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Abstract

Widest-need expression processing supports mixed-mode interval ex-
pression evaluation while it satisfies the containment constraint of interval
arithmetic and avoids unnecessary interval width. While widest-need ex-
pression processing was developed for a non-interval application, it is the
ideal method for evaluating mixed-interval expressions.

1 Introduction.

The Fortran 95 standard requires literal and named constants (objects of the
PARAMETER attribute) to be values of their type and kind type parameter value
(KTPV). Therefore, in code example 1 the literal constants, 0.1 or 0.1E0 and
R in line 3 must have the same value. Similarly, 0.1D0 must equal the value of
D in line 4.

Example 1
REAL ::R
DOUBLE ::D
R=0.1 ! line 3
D = 0.1D0 ! line 4

The standard also requires that DR and DD in code example 2 have different
values.

Example 2
DOUBLE :: DR, DD
DR = 0.1
DD = 0.1DO

DR is the value that is obtained from code example 3 line 4, and is not equal to
0.1D0:

Example 3



REAL :: R

DOUBLE :: DR
R=0.1
DR = R ! line 4

As a consequence, users must be careful to specify the desired KTPVs of
literal and named constants. Otherwise, surprisingly inaccurate results may be
obtained. Changing the KTPV of variables in expressions containing literal con-
stants is not possible without also making explicit changes to literal constants.
The term “named constant” is something of a misnomer. The term “read-only
variable” better connotes the fact that the object of a PARAMETER attribute is
restricted to be an element of the same set of values as a variable with the same
type and KTPV as the named constant.

Throughout this note, unless explicitly stated otherwise, INTEGER, REAL,
and INTERVAL constants are literal constants. Constant expressions and named
constants are always explicitly identified as such.

2 Interval Arithmetic

The purpose of interval arithmetic is to provide a simple, automatic and me-
chanical way to perform machine computations while rigorously bounding errors
from all sources. In particular, machine rounding errors and their propagation
throughout algorithms must be rigorously bounded. Rigorous bounds are pro-
duced by defining an interval:

[a,b] ={x e R" |a <z <b} (1)
and arithmetic on pairs of intervals [a, b] op[c, d], where op € {+, —, %, /}:

z € ropy
[a, b] op[e, d] 2 hull z| x € [a,b] ; (2)
y € [, d]

hull(.) is the interval hull relation, and op is the topological closure of the
operation, op . See [4] for definitions and details.

3 Interval Support Design Questions

Implementing computer language support for interval data types presents a
number of interesting questions, the answers to which can dramatically impact
an INTERVAL data type’s ease of use.

1. How shall INTERVAL literal constants be denoted?

2. Should interval expressions containing components with different interval
KTPVs be permitted?

(a) If so, how should they be evaluated?



3. Should interval expressions containing non-interval types be permitted?

(a) If so, how should they be evaluated?

3.1 Representing INTERVAL Constants

The obvious Fortran notation for an interval literal constant is:
[A,B];

where A and B are INTEGER or REAL constants, but not named constants.
A convenient notation is adopted to denote degenerate intervals in which
both endpoints have the same value:

(4, Al = [4]

This same convention is used in £95.

4 The Containment Constraint.

The answers to the remaining questions depend on the fundamental requirement
of any interval implementation system: containment. That is, evaluating any
interval expression must produce an interval containing the set of values that
can be produced by any point expression contained in the interval expression.
This set is called the containment set of the expression and is proved in [5]
to be the closure of the expression. Computing narrow-width interval results
and computing results fast are both desirable goals. However, containment is a
constraint. Violating the containment constraint is a fatal error.

5 Design Question Answers

With context provided by the interval containment constraint and the narrow
width interval goal, answers to questions 2 and 3 become clear.

5.1 Internal Approximation of Literal Interval Constants

Within the Fortran Standard, there is no accuracy requirement for the internal
approximation of mathematical constants. However, in the INTERVAL constant
[A,B], if A and B are INTEGER or REAL constants, the information exists during
compilation to construct INTERVAL constants that both satisfy the containment
constraint and are as narrow as possible, or sharp. See [2] for a discussion of
how the containment constraint and sharpness goal lead to context-dependent
interval constant approximations.

