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Preface

This document is a standard for modal interval arithmetic. It is being developed
in parallel to the standard for interval arithmetic by the IEEE P1788 Working
Group; the goal is to be as close to P1788 as possible while at the same time
introducing the features and bene�ts of modal interval arithmetic that may not
be included in the �nal P1788 document.
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Notation

? Empty set
2 Set membership (element-of)
\ Set intersection
[ Set union
n Set subtraction
N The set f0; 1; 2; 3; : : :g of natural numbers
Z The set f: : : ;�3;�2;�1; 0; 1; 2; 3; : : :g of integers
R The set of real numbers
R� The set R n f0g of non-zero real numbers
R�0 The set fx 2 R : x � 0g of non-negative real numbers
R>0 The set fx 2 R : x > 0g of strictly positive real numbers
R The set R [ f�1;+1g of extended real numbers
F A �nite subset of R, e. g., IEEE 754 �oating-point numbers
F A �nite set F [ f�1;+1g of extended real numbers
� Equivalent to (de�nition)
: Logical not
^ Logical and
_ Logical or
) Logical implication (if-then)
, Logical equivalence (if and only if)
8 Universal quanti�er (for all)
9 Existential quanti�er (there exists)
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Introduction

Modal interval analysis is the semantic and algebraic completion of classical
interval analysis. Embedded within the modal interval analysis is all the power
of classical interval analysis and more.
Classical interval analysis, as originally conceived by T. Sunaga [5] and later

popularized by American scientist R. E. Moore [4], is the connective link that
unites the borderline of pure mathematics and natural phenomena. For example,
the representation of numerical quantities within a computer by means of a �nite
number of digits precludes the possibility to represent an irrational number such
as
p
2. The concept of

p
2 = 1:4142 : : : cannot be formed in this case without

assuming a sequence of nested intervals

[1; 2] � [1:4; 1:5] � [1:41; 1:42] � [1:414; 1:415] � [1:4142; 1:4143] � � � �

that can be said to be associated with a rule for calculating the exact solution to
within some �nite tolerance of approximation. In this regard, Sunaga remarks
the concept of an interval is more fundamental than that of a real number.
In classical interval analysis, the set X = [a; b] = fx : a � x � bg is called an

interval. This de�nition presupposes that a and b are real numbers such that
a � b. If X and Y are intervals, the inclusion relation X � Y is true if and only
if x 2 X implies x 2 Y , i. e.,

X � Y , (8x 2 X)(9y 2 Y ) : x = y.

The inclusion relation for intervals forms a partially ordered set so that if X � Y
and Y � Z, then X � Z. Inclusion X � Y may also be written Y � X.
If � is the arithmetic operation addition, subtraction, multiplication or divi-

sion, the corresponding arithmetic operations on intervals are de�ned

X � Y � fx � y : x 2 X; y 2 Y g,

provided that 0 =2 Y in the case of division. If X = [x1; x2] and Y = [y1; y2] are
intervals, these operations can be expressed by the interval endpoints as

X + Y � [x1 + y1; x2 + y2],

X � Y � [x1 � y2; x2 � y1],
XY � [min(x1y1; x2y1; x1y2; x2y2);max(x1y1; x2y1; x1y2; x2y2)],

X=Y � X � (1=Y ) � X � [1=y2; 1=y1].

iv



INTRODUCTION v

A generalization to interval functions can also be made. If f(x1; x2; :::; xn)
is a real function and X = (X1; X2; :::; Xn) is an interval box such that the
restriction of f to X is continuous, the so-called �united extension�

f(X) � ff(x1; x2; :::; xn) : x1 2 X1; x2 2 X2; : : : ; xn 2 Xng

is a set containing the image of f for all elements of X.
Several important properties of the united extension come from calculus.

By the nested intervals theorem, if X1 � X2 � � � � � Xm � � � � are m nested
interval boxes, X1 \X2 \ � � � \Xm 6= ? and there exists a point ' 2 Rn that is
an element of each Xk for k = 1; 2; : : : ;m. If the dimensions of each Xk decrease
as m ! 1, the Xk converge to '. In this case, ' is a limit point of X1 such
that \

k=1;2;3;:::

f(Xk) = f(').

By the extreme value theorem, the united extension has unique minimal and
maximal elements; and by the intermediate value theorem, the united extension
is a mapping of X to the interval

f(X) � [min
x2X

f(x);max
x2X

f(x)].

These properties lead to the Fundamental Theorem of Interval Analysis [1],
which says an interval Y is an �outer�estimation of f(X) when

f(X) � Y , (8x 2 X)(9y 2 Y ) : f(x) = y.

This fundamental theorem can be viewed as the all-important link between the
realms of pure mathematics and natural phenomena. For example, if g(x) =

p
x

and X = [1; 2], the united extension

g(X) = [1;
p
2] = [1; 1:4142 : : :]

is not directly computable in the natural world when the interval endpoints are
to be represented with only a �nite number of digits. If x is a real number
and the rounding operators 5(x) and 4(x) are approximations of x such that
5(x) � x and 4(x) � x, then the �outer� rounding of an interval [a; b] is
de�ned Out([a; b]) = [5(a);4(b)]. The property [a; b] � Out([a; b]) is satis�ed
and, e. g., makes valid the implication

g(X) � Out(g(X)) ) [1;
p
2] � [1; 1:4143].

