b, b]
(with b < b) as fixed, while a = [a, a] (with a < a) starts far to its left and moves to the right. Its
endpoints move continuously with strictly positive velocity. Then, depending on the relative sizes
of a and b, the value of a◦◦ b follows a path from left to right through the graph below, whose
nodes represent Allen’s 13 states.

starts → containedBy → finishes
↑ ↓

→ before → meets → overlaps → equals → overlappedBy → metBy → after →
↓ ↑

finishedBy → contains → startedBy

For instance “a overlaps b”—equivalently a◦◦ b has the value overlaps—is the case a < b < a < b.
The three extra values are: bothEmpty when a = b = ∅, else firstEmpty when a = ∅,

secondEmpty when b = ∅.

21 January 25, 2012

DR
AF
T
04
.2

Draft 04.2
IEEE Std P1788

IEEE Standard For Interval Arithmetic §5.7

Table 6. Recommended elementary functions.

Name Definition Point function domain Point function range Note

rootn(x, q) real q
√
x,

q ∈ Z \ {0}

R if q > 0 odd
[0,∞) if q > 0 even
R\{0} if q < 0 odd
(0,∞) if q < 0 even

same as domain a

powr(x, p, q) real xp/q

R if r ≥ 0, s odd
[0,∞) if r > 0, s even
R\{0} if r < 0, s odd
(0,∞) if r < 0, s even

R if r > 0, rs odd
[0,∞) if r > 0, rs even
{1} if r = 0
R\{0} if r < 0, rs odd
(0,∞) if r < 0, rs even

a

p ∈ Z, q ∈ Z \ {0}; r/s is p/q in lowest terms, see Note c.
expm1(x)
exp2m1(x)
exp10m1(x)

bx−1 R (−1,∞) b, d
logp1(x)
log2p1(x)
log10p1(x)

logb(x+1) (−1,∞) R b, d

compoundm1(x, y) (1 + x)y − 1 {x>−1} ∪ {x=−1, y>0} [0,∞) d, e
rSqrt(x) 1/

√
x (0,∞) (0,∞)

sinPi(x) sin(πx) R [−1, 1] f
cosPi(x) cos(πx) R [−1, 1] f
tanPi(x) tan(πx) R\{ k + 1

2 | k ∈ Z } R f
asinPi(x) arcsin(x)/π [−1, 1] [−1/2, 1/2] f
acosPi(x) arccos(x)π [−1, 1] [0, 1] f
atanPi(x) arctan(x)/π R [−1/2, 1/2] f
atan2Pi(y, x) atan2(y, x)/π R× R (−1, 1] f

Notes to Table 6

a. Regarded as a family of functions parameterized by the integer arguments q, or r and s.
b. b = e, 2 or 10, respectively.
c. Defined as (s

√
x)

r
where r/s is the reduced fraction equal to p/q, where integers r and s have no

common factor, s > 0. E.g., powr(x,−2,−6) = x(−2)/(−6) reduces to 3
√
x and powr(x, 4,−6) =

x4/(−6) to (3
√
x)−2.

d. Mathematically unnecessary, but included to let implementations give better numerical behavior
for small values of the arguments.

e. In describing domains, notation such as {y = 0} is short for { (x, y) ∈ R2 | y = 0 }, and so on.
f. These functions avoid a loss of accuracy due to π being irrational, cf. Table 2, note e.

Table 7 shows the 16 states, with the 13 “nonempty” states specified (a) in terms of set
membership using quantifiers and (b) in terms of the endpoints a, a, b, b, and also (c) shown dia-
grammatically.

The set and endpoint specifications remove some ambiguities of the diagram view when one
interval shrinks to a single point that coincides with an endpoint of the other. Such a case is
allocated to equal when all four endpoints coincide; else to starts, finishes, finishedBy or
startedBy as appropriate; never to meets or metBy.
[Note. The 16 state values can be encoded in four bits. However, if they are then translated into
patterns P in a 16-bit word, having one position equal to 1 and the rest zero, one can easily implement
interval comparisons by using bit-masks.

For instance, suppose we make the states s in Table 7’s order correspond to the 16 bits in the
word, left-to-right, so s = bothEmpty maps to P (s) = 1000000000000000, s = firstEmpty maps
to P (s) = 0100000000000000 and so on. Consider the relation areDisjoint(a, b). This is true if
and only if one or both of a or b is empty, or a is “before” b, or a is “after” b. That is, iff the logical
“and” of P (s) with the mask disjointMask = 1111000000000001 is not identically zero.

This scheme can be efficiently implemented in hardware, see for instance M. Nehmeier, S. Siegel
and J. Wolff von Gudenberg [?]. All the required comparisons in this standard can be implemented in

22 January 25, 2012

DR
AF
T
04
.2

Draft 04.2
IEEE Std P1788

IEEE Standard For Interval Arithmetic §5.7

this way, as can be, e.g., the “possibly” and “certainly” comparisons of Sun’s interval Fortran. Thus
the overlap operation is a primitive from which it is simple to derive all interval comparisons commonly
found in the literature.]

5.7.3. Slope functions.
The functions in Table 8 are the commonest ones needed to efficiently implement improved

range enclosures via first- and second-order slope algorithms. They are analytic at x = 0 after
filling in the removable singularity there, where each has the value 1.