The information exists at compile-time to convert [0.1] into a 1 ulp-width!
interval containing the external mathematical value 1/10 (denoted ev (0.1)) with

IThe nmemonic for unit in the last place is: ulp..



| Code | | Mathematical Interpretation |

[0.1,0.2] [a,b] where a < ev (0.1) and ev (0.2)
[0.1] [a,b] where a < ev (0.1) and ev (0.1)

<b
<b

Table 1: Mathematical value of INTERVAL constants.

any KTPV that is appropriate. However, according the standard 0.1 is a real
floating-point number that approximates the ideal decimal number ev (0.1).
Since the standard is silent regarding the accuracy of the approximation, it
is difficult using only standard Fortran numerical constructs to build a 1 ulp-
width interval with a given KTPV that contains any arbitrary mathematical
value. While a run-time callable intrinsic can be constructed with a CHARACTER
STRING-type argument to interpret decimal numeric values and convert them
into sharp containing intervals, this kind of run-time infrastructure should be
unnecessary in compiler-provided language support for interval data types.

To remove the conflict between the standard and the interval containment
constraint, £95 implements interval support to maximize user utility. Support
for intervals in f95 6.0 adheres as closely as possible to both the letter and the
spirit of the Fortran standard. However, when the standard conflicts with either
the interval containment constraint or ease of use, new syntax and semantics
are introduced to achieve an acceptable level of interval-support quality.

Interval constants consist of a pair of enclosing square brackets, within which
are found, either a single INTEGER or REAL decimal number, or a pair, separated
by a comma. Spaces are optional. Neither named constants nor constant ex-
pressions are permitted.:

In the examples in Table 1 of default interval constants, 0.1 and 0.2 are
default real constants. The function ev(.) is used to denote a Fortran constant’s
external value.

For more details regarding the construction and interpretation of default and
non-default interval constants, see [3] and [2].

5.2 Mixed kind-type interval expressions

The next design question is whether to permit different KTPV sub-expressions
within an interval expression. For example, should code examples 4 and 5 be
permitted?

Example 4
[0.1_4,0.2_4] + [0.3_8]

Example 5
INTERVAL(4) :: X
INTERVAL(8) :: VY,Z
X = [0.1_4,0.2_4]
Y = [0.3_4] ! line 4
Z=X+Y ! line 5



What values should be used for the interval constants in code example 4,
and what KTPV should the resulting interval have?

In code example 5, the first question is whether the context of the expression
should be permitted to influence the value of literal constants. For example,
should the fact that Y is a KIND=S8 interval in line 4 influence how the KIND=4
interval constant [0.3_4] is interpreted?

The second question is whether in line 5:

i. should X be promoted to KIND=8 before performing the interval addition
of X + Y; or

ii. should Y be truncated to a containing interval? For example, in line 5 of
code example 6, should the fact that Z is KIND=8 influence how X*Y is
computed?

Example 6

INTERVAL(4) X
INTERVAL(8) :: Z
X = [0.1_4, 0.2_4] ! line 3

Y = [0.3_4]

Z = XxY ! line 5

In standard Fortran, there is no accuracy requirement for the evaluation of
any INTEGER or REAL numeric expression. Therefore, there is no standard met-
ric with which to compare the accuracy of compiler implementations. Speed is
the only evaluation criterion. As a consequence, Fortran expression evaluation
rules have been completely specified to operationally define standard compli-
ance. The responsibility for result accuracy rests totally on the developer and
end user. The difficulty is that it remains possible for standard conforming
Fortran to produce very different results on different platforms, or on the same
platform if run in a non-deterministic way, such as occurs on a parallel ma-
chines. Without an obvious criterion to use when choosing between alternative
standard-conforming implementations, even on a given word-length processor,
the only remaining evaluation criterion is speed.

Intervals change these rules. With intervals, given the containment con-
straint is satisfied, there are two evaluation criteria: speed and interval width.
Runtime is obvious. So is the width of an interval result. Therefore, it is al-
ways possible to evaluate whether one interval expression evaluation strategy is
better than another. The question is: how to balance speed and interval width
against each other when they conflict?

Fortunately, rules for a reasonable compromise system have been defined by
Robert Corbett [1]. The system is called “widest-need” expression processing.
While not developed in the context of interval arithmetic, widest-need expression
processing is nevertheless a reasonable system with which to implement mixed-
mode interval expression processing.

Under widest-need expression processing, the context of the entire expres-
sion is taken into account to determine the maximum interval KTPV, denoted

,» Y



KTPV max, that occurs anyplace within an expression. The logical steps in
the process are:

1. Promote all INTEGER and REAL constants and variables to intervals with

the KTPV required to exactly represent the non-interval constant or vari-
able.

2. Compute the maximum KTPV, KTPV max.

3. Convert all (now interval) constants and variables to KTPV _max, before
interval expression evaluation begins.

The cost is additional compile-time to promote all non-interval constants and
variables and then to initially scan each expression tree to determine KTPV max.
As soon as a KIND=16 constant or variable is encountered, the search for
KTPV max can be terminated.