Outer estimations of the arithmetic operations are similarly de�ned, and lead
to another important theorem. Let f : Rn ! R be a rational function and E be
an expression with a �nite set of variables x = (x1; x2; :::; xn) such that f is the
function computed by E. Let F (X) be the computational program indicated by
E when the variables are substituted by intervals X = (X1; X2; :::; Xn) and each
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real operator of E is transformed into an outer estimation of a corresponding
interval operator. This gives the relation

f(X) � F (X) , (8x 2 X)(9y 2 F (X)) : f(x) = y,

which is also known as the Fundamental Theorem of Interval Arithmetic.
The algebraic structure of classical interval arithmetic lacks some important

properties. Interval subtraction is not the inverse of interval addition, and the
same is true of interval multiplication and division. In general terms, for any
interval A = [a1; a2] such that a1 6= a2, there exists no interval X such that the
interval equations A+X = [0; 0] or A �X = [1; 1] are true, and for A+X = B
or A �X = B none of the �solutions�X = B � A or X = B=A actually exist.
This anomaly can be solved by adding certain elements, called the �improper�
intervals, to the classic set of �proper�intervals identi�ed by Sunaga and Moore.
This process is known in abstract algebra as the Grothendieck group construc-
tion; it is, for example, how the abelian group (Z;+) of integers is constructed
from the commutative cancellative monoid (N;+) of natural numbers. When
applied to intervals, the resulting algebraic structure is an abelian group for the
operation of addition, as well as for the multiplication of intervals not contain-
ing zero. This discovery is due mainly to E. Kaucher [3] but was also conceived
earlier in a less developed form by Polish mathematician M. Warmus [6] [7].
Despite the better algebraic structure of the Kaucher interval arithmetic, it

did not receive a lot of attention by many scientists. Perhaps the most likely
reason was due to the abstract nature of the resulting interval system. The
new elements of the Kaucher arithmetic (the improper intervals) were a purely
algebraic construction, and this may have concealed their deeper meaning; it
may not have been immediately clear or obvious how to extend the Fundamen-
tal Theorem of Interval Analysis, for example, to interval functions accepting
improper intervals as arguments. In the meantime, many successful advances
were being made in the �eld of classical interval analysis for �nding solutions
to scienti�cally important problems such as systems of nonlinear equations and
global optimization.
Originally conceived by E. Gardenes et. al. [2], modal interval analysis de-

�nes in logical terms the semantic meaning for the improper intervals of Kaucher
arithmetic; in so doing, the Fundamental Theorem of Interval Analysis is gen-
eralized to include interval functions that may also accept improper intervals as
arguments. A similar generalization to the Fundamental Theorem of Interval
Arithmetic is also de�ned.
As a consequence, the Fundamental Theorem of Interval Analysis appears

naturally as a special case within the modal interval analysis; and since the
algebraic structure of Kaucher arithmetic is embedded within the modal inter-
val arithmetic, modal interval analysis may be viewed as the all-encompassing
theory that uni�es the algebraic completion of classical interval arithmetic with
the set-theoretic formulation of Kaucher arithmetic.



Chapter 1

Mathematical Intervals

IR � f[a; b] : a; b 2 Rg n f[�1;�1]; [+1;+1]g

is the set of intervals supported by this standard. An interval is therefore an
ordered pair [a; b] such that a; b 2 R, the two pairs [�1;�1] and [+1;+1]
excluded. Note that no restriction a � b is required. The empty set (?) is not
an element of IR and is not an interval.

De�nition 1 (Set-Theoretic Interpretation) For any interval [a; b] 2 IR,

Set([a; b]) � fx 2 R : min(a; b) � x � max(a; b)g.

The notation x 2 [a; b] may be used as an abbreviation for x 2 Set([a; b]). The
empty set is not an interval, and Set(?) � ?.

A closed interval includes all of its limit points. Every [a; b] 2 IR is a closed
interval. If both a and b are real numbers, the interval is bounded.

IR � f[a; b] 2 IR : a; b 2 Rg

is the subset of bounded intervals supported by this standard. If an interval is
not bounded, then at least one of the endpoints is �1 or +1 and the interval
still contains all of its limit points but not all of its endpoints. Intervals of the
form

[�1;+1], [�1; b], [a;+1], [+1; b], [a;�1] and [+1;�1]

are therefore understood to be unbounded. Despite the use of square brackets,
in�nity is never an element of any interval, and

[�1;�1] and [+1;+1]

are by de�nition not elements of IR.

1



CHAPTER 1. MATHEMATICAL INTERVALS 2

Other �natural�subsets of IR are

I(R) � f[a; b] 2 IR : a � bg,
I(R) � f[a; b] 2 IR : a � bg,
ID(R) � f[a; b] 2 IR : a � bg,
ID(R) � f[a; b] 2 IR : a � bg,
IR(R) � f[a; b] 2 IR : a = bg,

and the inclusion relations between these subsets are

IR(R) � I(R) � I(R) and IR(R) � ID(R) � ID(R).

An interval [a; b] 2 I(R) is a �proper� interval; an interval [a; b] 2 ID(R) is
an �improper� interval; and an interval [a; b] 2 IR(R) is a �singleton� interval
identi�ed with an element of the real number line. I(R) is the historically
important set of �classic� intervals made popular by the works of Sunaga and
Moore, and IR is the set of Kaucher intervals.

De�nition 2 (Geometric Interpretation) Elements of IR can be visualized
as points in the R2 plane, where canonical abscissa and ordinate are de�ned
respectively as the left and right bound of an interval [a; b] 2 IR, i. e.,

�([a; b]) � a and �([a; b]) � b.

Remark 1 The main theory of modal interval analysis is constructed from the
set IR of closed and bounded Kaucher intervals; an �extended�modal interval
analysis involving unbounded elements from the set IR of closed intervals is also
de�ned under a special set of circumstances. The main reason for the extension
to IR is because in digital computing one must often consider �over�ow,� a
concept that will be dealt with in the sequel.

1.1 Logical Semantics

De�nition 3 (Predicate) Within the context of this standard, a predicate is
a boolean function of one or more real variables.

De�nition 4 (Proposition) A proposition is a predicate wherein each real
variable is universally or existentially quanti�ed.

