
DR
AF
T
8.3

Chapter 2
P1788/D8.3, December 12, 2013

Draft Standard For Interval Arithmetic §14.2

14. Level 3 description

14.1. Level 3 introduction. Level 3 is where Level 2 datums are represented, and opera-
tions on them described, in terms of more primitive entities and operations. How this is done is
implementation-defined. Implementation may be by hardware, software, or a combination of the
two.

Level 3 entities are here called objects; they represent Level 2 datums and may be referred
to as concrete, while the datums are abstract. An implementation shall behave as if the relation
between Levels 2 and 3 is as follows.

– The set of boolean values, the set of integer values, the set of strings §10.1, the set D of decorations
§11.2, and the set of the states returned by overlap function §10.7.4, 12.13.4 are regarded as
being the same at Level 3 as at Levels 1 and 2.

– The bare interval objects are organized into disjoint sets, concrete bare interval types, that are
in one-to-one correspondence with the abstract bare interval types of Level 2. As at Level 2,
a decorated interval is an ordered pair (bare interval, decoration), so this induces a one-to-one
correspondence between the abstract and the concrete decorated interval types.

– The number objects are organized into disjoint sets, concrete number formats, that are in one-
to-one correspondence with the abstract number formats of Level 2.

Thus intervals of a particular type exist in four forms: bare or decorated, and in either case
abstract datums at Level 2 or concrete objects at Level 3. Similarly, numbers of a particular format
exist in two forms, abstract or concrete.

In this document, the same name is normally used for an abstract type or format and its
concrete counterpart. This convention, and the term “object”, are not intended to constrain the
names that an implementation gives to types or formats, nor the data structures it uses.
[Example. The format decimal64 might denote either the set of representations (in the sense of
IEEE 754 §3.2) of decimal64 numbers, or the set of numbers thus represented. Then for instance, all
representations in the cohort (IEEE 754 §3.5.1) of floating-point number 0.1 are different objects, but
represent the same datum.]

14.2. Representation. Individual datums of an abstract type or format are represented by
individual objects of its concrete type or format. While the correspondence between abstract and
concrete types or formats as a whole is one-to-one, that between datums and objects is not so.
The property that defines a representation, for a given type or format, is:

Each datum shall be represented by at least one object. Each object shall
represent at most one datum. (35)

An object that represents a datum is called valid; one that does not is called invalid.
That is, representation is a partial function that is onto but usually not one-to-one, from the

set of objects to the set of datums of a given type or format. The set of valid objects is the domain
of this function.
[Examples. Let F be a 754 format and let T the derived (bare) inf-sup type. Three possible represen-
tations are:

– inf-sup form. Any T-interval x is represented at Level 3 by the object (inf(x), sup(x)) of two Level
2 numbers – members of F . All intervals have only one Level 3 representation because operations
inf and sup are uniquely defined at Level 2 §12.12.9: interval [0, 0] has representation (−0,+0),
interval Empty has representation (+∞,−∞).

– inf-sup-nan form. The objects are defined to be pairs (l, u) where l, u are members of F. A
nonempty T-interval x = [x, x] is represented by an object (l, u) such that the values of l and u are
x and x, and Empty is represented by (NaN,NaN). Its valid objects are (NaN,NaN), together with
all (l, u) such that l, u are not NaN and l ≤ u, l < +∞, u > −∞.

– neginf-sup-nan form. This is as the previous, except that the value of l is −x. Its valid objects
are (NaN,NaN), together with all (l, u) such that l, u are not NaN and 0 ≤ l+u, l > −∞, u > −∞.

If, in these descriptions l, u and NaN are viewed as Level 2 datums, then interval [0, 0] has four repre-
sentatives in inf-sup-nan and neginf-sup-nan forms: (−0,+0), (−0,−0), (+0,+0), (+0,−0). Each
nonempty interval with nonzero bounds has only one representative: there are unique l and u. Empty
has also only one representative: there is an unique NaN. However, NaN itself has representatives, and

64 December 12, 2013



DR
AF
T
8.3

Chapter 2
P1788/D8.3, December 12, 2013

Draft Standard For Interval Arithmetic §14.4

from this viewpoint Empty has more than one representative: there are many NaNs, quiet or signaling
and with different payloads, to use in Empty = (NaN,NaN).
]

14.3. Operations and representation. Each Level 2 (abstract) library operation is imple-
mented by a corresponding Level 3 (concrete) operation, whose behavior shall be consistent with
the abstract operation. That is, let y = ϕ(x1, x2, . . .) be a Level 2 operation instance whose inputs
and output are any mix of number, interval, decoration, string or boolean datums, and let objects
x�
1, x

