
VERY FAST AND EXACT ACCUMULATION OF PRODUCTS

ULRICH KULISCH

Abstract. The IFIP Working Group on Numerical Software and other scientists repeatedly
requested that a future arithmetic standard should consider and specify an exact dot product
(EDP) [2, 3]. On Nov. 18, 2009 the IEEE standards committee P1788 on interval arithmetic
accepted a motion [4] for including the EDP into a future interval arithmetic standard. In
Numerical Analysis the dot product is ubiquitous. It is not merely a fundamental operation
in all vector and matrix spaces. It is the EDP which makes residual correction effective.
This has a direct and positive influence on all iterative solvers of systems of equations. The
EDP is essential for fast long real and long interval arithmetic, as well as for assessing and
managing uncertainty in computing. By operator overloading variable precision interval
arithmetic is very easy to use. With it the result of every arithmetic expression can be
guaranteed to a number of correct digits.

Actually the simplest and fastest way for computing a dot product is to compute it
exactly. By pipelining, it can be computed in the time the processor needs to read the data,
i.e., it comes with utmost speed. By a sample illustration the paper informally specifies the
implementation of the EDP on computers. While [4] defines what has to be provided, how
to embed the EDP into the new standard IEEE 754, and how exceptions like NaN are to be
dealt with, the poster illustrates how the EDP can be implemented on computers. There
is indeed no simpler way of accumulating a dot product. Any method that just computes
an approximation also has to consider the relative values of the summands. This results in
a more complicated method. The hardware needed for the EDP is comparable to that for a
fast multiplier by an adder tree, accepted years ago and now standard technology in every
modern processor. The EDP brings the same speedup for accumulations at comparable
costs.

1. Introduction

It is well known that evaluation of a real arithmetic expression (a sequence of arithmetic
operations) for an interval x leads to a superset of the range of the expression over the
interval x . The distance between this superset and the range decreases with the width of the
interval x and it tends to zero with the width of x . This simple observation is the basis for
many successful and simple applications of long interval arithmetic. Practically this means
that results of real arithmetic expressions can always be guaranteed to a number of correct
digits by using variable precision interval arithmetic. Variable length interval arithmetic can
be made very fast by an exact dot product and complete arithmetic [4, 5]. There is no way
to compute a dot product faster than the exact result. By pipelining, it can be computed
in the time the processor needs to read the data, i.e., it comes with utmost speed. Variable
length interval arithmetic fully benefits from such high speed. No software simulation can
go as fast. By operator overloading variable length interval arithmetic is very easy to use.
It allows evaluation of real arithmetic expressions with guaranteed bounds (naive interval
arithmetic). This has the potential of greatly increasing the acceptance of interval arithmetic
in the scientific computing community.

In a letter to the IEEE 754 revision group [2] (Sept. 4, 2007) the IFIP Working Group on
Numerical Software requested that a future arithmetic standard should consider and specify
the exact dot product as basic ingredient of variable precision real and interval arithmetic.

In another letter to IEEE P1788 [3] (Sept. 9, 2009) the IFIP Working Group strongly
supports inclusion of an exact dot product in the IEEE standard P1788 for interval arithmetic.
The exact dot product is essential for fast long real and long interval arithmetic, as well as

1



for assessing and managing uncertainty in computer arithmetic. It is a fundamental tool

for computing with guarantees and can be implemented with very high speed. In Numerical
Analysis the dot product is ubiquitous.

On Nov. 18, 2009 the IEEE standards committee P1788 on interval arithmetic accepted a
proposal [4] for including the exact dot product into the future interval arithmetic standard.

2. Informal Description for Realizing an Exact Dot Product

interface

register file (or memory access unit)

128

exp(a) exp(b) mant(a) mant(b)

11 11 53 53

adder multiplier 53 × 53

12 106

mant(a)×mant(b)

106

ringshifter

LSB0123

456

MSB

6
6

Actually the simplest and fastest way for computing a dot product is to compute it exactly.
Take a chest of drawers with 67 numbered drawers. Each one holds 64 bits. The exponent
of the summand (the product) consists of 12 bits. The leading 6 bits give the address of
the three consecutive drawers to which the summand of 106 bits is added. The low end 6
bits of the exponent are used for the correct positioning of the summand within the selected
drawers. The addition is activated for these drawers. It affects at most 170 bits of these
drawers, i.e., an adder of 170 bits could execute the addition in a single add cycle.