De�nition 5 (Modal Quanti�er) A real variable x is quanti�ed by the modal
quanti�er Q on the interval [a; b] 2 IR by

Q(x; [a; b]) �
�
9x 2 Set([a; b]) if a � b,
8x 2 Set([a; b]) if a � b.
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λ

ρ

λ

ρ

A

B ¶ A

C · A

D ¸ A

E µ A

A

B ¶ A D Â A

C Á A E µ A

Figure 1.1: Comparison relations in IR.

Remark 2 If A = [a; a] is a singleton interval and P (x) : R ! ftrue; falseg
is a predicate, then

Q(x;A)P (x) = (9x 2 Set(A))P (x) = (8x 2 Set(A))P (x) = P (a),

and in all cases the acceptance or rejection of the predicate P is decided by the
value of P (a).

De�nition 6 (Modal Operators) If [a; b] 2 IR, the modal operators are

Dual([a; b]) � [b; a],

Prop([a; b]) � [min(a; b);max(a; b)],

Impr([a; b]) � [max(a; b);min(a; b)],

and the corresponding modal quanti�ers D, E and U are

D(x; [a; b]) � Q(x;Dual([a; b])),

E(x; [a; b]) � Q(x;Prop([a; b])),

U(x; [a; b]) � Q(x; Impr([a; b])).

1.2 Comparison Relations

De�nition 7 (Inclusion) If A;B 2 IR, the inclusion (�) relation is

A � B , D(a;A)Q(b; B) : a = b.

De�nition 8 (Equality) If A;B 2 IR, the equality (=) relation is

A = B , (A � B) ^ (B � A).
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De�nition 9 (Less-or-Equal) If A;B 2 IR, the less-or-equal (�) and strictly
less (<) relations are

A � B , (U(a;A) E(b; B) : a � b) ^ (U(b; B) E(a;A) : a � b),
A < B , (U(a;A) E(b; B) : a < b) ^ (U(b; B) E(a;A) : a < b).

De�nition 10 (Interior) If A;B 2 IR, the interior (b) relation is

A b B , (D(a;A)Q(b; B) : b < a) ^ (D(a;A)Q(b; B) : a < b).

If A is proper and B is improper, the interior relation is never true.

De�nition 11 (Precedes) If A;B 2 IR, the precedes (4) and strictly precedes
(�) relations are

A 4 B , U(a;A)U(b; B) : a � b,
A � B , U(a;A)U(b; B) : a < b.

Lemma 1 (Programming of Relations) If A = [a1; a2] and B = [b1; b2] are
elements of IR, the programming of comparison relations is

A = B , (a1 = b1) ^ (a2 = b2),
A � B , (a1 � b1) ^ (a2 � b2),
A < B , (a1 6 b1) ^ (a2 6 b2),
A � B , (b1 � a1) ^ (a2 � b2),
A b B , (b1 6 a1) ^ (a2 6 b2),
A 4 B , max(a1; a2) � min(b1; b2),
A � B , max(a1; a2) < min(b1; b2),

where 6 is the same as < except that �1 6 �1 and +1 6 +1 are true.

Several comparison relations are visualized in the R2 plane by Figure 1.1.

De�nition 12 (Empty Relations) The empty set (?) is not an interval, so
any comparison relation involving the empty set is unordered. Any unordered
comparison relation is false and its negation is true, e. g., ? = ? is false and
? 6= ? is true.

1.3 Lattice Operators

De�nition 13 (Meet and Join) The algebraic structure (IR;�) is a bounded
lattice. For any elements A = [a1; a2] and B = [b1; b2] of the lattice, the unique
in�mum and supremum are, respectively,

meet(A;B) � [max(a1; b1);min(a2; b2)],

join(A;B) � [min(a1; b1);max(a2; b2)].

The bottom of the lattice is [+1;�1] and the top of the lattice is [�1;+1].
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λ

ρ
A

Bmin(A,B)

max(A,B)

λ

ρ

A

B

meet(A,B)

join(A,B)

Figure 1.2: Lattice operators in IR.

De�nition 14 (Minimum and Maximum) The algebraic structure

(IR [ f[�1;�1]; [+1;+1]g;�)

is a bounded lattice. For any elements A = [a1; a2] and B = [b1; b2] of the lattice,
the unique in�mum and supremum are, respectively,

min(A;B) � [min(a1; b1);min(a2; b2)],

max(A;B) � [max(a1; b1);max(a2; b2)].

The bottom of the lattice is [�1;�1] and the top of the lattice is [+1;+1],
although these two elements of the lattice are not also elements of IR.

Lattice relations are visualized in the R2 plane by Figure 1.2.

1.4 Digital Intervals and Roundings

If F � R is a digital scale for the real numbers and F � F [ f�1;+1g,

IF � f[a; b] : a; b 2 Fg n f[�1;�1]; [+1;+1]g

is the set of digital intervals supported by F. A digital interval is therefore an
ordered pair [a; b] such that a; b 2 F, the two pairs [�1;�1] and [+1;+1]
excluded. No restriction a � b is required. The empty set (?) is not an element
of IF and

IF � f[a; b] 2 IF : a; b 2 Fg

is the subset of bounded digital intervals supported by F.
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Other subsets of IF are

I(F) � f[a; b] 2 IF : a � bg,
I(F) � f[a; b] 2 IF : a � bg,
ID(F) � f[a; b] 2 IF : a � bg,
ID(F) � f[a; b] 2 IF : a � bg,
IR(F) � f[a; b] 2 IF : a = bg,

and the inclusion relations between these subsets are

IR(F) � I(F) � I(F) and IR(F) � ID(F) � ID(F).