�
2, . . . represent x1, x2, . . ., respectively. Then y� = ϕ(x�

1, x
�
2, . . .) shall be defined and be a

representative of y.
Since for each Level 2 operation, the result is defined for arbitrary input datums, it follows that

each Level 3 library operation has a unique result, up to representation, for arbitrary valid input ob-
jects. That is, if one chooses different representatives x�

i for the xi, the result y� may be different but
is still a representative of y. The result, when some inputs are invalid, is implementation-defined.
An implementation shall provide means for the user to specify that an exception InvalidOperand
to be signaled when this occurs.

To promote reproducibility (Annex B), an implementation should provide a computational
mode where, at least for library operations with numeric output, the representative of the output
is independent of the representatives of the inputs. That is, in the notation above, y� is not changed
by changing the x�

i. [Example. Let F be a 754 decimal format and T the derived inf-sup type. Suppose
a nonempty T-interval [l, u] is represented at Level 3 as the pair of F-numbers (l, u). Let f be the
expression

sameQuantum(inf(x), 0.3)

(see 754 §5.7.3), and consider x = [0.3, inf ] with the two Level 3 representations x
� = (0.3,+inf)

and x
�� = (0.30,+inf). The notations 0.3 and 0.30 stand for 754 Level 3 objects (0,−1, 3) and

(0,−2, 30) with the same value 3× 10−1 = 30× 10−2. Then x
� = x

�� in the Level 2 sense, but a naive
implementation gives

f(x�) = sameQuantum(inf(x�), 0.3) = sameQuantum(0.3, 0.3) = true;

f(x��) = sameQuantum(inf(x��), 0.3) = sameQuantum(0.30, 0.3) = false.

The standard does not say which of these two results is “correct”. But since they differ, the equality
principle is violated and such an implementation is non-reproducible. One way to make it reproducible
is to canonicalize all operations with numeric output, to ensure that for instance to return the member
of the result’s cohort with minimal decimal exponent.]

14.4. Interchange representations. The purpose of interchange representations is to allow
the loss-free exchange of Level 2 interval data between 754-conforming implementations. This is
done by imposing a standard Level 3 representation using Level 2 number datums and delegating
choice of interchange format of number datums to the IEEE 754 standard.

Let x be a datum of the bare interval type T that is inf-sup F derived from a supported (754)
format F . Its standard Level 3 representative is an ordered pair (inf(x), sup(x)) of two Level
2 F -numbers as defined in §12.12.9. For example, the only representative of Empty is the pair
(+∞,−∞) and the only representative of [0, 0] is the pair (−0,+0).

Let xdx be a datum of the decorated interval type DT derived from the T . Its standard
Level 3 representative is an ordered triple (inf(xdx), sup(xdx), decorationPart(xdx)) of two Level
2 F -datums and of a decoration. For example, the only representative of Emptytrv is the triple
(+∞,−∞, trv) and the only representative of NaI is the triple (NaN,NaN, ill).

Interchange representation of an interval datum comprises the interchange representations
of fields of the ordered pair/triple above, in the order given. Interchange representation of the
decoration field is an integer according with the table

Decoration ill trv def dac com
Representation 0 1 2 3 4

Interchange representations of fields are not completely specified by this standard. Choices
that are implementation-defined, and that an implementation shall document, include:

– choice of wider 754 interchange format if F is not 754 interchange format (754 §3.6) itself.

65 December 12, 2013



DR
AF
T
8.3

Chapter 2
P1788/D8.3, December 12, 2013

Draft Standard For Interval Arithmetic §14.4

– choice of densely packed decimal (DPD) or binary integer decimal (BID) significand encoding
for decimal 754 interchange formats.

– choice of size in bytes of integer decoration representation (one byte is recommended).

Issues of endianness, which affect how interchange representations map to sequences of bytes at
Level 4, are outside the scope of the standard.
[Note. The above rules imply an interval has a unique interchange representation if it is not NaI and in
a binary format, but not generally otherwise. The reason for the rules is that the sign of a zero bound
cannot convey any information relevant to intervals; but an implementation may potentially use cohort
information, or a NaN payload.]

A 754-conforming implementation shall provide an interchange representation for each sup-
ported 754 interval type. Interchange representations for non-754 interval types, and on non-754
systems, are implementation-defined. If an implementation provides other decoration attributes be-
sides the standard ones, then how it maps them to an interchange representation is implementation-
defined.

66 December 12, 2013