What does widest-need expression processing do in the above examples? For:

[0.1_4,0.2_4] + [0.3_8]
in code example 4, the first constant is promoted to KIND=8 before perform-
ing the interval addition. The sharpest possible constant expression result can
be achieved if exact decimal arithmetic is employed prior to constructing the
containing interval result. This has not been done in £95 and remains an out-
standing “quality of implementation opportunity”.

In the following examples the equivalent ~xia=strict code using the intrin-
sic INTERVAL constructor exposes the logical steps that are automatically per-
formed under widest-need expression processing. The code using the INTERVAL
constructor can be run using either the -xia=widestneed or the -xia=strict
command-line flag to enable or suppress widest-need expression processing, re-
spectively. Widest-need is the default interval expression processing mode with
the command line flag -xia or -xia=widestneed. Example 8 contains only the
-xia=strict lines from the equivalent widest-need code lines in example 7.

Example 7
INTERVAL(4) :: X, Y
INTERVAL :: Z
X = [0.1, 0.2] ! line 3
Y =0.3 ! line 4
Z = X+Y ! line 5

In -xia=strict mode, lines 3, 4 and 5 must be changed to:

Example 8
X = [0.1_4, 0.2_4] ! line 3
Y = INTERVAL([O.3],KIND=4) ! line 4
Z = INTERVAL(X, KIND=8) * INTERVAL(Y, KIND=8) ! 1line 5

In line 3, because the KTPV of X is 4, the interval constant on the right-
hand side must also have the same KTPV. Default intervals have KTPV=S8.



Therefore, either the interval constant must be constructed with KTPV=4 con-
stants, or it must be explicitly converted using the INTERVAL constructor, as
in:

X = INTERVAL([O0.1, 0.2],KIND=4) ! 1line 3

To guarantee containment of ev (0.3) in line 4, the interval constant [0.3]
must be given as the argument of the INTERVAL constructor and then explicitly
converted to KTPV=4. Alternatively, the KTPV=4 interval constant, [0.3_4]
can be used, but this requires a code change.

In line 5, because Z is a default interval with KTPV=8, both X and Y must
be converted to KTPV=8 before the right-hand side can be evaluated.

Note, however, that Z can be more sharply computed if the KTPVs of X
and Y are 8. Code that executes under -xia=strict mode always runs under
widest-need mode and produces the same answers. It is an error in the compiler
if code that runs in -xia=strict mode ever produces different results when run
in ~-xia=widestneed mode.

5.3 Mixed type interval expressions

Now consider expressions that contain both interval and non-interval constants
and variables. Should these be allowed? If so, how should they be processed?
Consider the illustrative code example:

Example 9

REAL(16) ::Q
INTERVAL(4)::Y
INTERVA L ::Z

Q =0.1_16
Y=0.3 ! line 5
Z=Q+Y ! line 6

The desired outcome is to promote to an interval any non-interval variable or
constant in a mixed type expression. In addition, the promotion should be to
the highest interval KTPV seen anywhere in the expression.

In code example 9 line 5, because the type of Y is INTERVAL, the literal
constant 0.3 is promoted to a containing interval. The maximum of the KTPV
of Y and 0.3, which is 4 in this case, is used when setting the KTPV of the
interval containing 0. 3.

In line 6, because the KTPV of Q is 16, and because Z and Y are both
intervals, Q is promoted to an interval and Y must be promoted to a KTPV=16
interval. After promotion the expression Q + Y is evaluated. Only after the
KTPV=16 result is computed, is it converted to a KTPV=8 containing interval
before assigning the final result to Z.

If the principle of widest-need expression processing is used, the following
logical steps are taken:



1. The KTPV is determined that will permit each INTEGER and REAL constant
or variable to be promoted to a degenerate interval.

2. The value of KTPV _max is found.

3. All interval constants and variables are promoted to intervals with
KIND = KTPV _max.

The following code is the ~xia=strict equivalent of lines 5 and 6, in example

9.

Example 10
Y = INTERVAL([0.3],KIND=4) ! line 5
Z = INTERVAL(INTERVAL(Q,Q,KIND=16) + & ! 1line 6

INTERVAL(Y,KIND=16) ,KIND=8)
All type and KTPV conversions must be made explicitly.

5.4 Conclusion

Comparing the readability of ~-xia=widestneed and the equivalent -xia=strict
code illustrates the advantages of widest-need expression processing. To uni-
formly decrease the width of word-length-dependent interval computations, it
is only necessary to change variable’s KTPV. It is not necessary to touch ex-
pression code.
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