De�nition 15 (Rounding Operators) The rounding operators

5(x) : R! F and 4(x) : R! F

are digital approximations of x such that the relations 5(x) � x and 4(x) � x
are always true.

De�nition 16 (Inner and Outer Roundings) For [a; b] 2 IR,

Inn([a; b]) � [4(a);5(b)] and Out([a; b]) � [5(a);4(b)]

are the �inner�and �outer�digital roundings, respectively, of [a; b].

The inner and outer digital roundings are universally possible within the
limits of any F and satisfy the property

Inn([a; b]) � [a; b] � Out([a; b])

such that the equivalence

Inn([a; b]) � Dual(Out(Dual([a; b])))

makes unnecessary the implementation of the inner rounding. This standard
therefore requires conforming implementations only to support outer digital
roundings.



Chapter 2

Interval Extensions

The main theory of modal interval analysis is constructed from the set IR of
nonempty, closed and bounded intervals. In the sequel, a so-called �extended�
modal interval analysis involving elements from the set IR of nonempty and
closed intervals will be dealt with.

2.1 Semantic Functions

If X 2 IRn, then X = (Xp; Xi) is the �component splitting� of X such that
the proper components of X are Xp = (Xp1 ; Xp2 ; : : : ; Xpk) and the improper
components of X are Xi = (Xik+1 ; Xik+2 ; : : : ; Xin). The component splitting is
important to many de�nitions and theorems of the modal interval analysis.

De�nition 17 (*-Semantic Function) If X = (Xp; Xi) 2 IRn is an interval
component-splitting and f : Rn ! R is a real function such that the restriction
of f to Set(X) is continuous, then

f�(X) � [ min
xp2Xp

max
xi2Xi

f(xp; xi); max
xp2Xp

min
xi2Xi

f(xp; xi)]

is the *-semantic extension of f onto X.

De�nition 18 (**-Semantic Function) If X = (Xp; Xi) 2 IRn is an in-
terval component-splitting and f : Rn ! R is a real function such that the
restriction of f to Set(X) is continuous, then

f��(X) � [ max
xi2Xi

min
xp2Xp

f(xp; xi); min
xi2Xi

max
xp2Xp

f(xp; xi)]

is the **-semantic extension of f onto X.

Remark 3 If all of the X-components are proper intervals, then

f�(X) � f��(X) � [min
x2X

f(x);max
x2X

f(x)],

7
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which is equivalent to the united extension of classical interval analysis; and if
all of the X-components are improper intervals,

f�(X) � f��(X) � [max
x2X

f(x);min
x2X

f(x)].

For any real function f : Rn ! R and X 2 IRn such that f�(X) and f��(X)
are both de�ned, the semantic functions have several important properties. The
semantic functions are related by the equivalence

Dual(f�(X)) � f��(Dual(X)),

as well as the inclusion relation

f�(X) � f��(X). (2.1)

An important and special case of the relation (2.1) is when

f�(X) = f��(X),

and the function f is said to be �JM-commutable�for X (the JM in this name
stands for �Join Meet�). Important examples of JM-commutable functions are
one-variable continuous functions and every two-variable continuous function
that is partially monotonic in a domain I(R)2 like the arithmetic operators and
power function. Semantic functions are inclusion isotonic, i. e., for X;Y 2 IRn,

X � Y ) (f�(X) � f�(Y ); f��(X) � f��(Y )).

2.2 Semantic Theorems

For X 2 IRn, the semantic functions f�(X) or f��(X) are exact semantic
images of f on X. When all the X-components are proper, f�(X) and f��(X)
correspond to the united extension of classical interval analysis and represent
the exact image of the real function f on Set(X). If at least one component of
X is improper, however, the semantic functions may not yield, without further
thought, much clear meaning about the image of f on X.
Two key theorems uncover the meaning of the semantic functions in logical

terms. The Fundamental Theorem of Interval Analysis from classical interval
analysis appears as a special case of these key theorems; in the general case,
a logic formula and corresponding inclusion relation for an �outer�estimation
of f�(X) and an �inner� estimation of f��(X) are given, even if some or all
components of X may be improper.

Theorem 1 (*-Semantic Theorem) If X = (Xp; Xi) 2 IRn is an interval
component-splitting and f : Rn ! R is a real function such that the restriction
of f to Set(X) is continuous, then for Y � 2 IR,

f�(X) � Y � , U(xp; Xp)Q(y; Y
�) E(xi; Xi) : f(xp; xi) = y.
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λ

ρ

Y*

f*=f**

λ

ρ

Y**

f*=f**
Y*

Y**

(a) (b)

Figure 2.1: An illustration of �outer� and �inner� estimations Y � and Y ��,
respectively, of (2.4)�(2.7). All points in the plane above the � = � line are
proper intervals and points below this line are improper intervals. Any point in
a shaded region is a value of Y � or Y �� that satis�es one of the corresponding
semantics. Estimations for (2.2) are depicted on the left in (a) and estimations
for (2.3) are depicted on the right in (b). If f� is a proper interval, then Y � is
a proper interval. If f� is an improper interval, then Y � may be a proper or
an improper interval. This is why classical interval analysis is the special case
depicted in (a) where f� and Y � are proper intervals.

Theorem 2 (**-Semantic Theorem) If X = (Xp; Xi) 2 IRn is an interval
component-splitting and f : Rn ! R is a real function such that the restriction
of f to Set(X) is continuous, then for Y �� 2 IR,

Y �� � f��(X), U(xi; Xi)D(y; Y
��) E(xp; Xp) : f(xp; xi) = y.

Remark 4 When all the X-components are proper intervals, f�(X) is a proper
interval. No proper interval can be a subset of an improper interval, so Y � must
be proper for the *-semantic to be true. Under this assumption, the *-semantic
simpli�es to

f�(X) � Y � , (8x 2 X)(9y 2 Y �) : f(x) = y.