A carry is absorbed by the next more significant drawer in which not all bits are 1. For
fast detection of this word a flag is attached to each drawer. It is set 1 if all bits of the word
are 1. This means that a carry will propagate through the entire word. In the figure the
flag is shown as a dark (red) point. As soon as the exponent of the summand is available
the flags allow selecting and incrementing the carry word. This can be done simultaneously
with adding the summand into the selected drawers. If the addition produces a carry the

2



incremented word is written into the carry word. Otherwise it is left as it was. A zero flag
may serve the same purpose in case of subtraction.

There is indeed no simpler way of accumulating a dot product. Any method that just
computes an approximation also has to consider the relative values of the summands. This
results in a more complicated method.

The fascinating property of the exact dot product is the fact that it can be computed
with extreme speed, ideally in the time the processor needs to read the data. No special cases
have to be dealt with. The technique of adding a medium sized bit string to a very long one
may have applications in other areas of computing as well.

Ideally on the computer the chest of drawers would consist of register memory. This leads
to the fastest solution. To add a product to the register memory only two memory words
(the two factors of the product) must be read. The result of the accumulation of the product
appears in the register memory.

The basic idea discussed here was realized on IBM, SIEMENS, and Hitachi computers
about 25 years ago [14, 15]. These computers did not provide enough register space. So here
the chest of drawers was placed in the user memory. The disadvantage of this solution is
that for each accumulation step, four memory words (the three words to which the product is
added and the word which absorbs the carry) must be read and written in addition to the two
operand loads. So the scalar product computation is slower than by use of register memory.
However, in practice today the necessary memory space would probably be in cache. So the
loss in speed would be marginal. Anyway, compared with any (even fast) software solution
the gain in speed would still be tremendous. Generally, realization of an exact dot product
may be architecture dependent. For more details see [5].

All conventional vector processors provide a multiply and accumulate operation (the dot
product) to achieve high speed. In a pipeline the arithmetic (the multiplication and the
accumulation) is done in the time the processor needs to read the data. Very effective
vectorizing compilers have been developed that use this multiply and accumulate operation
within a user’s program as often as possible, since this greatly speeds up program execution.
However, the accumulation is done in floating-point arithmetic. The so-called partial sum

technique alters the order of the summands and may cause errors in addition to the usual
floating-point errors. The exact dot product avoids all numerical errors without any loss in
speed. The hardware needed for it is comparable to that for a fast multiplier by an adder tree
(also called Wallace tree), accepted years ago and now standard technology in every modern
processor. The exact dot product brings the same speedup for accumulations at comparable
costs. In speed a hardware implementation of the exact dot product exceeds computing an
accurately rounded dot product in software by several orders of magnitudes.

3. A Few Sample Applications

A very impressive application is considered in [10], an iteration with the logistic equation
(dynamical system)

xn+1 := 3.75 · xn · (1 − xn), n ≥ 0.

For the initial value x0 = 0.5 the system shows chaotic behavior.
Double precision floaint-point or interval arithmetic totally fail (no correct digit) after 30

iterations while long interval arithmetic still computes correct digits of a guaranteed enclosure
after 2790 iterations.

In numerical analysis the scalar or dot product is ubiquitous. It is not merely a funda-
mental operation in all vector and matrix spaces. The process of residual or defect correction,
or of iterative refinement, is composed of scalar products. There are well known limitations
to these processes in floating-point arithmetic. The question of how many digits of a defect
can be guaranteed in single, double or extended precision arithmetic has been carefully inves-
tigated. With an exact scalar product the defect can always be computed to full accuracy. It

3



is the exact scalar product which makes residual correction effective. This has a direct and
positive influence on all iterative solvers of systems equations.

A simple example may illustrate the advantages of what has been said: Solving a system
of linear equations Ax = b is the central task of numerical computing. Large linear systems
can only be solved iteratively. Iterative system solvers repeatedly compute the defect d

(sometimes called the residual) d := b−Ax̃ of an approximation x̃. It is well known that the
error e of the approximation x̃ is a solution of the same system with the defect as the right
hand side: Ae = d. If x̃ is already a good approximation of the solution, the computation
of the defect suffers from cancellation in floating-point arithmetic, and if the defect is not
computed correctly the computation of the error does not make sense. In the computation
of the defect it is essential that, although x̃ is just an approximation of the solution x∗,
x̃ is assumed to be an exact input and that the entire expression for the defect b − Ax̃ is
computed as a single exact scalar product. This procedure delivers the defect to full accuracy
and by that also to multiple precision accuracy. Thus the defect can be read to 2- or 3- or
4-fold precision as necessary in the form d = d1 + d2 + d3 + d4 as a long real variable. The
computation can then be continued with this quantity. This often has positive influence on
the convergence speed of the linear system solver. It is essential to understand that apart
from the exact scalar product, all operations are performed in double precision arithmetic
and thus are very fast. If the exact scalar product is supported by hardware it is faster than
a conventional scalar product in floating-point arithmetic1.