23 January 25, 2012

DR
AF
T
04
.2

Draft 04.2
IEEE Std P1788

IEEE Standard For Interval Arithmetic §5.7

Table 7. The 16 states of interval overlapping situations for intervals a, b.
Notation ∀a means “for all a in a”, and so on. Phrases within a cell are joined by
“and”, e.g. starts is specified by (a = b ∧ a < b).

State a◦◦ b Set Endpoint Diagram

is specification specification

States with either interval empty

bothEmpty a = ∅ ∧ b = ∅
firstEmpty a = ∅ ∧ b 6= ∅
secondEmpty a 6= ∅ ∧ b = ∅

States with both intervals nonempty

before ∀a∀b a < b a < b
a a

b b

meets

∀a∀b a ≤ b
∃a∀b a < b

∃a∃b a = b

a < a

a = b

b < b
a a

b b

overlaps

∃a∀b a < b

∃b∀a a < b

∃a∃b b < a

a < b

b < a

a < b
a a

b b

starts

∃a∀b a ≤ b
∃b∀a b ≤ a
∃b∀a a < b

a = b

a < b a a

b b

containedBy
∃b∀a b < a

∃b∀a a < b

b < a

a < b a a

b b

finishes

∃b∀a b < a

∃a∀b b ≤ a
∃b∀a a ≤ b

b < a

a = b a a

b b

equal
∀a∃b a = b

∀b∃a b = a

a = b

a = b a a

b b

finishedBy

∃a∀b a < b

∃b∀a a ≤ b
∃a∀b b ≤ a

a < b

b = a a a

b b

contains
∃a∀b a < b

∃a∀b b < a

a < b

b < a a a

b b

startedBy

∃b∀a b ≤ a
∃a∀b a ≤ b
∃a∀b b < a

b = a

b < a a a

b b

overlappedBy

∃b∀a b < a

∃a∀b b < a

∃b∃a a < b

b < a

a < b

b < a
a a

b b

metBy

∀b∀a b ≤ a
∃b∃a b = a

∃b∀a b < a

b < b

b = a

a < a
a a

b b

after ∀b∀a b < a b < a
a a

b b

24 January 25, 2012

DR
AF
T
04
.2

Draft 04.2
IEEE Std P1788

IEEE Standard For Interval Arithmetic §5.7

Table 8. Recommended slope functions.

Name Definition Point function domain Point function range Note

expSlope1(x)
1

x
(ex − 1) R (0,∞)

expSlope2(x)
2

x2
(ex − 1− x) R (0,∞)

logSlope1(x)
2

x2
(log(1+x)− x) R (0,∞)

logSlope2(x)
3

x3
(log(1+x)−x+

x2

2
)R (0,∞)

cosSlope2(x) − 2

x2
(cosx− 1) R [0, 1]

sinSlope3(x) − 6

x3
(sinx− x) R (0, 1]

asinSlope3(x)
6

x3
(arcsinx− x) [−1, 1] [1, 3π − 6]

atanSlope3(x) − 3

x3
(arctanx−x) R (0, 1]

coshSlope2(x)
2

x2
(coshx− 1) R [1,∞)

sinhSlope3(x)
3

x3
(sinhx− x) R [12 ,∞)

25 January 25, 2012

	3. Notation, abbreviations, definitions
	3.1. Notation and abbreviations
	3.2. Definitions
	3.2.1. arithmetic operation
	3.2.2. box
	3.2.3. domain
	3.2.4. edot
	3.2.5. elementary function
	3.2.6. expression
	3.2.7. fma
	3.2.8. hull
	3.2.9. implementation
	3.2.10. inf-sup
	3.2.11. interval
	3.2.12. interval extension
	3.2.13. interval function, interval mapping
	3.2.14. interval library
	3.2.15. interval version
	3.2.16. natural domain
	3.2.17. number
	3.2.18. point function, point operation
	3.2.19. point library
	3.2.20. range
	3.2.21. string
	3.2.22. tightest

	4. Structure of the standard in levels
	4.1. Specification levels overview
	4.2. Conformance requirements

	5. Level 1 description
	5.1. Non-interval Level 1 entities
	5.2. Intervals
	5.3. Hull
	5.4. Functions
	5.4.1. Function terminology
	5.4.2. Point functions
	5.4.3. Interval-valued functions
	5.4.4. Constants

	5.5. Expressions and the functions they define
	5.5.1. Expressions
	5.5.2. Generic functions
	5.5.3. Point functions and interval versions of expressions

	5.6. Required operations
	5.6.1. Constants
	5.6.2. Forward-mode elementary functions
	5.6.3. Interval case expressions and case function
	5.6.4. Reverse-mode elementary functions
	5.6.5. Inner addition and subtraction
	5.6.6. Non-arithmetic operations
	5.6.7. Constructors
	5.6.8. Numeric functions of intervals
	5.6.9. Boolean functions of intervals
	5.6.10. Dot product function

	5.7. Recommended operations (informative)
	5.7.1. Forward-mode elementary functions
	5.7.2. Extended interval comparisons
	5.7.3. Slope functions