This is the Fundamental Theorem of Interval Analysis from classical interval
analysis.

Example 1 Consider the real function f(x) =
p
x for the proper and improper

intervals [1; 4] and [4; 1]. The semantic functions are

f�([1; 4]) = f��([1; 4]) = [1; 2], (2.2)

f�([4; 1]) = f��([4; 1]) = [2; 1]. (2.3)
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The semantic theorems then give the inclusion relations between each semantic
function (2.2)�(2.3) and an �outer� estimation

f�([1; 4]) � Y � , (8x 2 Set([1; 4]))Q(y; Y �) : f(x) = y, (2.4)

f�([4; 1]) � Y � , Q(y; Y �)(9x 2 Set([4; 1])) : f(x) = y, (2.5)

as well as an �inner� estimation

Y �� � f��([1; 4]), D(y; Y
��)(9x 2 Set([1; 4])) : f(x) = y, (2.6)

Y �� � f��([4; 1]), (8x 2 Set([4; 1]))D(y; Y ��) : f(x) = y. (2.7)

In order to visualize the intervals Y � and Y �� which satisfy (2.4)�(2.7), the
semantic functions f� = f�� can be plotted in R2 as a point that divides the
plane into four quadrants as depicted in Figure 2.1. The shaded regions are the
intervals which satisfy one of the corresponding semantics.

Remark 5 The function f(x) =
p
x is JM-commutable; this means both the *-

and **-semantics are true when

f(X)� = Y � = Y �� = f(X)��.

Remark 6 The proper interval (2.2) cannot be a subset of an improper interval,
so Y � must be proper for the *-semantic to be true. Under this assumption, (2.4)
may be expanded to

f�([1; 4]) � Y � , (8x 2 [1; 4])(9y 2 Y �) : f(x) = y.

This is the �outer�estimation of classical interval analysis. The interval (2.3),
however, may be a subset of a proper or improper interval, so Q(y; Y �) cannot be
expanded in (2.5) until the value of Y � is known. For example, if Y � = [1:9; 1:2],
then (2.5) expands to

f�([4; 1]) � [1:9; 1:2], (8y 2 Set([1:9; 1:2]))(9x 2 Set([4; 1])) : f(x) = y;

but if Y � = [�1; 4], then (2.5) expands to

f�([4; 1]) � [�1; 4], (9y 2 Set([�1; 4]))(9x 2 Set([4; 1])) : f(x) = y.

Similar cases exist for (2.6)�(2.7). In all cases, the predictions made by the
semantic theorems are true.

2.3 Syntactic Functions

Looking at the syntactic tree for a real function f : Rn ! R, where the nodes
are operators, the leaves are variables, and branches de�ne the domain of each
operator, f can be operationally extended to a syntactic function IRn ! IR by
using the computational program implicitly de�ned by the syntactic tree of the
expression de�ning the function.
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De�nition 19 (Syntactic *-Function) The syntactic *-function

fR�(X) : IRn ! IR

is de�ned by the computational program indicated by the syntactic tree of a real
function f : Rn ! R when all of the real operators are transformed into their
*-semantic extension.

De�nition 20 (Syntactic **-Function) the syntactic **-function

fR��(X) : IRn ! IR

is de�ned by the computational program indicated by the syntactic tree of a real
function f : Rn ! R when all of the real operators are transformed into their
**-semantic extension.

The syntactic functions are related by the equivalence

Dual(fR�(X)) � fR��(Dual(X)),

and the syntactic functions are inclusion isotonic, i. e., for X;Y 2 IRn,

X � Y ) (fR�(X) � fR�(Y ); fR��(X) � fR��(Y )).

When computing with digital intervals, the syntactic *-function uses an outer
rounding computation and the syntactic **-function uses an inner rounding
computation.

De�nition 21 (Outer Rounding Computation) The outer rounding com-
putation

Out(fR�(X))

is the function de�ned by the computational program of fR�(X) when the value
of every X-component is replaced by its outer rounding and the exact value of
every operator is replaced by its outer rounding.

De�nition 22 (Inner Rounding Computation) The inner rounding com-
putation

Inn(fR��(X))

is the function de�ned by the computational program of fR��(X) when the value
of every X-component is replaced by its inner rounding and the exact value of
every operator is replaced by its inner rounding.

Theorem 3 (Dual Computing Process) The inner rounding of fR��(X)
may be computed in terms of the outer rounding of fR�(X) by the equivalence

Inn(fR��(X)) � Dual(Out(fR�(Dual(X)))).

In practice, computations do not need an arithmetic supporting both the
inner and outer roundings because of the dual computing process. This standard
therefore requires conforming implementations only to support outer rounding
computations.



Chapter 3

Interpretability and
Optimality

If X 2 IRn and f : Rn ! R is a real function such that the restriction of f to
Set(X) is continuous, then for Y �; Y �� 2 IR the semantic theorems de�ne an
equivalence between a �rst-order logic formula, involving equalities relating the
real function f to elements of X, and an inclusion relation involving Y � or Y ��.
If one of the semantic theorems veri�es the relation

f�(X) � Y � or Y �� � f��(X),

then f is said to be interpretable. Particularly, f may be quali�ed as *- or **-
interpretable depending on which semantic is true. If both semantic theorems
are true, thus verifying the JM-commutability of the relation

f(X)� = Y � = Y �� = f(X)��,

then f is said to be optimal.