But also direct solvers of systems of linear equations profit from computing the defect to
full accuracy. The step of verifying the correctness of an approximate solution is based on
an accurate computation of the defect. If a first verification attempt fails, a good enough
approximation can be computed with the exact scalar product.

The so called Krawczyk-operator which is used to verify the correctness of an approximate
solution is able to solve the problem only in relatively stable situations. Matrices from the so
called Matrix Market usually are very ill-conditioned. In such cases the Krawczyk-operator
almost never finds a verified answer. Similarly, for instance, in the case of a Hilbert matrix of
dimension greater than eleven the Krawczyk-operator always fails to find a verified solution.
In all these cases, however, the Krawczyk-operator recognizes that it cannot solve the problem
and then automatically calls a more powerful operator, the so called Rump-operator which
then in almost all cases, even for extremely ill-conditioned problems solves the problem
satisfactorily [11].

The Krawczyk-operator first computes an approximate inverse R of the matrix A and
then iterates with the matrix I − RA, where I is the identity matrix. The Rump-operator
inverts the product RA in floating-point arithmetic again and then multiplies its approximate
inverse by RA. This product is computed with the exact scalar product and from that it
can be read to 2- or 3- or 4-fold precision as necessary as a long-real matrix, for instance
(RA)−1RA ≈ I1+I2+I3+I4 in case of a 4-fold precision. The iteration then is continued with
the matrix I−(I1+I2+I3+I4). It is essential to understand that even in the Rump-algorithm

all arithmetic operations except for the (very fast) exact scalar product are performed in
double precision arithmetic and thus are very fast. This linear system solver is an essential
ingredient of many other problem solving routines with automatic result verification.

To be more successful conventional floating-point and interval arithmetic have to be com-
plemented by some easy way to use multiple or variable precision arithmetic. This enables
the use of higher precision operations in numerically critical parts of a computation. The fast
and exact scalar product is the tool to provide this very easily.

If one runs out of precision in a certain problem class, one often runs out of quadruple
precision very soon as well. It is preferable and simpler, therefore, to provide a high speed

1An iterative method which converges to the solution in infinite precision arithmetic often converges more
slowly or even diverges in finite precision arithmetic.

4



basis for enlarging the precision rather than to provide any fixed higher precision or to sim-
ulate higher precision in software. A hardware implementation of a full quadruple precision
arithmetic is more costly than an implementation of the exact scalar product. The latter
only requires fixed-point accumulation of the products. On the computer, there is only one
standardised floating-point format that is double precision.

For many applications it is necessary to compute the value of the derivative of a function.
Newton’s method in one or several variables is a typical example of this. Modern numerical
analysis solves this problem by automatic or algorithmic differentiation. The so called re-
verse mode is a very fast method of automatic differentiation. It computes the gradient, for
instance, with at most five times the number of operations needed to compute the function
value. The memory overhead and the spatial complexity of the reverse mode can be signif-
icantly reduced by the exact scalar product if this is considered as a single, always correct,
basic arithmetic operation in the vector spaces [12]. The very powerful methods of global
optimization are impressive applications of these techniques.

Many other applications require that rigorous mathematics can be done with the com-
puter using floating-point arithmetic. As an example, this is essential in simulation runs
(eigenfrequencies of a large generator, fusion reactor, simulation of nuclear explosions) or
mathematical modelling where the user has to distinguish between computational artifacts
and genuine reactions of the model. The model can only be developed systematically if errors
resulting from the computation can be excluded.