3.1 Digital Computations

There are many theorems in the literature about the interpretability of syntactic
functions. If f : Rn ! R is a real function such that f�(X) and f��(X) are the
semantic functions and fR�(X) and fR��(X) are the syntactic functions, the
interpretable relations

f�(X) � Out(fR�(X)) and Inn(fR��(X)) � f��(X)

are true only under a speci�c set of circumstances given by the �theorems of
interpretability.�In the cases not directly covered by these theorems, the input
X may be transformed according to certain rules so that the syntactic functions
become interpretable by the so-called �theorems of coercion.�An in-depth pre-
sentation of all these theorems is beyond the scope of this standard, but they
may be found in the literature [2].

12
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Remark 7 When all the X-components are proper intervals, both f�(X) and
Out(fR�(X)) are proper intervals such that the interpretable relation

f�(X) � Out(fR�(X))

is always true. This special case coincides with the Fundamental Theorem of
Interval Arithmetic from classical interval analysis.



Chapter 4

Extended Modal Interval
Analysis

This section introduces the concepts of extended modal interval analysis. The
main theories of modal interval analysis are constructed on the premise that
an interval extension is de�ned only when the restriction of a real function to
an input domain is continuous, the input domain being a set of nonempty and
bounded intervals. With extended modal interval analysis, semantic theorems
and syntactic functions are extended to elements of IR by taking into consider-
ation continuity considerations, and an exception handling system based on the
concept of decorations is used to reliably detect out-of-domain arguments and
evaluation of non-continuous functions.

4.1 Continuity Considerations

The extension of a continuous real function to an interval operator coincides
with the intermediate value theorem of calculus, which states the image of an
interval on a continuous function is another interval. The meaning is two-fold,
namely the logic formulas of both the *- and **-semantic theorems are necessary
(in fact, one is necessary and the other is su¢ cient) for a correct de�nition of
an interval operator. More speci�cally, an interval operator must be optimal.

De�nition 23 (Operator) If X 2 IRn and f : Rn ! R is a real function
such that f is optimal for X, then f is an operator for X.

Example 2 In classical interval analysis, the extension of the continuous real
function f(x) = x2 to the interval X = [�1; 3] is

f(X) = fx2 : x 2 [�1; 3]g = [ min
x2[�1;3]

x2; max
x2[�1;3]

x2] = [0; 9].

This coincides with the intermediate value theorem from calculus, which states
the image of an interval on a continuous function is another interval. The

14
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implications are two-fold, namely the semantic

(8x 2 [�1; 3])(9y 2 [0; 9]) : y = x2

and the semantic
(8y 2 [0; 9])(9x 2 [�1; 3]) : y = x2

are both true. In the context of modal interval analysis, f(X) is a syntactic
operator since f is optimal on X.

De�nition 24 (Empty Operator) If X 2 ? [ IRn and f : Rn ! R is a real
function such that f is not a syntactic operator for X, then the operation on X
is the empty set.

Example 3 The extension of the non-continuous real function f(x) = 
oor(x)
to the interval X = [�1; 3], i. e.,

f(X) = f
oor(x) : x 2 [�1; 3]g = f�1; 0; 1; 2; 3g, (4.1)

is not an interval and, therefore, it is not an interval extension. Even though
minimal and maximal elements of (4.1) exist so that a unique interval

[ min
x2[�1;3]


oor(x); max
x2[�1;3]


oor(x)] = [�1; 3]

is de�ned that contains all possible values of (4.1), it is signi�cantly important
to recognize the semantic

(8x 2 [�1; 3])(9y 2 [�1; 3]) : y = 
oor(x)

is true, but the semantic

(8y 2 [�1; 3])(9x 2 [�1; 3]) : y = 
oor(x)

is false. So, on the interval [�1; 3] the �oor function is an empty operator.

Example 4 The extension of the real function f(x) =
p
x to the interval X =

[�4;�1] is unde�ned and is not an interval, i. e.,

f(X) = f
p
x : x 2 [�4;�1]g = ?.

De�nition 25 (Promoted Operator) If X 2 IRn and f : Rn ! R is a real
function with natural domain Df � Rn such that f is an empty operator for X
but the relation Set(X) \ Df 6= ? is also true, then f may be promoted to a
syntactic operator by further restricting the domain of f to Set(X) \Df .

Example 5 The natural domain of the real function f(x) = 1=x is the set R�
of non-zero real numbers. On the interval X = [0; 1], the function is an empty
operator because 0 2 X. However, if the domain of f is further restricted to
Set(X) \ R� = (0; 1], then the semantic

(8x 2 (0; 1])(9y 2 [1;+1]) : y = 1=x
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and the semantic

(8y 2 [1;+1])(9x 2 (0; 1]) : y = 1=x

are both true, so the promoted function is a syntactic operator for X. However,
if X = [�1; 1] and Set(X) \Df = [�1; 0) [ (0; 1], then the semantic

(8x 2 [�1; 0) [ (0; 1])(9y 2 [1;+1]) : y = 1=x

is true, but the semantic

(8y 2 [1;+1])(9x 2 [�1; 0) [ (0; 1]) : y = 1=x

is false. So, on the interval [�1; 1] the promoted function is still an empty
operator.

4.2 Decorations

Decorations describe mathematical properties of the restriction of a real function
to an interval domain. Decorations provide a framework for detecting excep-
tional conditions such as out-of-domain arguments or non-continuous functions.

T (f;X) The restriction of f to Set(X) is...
EIN de�ned and continuous on empty input
DAC de�ned and continuous
DEF de�ned
GAP empty or nonempty
NDF empty

EIN � DAC � DEF � GAP � NDF � EIN

S(f;X) The restriction of f to Set(X) is...
ein EIN

dac DAC and not EIN
def DEF and not DAC
gap GAP and not (DEF or NDF)
ndf NDF and not EIN

De�nition 26 (Continuous Property) If X 2 ?[ IRn and f : Rn ! R is a
real function, then the continous property, denoted C(f;X), is true if and only
if the restriction of f to Set(X) is continuous. The empty set is not an interval,
but the restriction of f to the empty set is continuous, i. e., C(f;?) is true.

De�nition 27 (Domain Property) If X 2 ?[ IRn and f : Rn ! R is a real
function with natural domain Df � Rn, then the domain property is a pair of
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universally quali�ed propositions, denoted D(f;X)+ and D(f;X)�, that make
opposite assertions about the set-membership of X in Df , i. e.,

D(f;X)+ � U(x;X) : (x 2 Df ),
D(f;X)� � U(x;X) : :(x 2 Df ).

The empty set is not an interval, but for any f the propositions D(f;?)+ and
D(f;?)� are always true.

De�nition 28 (Static Decorations) If X 2 ? [ IRn and f : Rn ! R is a
real function with natural domain Df � Rn, then S(f;X) is a function that
maps the (f;X) pair onto the set of static decorations

D � fndf; gap; def; dac; eing

according to the truth table:

S(f;X) D(f;X)+ D(f;X)� C(f;X)
ein T T T
dac T F T
def T F F
gap F F F
ndf F T F

Static decorations partition the universe of all (f;X) pairs into �ve disjoint
sets, such that every (f;X) pair is associated with a static decoration that has
the meaning:

(f;X) X = ? The restriction of f to Set(X) is...
ein T de�ned and continuous on empty input
dac F de�ned and continuous
def F de�ned
gap F de�ned and not de�ned (information gap)
ndf F not de�ned

4.3 Property Tracking

Decorations introduce the concept of a decorated interval, which is a pair (X;D)
consisting of an interval X 2 IR and a decoration D 2 D, or a decorated empty
set, which is a pair (?; D). The union of decorated intervals and decorated
empty sets is the set of decorated elements. The computation of a decorated
element is modeled as a decorated *- or **-extension of a real function, and
the computational process may be realized as a decorated syntactic *- or **-
function.

De�nition 29 (Tracking Decoration) If f : Rn ! R is a real function and
(X;D) 2 (? [ IRn;Dn) are the decorated arguments of a semantic extension of
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f , then the tracking decoration T (f; (X;D)) is the greatest element by the linear
quality order

ndf < gap < def < dac < ein

that is less-than or equal to all elements of a set formed by the union of the
static decoration S(f;X) and the components of D, i. e.,

T (f; (X;D)) � inf fS(f;X); D1; D2; : : : ; Dng .

De�nition 30 (Decorated *-Function) If f� : IRn ! IR is the *-extension
of a real function f and (X;D) 2 (? [ IRn;Dn) are the decorated arguments of
f�, then the decorated *-function of f� is

(f�(X); T (f; (X;D))). (4.2)

If f is an empty operator, then f is promoted to a syntactic operator, if possible,
and the �rst component of (4.2) is the *-extension of the promoted operation
and the second component of (4.2) is the tracking decoration of the unpromoted
operation.

De�nition 31 (Decorated **-Extension) If f�� : IRn ! IR is the **-
extension of a real function f and (X;D) 2 (? [ IRn;Dn) are the decorated
arguments of f��, then the decorated **-extension of f�� is

(f��(X); T (f; (X;D))). (4.3)

If f is an empty operator, then f is promoted to a syntactic operator, if possible,
and the �rst component of (4.3) is the **-extension of the promoted operation
and the second component of (4.3) is the tracking decoration of the unpromoted
operation.

De�nition 32 (Decorated Syntactic *-Extension) If fR� : IRn ! IR is
the syntactic *-extension of a real function f and (X;D) 2 (?[IRn;Dn) are the
decorated arguments of fR�, then the decorated syntactic *-extension of fR�,
denoted

(fR�(X); T (fR�; (X;D))),

is de�ned by the computational program indicated by the syntactic tree of fR�

when all of the operators are transformed into their decorated *-extensions.

De�nition 33 (Decorated Syntactic **-Extension) If fR�� : IRn ! IR
is the syntactic **-extension of a real function f and (X;D) 2 (? [ IRn;Dn)
are the decorated arguments of fR��, then the decorated syntactic **-extension
of fR��, denoted

(fR��(X); T (fR��; (X;D))),

is de�ned by the computational program indicated by the syntactic tree of fR��

when all of the operators are transformed into their decorated **-extensions.
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4.4 Promotions and Forgetful Operators

If (X;D) 2 (?[IR;D) is a decorated element, then a bare interval, a bare empty
set or a bare decoration may be extracted from (X;D) by a forgetful operator,
which throws away either the X or the D component of the decorated element
(X;D).
By convention, a bare interval, bare empty set or bare decoration is just an

interval, empty set or decoration, respectively, except when the bareness is to be
emphasized. The union of bare intervals, bare empty set and bare decorations is
the set of bare elements. A conforming implementation may permit the following
promotions of bare elements:

� a bare interval X 2 IR may promote to a decorated interval (X; dac);

� a bare empty set may promote to a decorated empty set (?; ein); and

� a bare decoration D 2 D may promote to a decorated empty set (?; D).

If some or all of the arguments of an operation are bare elements, then the
bare elements are implicitly promoted to decorated elements and the operation
is then performed on the decorated elements. The result of the operation is a
decorated element (X;D) 2 (?[ IR;D), and a conforming implementation may
choose to return (as if by an implicit use of a forgetful operator) only the X or
the D component of the result.



Chapter 5

Required Operations

Conforming implementations shall provide the modal operators Dual, Prop, and
Impr in De�nition 6; the comparison relations in Section 1.2; and the lattice
operators in Section 1.3.