Nowadays computer applications are of immense variety. Any discussion of where a dot
product computed in quadruple or extended precision arithmetic can be used to substitute
for the exact scalar product is superfluous. Since the former can fail to produce a correct
answer an error analysis is needed for all applications. This can be left to the computer. As
the scalar product can always be executed exactly with moderate technical effort it should
indeed always be executed exactly. An error analysis thus becomes irrelevant. Furthermore,
the same result is always obtained on different computer platforms. An exact scalar product
eliminates many rounding errors in numerical computations. It stabilises these computations
and speeds them up as well. It is the necessary complement to floating-point arithmetic.2

References

[1] IEEE Floating-Point Arithmetic Standard 754, 2008.
[2] The IFIP WG - IEEE 754R letter, dated September 4, 2007.
[3] The IFIP WG - IEEE P1788 letter, dated September 9, 2009.
[4] U. Kulisch, V. Snyder: The Exact Dot Product as Basic Tool for Long Interval Arithmetic, passed on

Nov. 18, 2009 as official IEEE P1788 document.
[5] U. Kulisch: Computer Arithmetic and Validity – Theory, Implementation, and Applications, de Gruyter,

Berlin, New York, 2008.
[6] U. Kulisch: Implementation and Formalization of Floating-Point Arithmetics IBM T. J. Watson-

Research Center, Report Nr. RC 4608, 1 - 50, 1973. Invited talk at the Caratheodory Symposium, Sept.
1973 in Athens, published in: The Greek Mathematical Society, C. Caratheodory Symposium, 328 - 369,
1973, and in Computing 14, 323–348, 1975.

[7] U. Kulisch: Grundlagen des Numerischen Rechnens – Mathematische Begründung der Rechnerarithmetik.
Reihe Informatik, Band 19, Bibliographisches Institut, Mannheim/Wien/Zürich, 1976.

[8] S. M. Rump: Kleine Fehlerschranken bei Matrixproblemen. Dissertation, Universität Karlsruhe, 1980.
[9] R. Lohner: Interval Arithmetic in Staggered Correction Format. In: E. Adams and U. Kulisch (eds.):

Scientific Computing with Automatic Result Verification, pp. 301–321. Academic Press, (1993).

2A disappointing feature is the failure of the numerical analysts to influence computer hardware and software
in the way they should. It is often said that the use of computers for scientific work represents a small part
of the market and numerical analysts have resigned themselves to accepting facilities ”designed” for other
purposes and making the best of them.
J. H. Wilkinson: Turing Lecture 1970, J. ACM 18 (1971), 146.

5



[10] F. Blomquist, W. Hofschuster, W. Krämer: A Modified Staggered Correction Arithmetic with Enhanced
Accuracy and Very Wide Exponent Range. In: A. Cuyt et al. (eds.): Numerical Validation in Current
Hardware Architectures, Lecture Notes in Computer Science LNCS, vol. 5492, Springer-Verlag Berlin
Heidelberg, 41-67, 2009.

[11] R. Klatte, U. Kulisch, C. Lawo, M. Rauch, A. Wiethoff,: C–XSC, A C++ Class Library
for Extended Scientific Computing. Springer-Verlag, Berlin/Heidelberg/New York, 1993. See also:
http://www.math.uni-wuppertal.de/~xsc/ resp. http://www.xsc.de/.

[12] D. Shiriaev: Fast Automatic Differentiation for Vector Processors and Reduction of the Spatial Complexity
in a Source Translation Environment. Dissertation, Universität Kalrsuhe, 1993.

[13] S. Oishi; K. Tanabe; T. Ogita; S.M. Rump: Convergence of Rump’s method for inverting arbitrarily
ill-conditioned matrices. Journal of Computational and Applied Mathematics 205, 533-544, 2007.

[14] IBM System/370 RPQ. High Accuracy Arithmetic. SA 22-7093-0, IBM Deutschland GmbH (Department
3282, Schönaicher Strasse 220, D-71032 Böblingen), 1984.

[15] ACRITH-XSC: IBM High Accuracy Arithmetic, Extended Scientific Computation. Version 1, Release 1.
IBM Deutschland GmbH (Schönaicher Strasse 220, D-71032 Böblingen), 1990.
1. General Information, GC33-6461-01.
2. Reference, SC33-6462-00.
3. Sample Programs, SC33-6463-00.
4. How To Use, SC33-6464-00.
5. Syntax Diagrams, SC33-6466-00.

Institut für Angewandte und Numerische Mathematik, Karlsruher Institut für Technolo-
gie (KIT), D-76128 Karlsruhe GERMANY

E-mail address: Ulrich.Kulisch@kit.edu

6