20
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5.1 Arithmetic Operations

Conforming implementations shall provide the arithmetic operations:

Name Real function Domain Range
negate(x) �x R R
recip(x) 1=x R� R�
add(x; y) x+ y R� R R
sub(x; y) x� y R� R R
mul(x; y) xy R� R R
div(x; y) x=y R� R� R
abs(x) jxj R R�0
sgn(x) Sign of x R f�1; 0; 1g
sqr(x) x2 R R�0
sqrt(x)

p
x R�0 R�0

ceil(x) dxe R Z
floor(x) bxc R Z
nint(x) Integer nearest to x R Z
trunc(x) Integer truncation of x R Z
log(x) ln x R>0 R
log2(x) log2 x R>0 R
log10(x) log10 x R>0 R
exp(x) ex R R>0
exp2(x) 2x R R>0
exp10(x) 10x R R>0
pow(x; y) ey ln(x) R>0 � R R>0
cos(x) Cosine R [�1; 1]
sin(x) Sine R [�1; 1]
tan(x) Tangent R n f�Z+ �=2g R
acos(x) Inverse cosine [�1; 1] [0; �]
asin(x) Inverse sine [�1; 1] [��=2; �=2]
atan(x) Inverse tangent R (��=2; �=2)
cosh(x) Hyperbolic cosine R [1;1)
sinh(x) Hyperbolic sine R R
tanh(x) Hyperbolic tangent R (�1; 1)
acosh(x) Inverse hyperbolic cosine [1;1) R�0
asinh(x) Inverse hyperbolic sine R R
atanh(x) Inverse hyperbolic tangent (�1; 1) R

Each real function has a natural domain and range that de�nes the correspond-
ing interval operator.
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5.2 Constructors

For a; b 2 R such that [a; b] 2 IR, and for dec 2 D, conforming implementations
shall provide the constructors:

Name De�nition Description
construct(a; b) ([a; b]; dac) Construct a decorated interval
construct(a; b; dec) ([a; b]; dec) Construct a decorated interval
construct(dec) (?; dec) Construct a decorated empty set

There are no constructors for bare elements, but a conforming implementation
may choose to return (as if by an implicit use of a forgetful operator) only the
interval, empty set or decoration portion of a constructor.

5.3 Interval Measurement Functions

For any interval [a; b] 2 IR, conforming implementations shall provide the mea-
surement functions:

Name De�nition Description
inf([a; b]) a Greatest lower bound
sup([a; b]) b Least upper bound
mid([a; b]) (a+ b)=2 Midpoint
rad([a; b]) (b� a)=2 Radius
wid([a; b]) jb� aj Width
mig([a; b]) inffjxj : x 2 Set([a; b])g Mignitude
mag([a; b]) supfjxj : x 2 Set([a; b])g Magnitude

All of the measurement functions may return +1 or �1 depending on the in-
terval argument. The radius function returns a negative radius for any improper
interval with endpoints a > b. Midpoint is unde�ned for intervals [�1;+1]
and [+1;�1].

5.4 Classi�cation Functions

For any bare element X 2 ?[D[IR, conforming implementations shall provide
the classi�cation functions:

Name De�nition Description
isProper(X) X 2 I(R) Is X a proper interval?
isImproper(X) X 2 Ii(R) Is X an improper interval?
isPoint(X) X 2 Is(R) Is X a singleton interval?
isEmpty(X) X 2 ? [ D Is X an empty set or decoration?

The same classi�cation functions may be provided for any decorated element
(X;D) 2 (? [ IR;D) by examining only the X component of (X;D).



Appendix A

Groups and Monoids

The algebraic system (R;+) is an abelian group. For any a 2 R, the opposite
(inverse element) of a is

Opp(a) � �a. (A.1)

Opp(a) is an element of R, and this satis�es the group axiom

a+Opp(a) = a+ (�a) = 0. (A.2)

The algebraic system (R�0;+) is a commutative cancellative monoid, and
for any a 2 R�0 which is not also an identity element of R�0,

Opp(a) =2 R�0,
as depicted in Figure A.1. Similarly, the set of �classic�intervals I(R) is a subset
of IR. The algebraic system (I(R);+) is a commutative cancellative monoid,
and for any A 2 I(R) which is not a singleton,

Opp(A) =2 I(R).
In abstract algebra, an abelian group may be constructed from a commuta-

tive cancellative monoid in the best possible way via the Grothendieck group
construction. This is how (R;+) may be constructed from (R�0;+). This is
also how (IR;+) may be constructed from (I(R);+), giving for any interval
[a; b] 2 IR the de�nitions

�([a; b]) � [�b;�a], (A.3)

Dual([a; b]) � [b; a], (A.4)

Opp([a; b]) � [�a;�b] = �Dual([a; b]), (A.5)

as depicted in Figure A.2, such that for all A;Opp(A) 2 IR
A+Opp(A) = A+ (�Dual(A)) = [0; 0]. (A.6)

Thus (IR;+) is an abelian group, and for any A;B;X 2 IR the equation
A + X = B has the unique solution X = B + Opp(A). This is the beginning
of Kaucher arithmetic [?], which is the algebraic completion of classical interval
arithmetic [?], [?].
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aOpp(a)

10{10

Figure A.1: The real number line. The shaded region represents the negative
numbers which do not belong to the non-negative subset R�0 of the reals. From
a geometric perspective, the algebraic system (R�0;+) is not a group because
Opp(a) is in the shaded region.
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Dual(A)

Opp(A)

{A

+λ

+ρ
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Figure A.2: IR is isomorphic to the R2 plane; and canonical abscissa and ordi-
nate are de�ned respectively as the left and right bound of an interval [a; b] 2 IR,
i. e., �([a; b]) = a and �([a; b]) = b. The shaded region represents the intervals
[a; b] 2 IR with a > b; these intervals do not belong to I(R), the set of �classic�
intervals, which are depicted as the region on or above the � = � line. In the
analogy to (R�0;+), the algebraic system (I(R);+) is not a group since Opp(A)
is in the shaded region.
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