WHAT ARE THE LEVEL 2 DATUMS?
VERSION 1

JOHN PRYCE

1. INTRODUCTION

In revising the draft standard text I have struggled with a boring but crucial point: When are two
level 2 datums the same? As any computer scientist or mathematician knows, being too picky about the
meaning of equality turns readers or listeners off a topic pretty fast; but not being picky enough leaves
them with only partial understanding, and liable to draw wrong conclusions by confusing one meaning of
equality with another.

My conclusions are below, with a summary at the end. Intervals being “sometimes tagged by their
i-datatype, sometimes not” is more about presentation than substance. The rest is definitely about sub-
stance. I submit this paper for discussion, and expect to submit a revised version as a motion.

1.1. Equality of intervals. If the same mathematical interval, say [0, 2], is represented using different
level 3 interval formats, are these different level 2 datums, or the same datum? I propose to resolve this
in the common sense way used in IEEE754-2008 (754 for short) where it also arises. Namely “sometimes
they are the same, sometimes different, depending on context”. In 754 Table 3.1, the level 2 datums are
depicted (apart from the two kinds of zero) as being a subset of the extended reals. However the Table
heading has the phrase “for a particular format”, indicating these extended-real numbers are tagged by
their format when context requires.

Similarly, T propose P1788 regards a level 2 (bare) interval datum as being a mathematical interval
tagged by its i-datatype (e.g. when specifying that arithmetic operations are defined between intervals of
the same type, but not when one is represented in radix 2 and the other in radix 10, say), whose tag is
sometimes ignored (e.g. when defining the mathematical result of an operation before rounding)

A decorated interval, which is a pair (bare interval, decoration), see Motion 8 §1.3, is considered tagged
by the tag of its interval part when context requires.

[Note. The tag consists of the i-datatype, not of the level 3 values used to represent the datum. E.g.,
using an inf-sup form, let datums x,y, z be represented at level 3 by “binary32 (-0,2)", “binary32 (+0,2)",
“decimal64 (+0,2)" respectively. Tagged, and y are the same datum “binary32 [0,2]" since whether -0 or
+0 is used is immaterial; z is the different datum “decimal64 [0,2]". Untagged, they are all the interval [0, 2].]

[Note. Whether two datums are equal is separate from whether P1788 provides a “compareEqual” predicate
to compare them. E.g., in the previous Note, untagged x and z are equal, but cannot be tested for equality.)

1.2. Ill-formed intervals. The “well/ill-formed” decoration property—call it formed, with values well,
i11, say—concentrated my mind on the equality issue. I am convinced we need it, since to meet its aim
of enabling provably correct computation, P1788 must be able to flag as “ill-formed” the result of an
invalid interval construction from real or text data, and propagate this information through subsequent
calculations.

The recommended level 3 mechanism to implement formed is as a property in the decoration field of
a decorated interval. However formed is not a decoration property in the way that, say, “domain” and
“continuous” are properties, for the following reasons.

For a well-formed decorated interval one can extract its (bare) interval part, its bounds, its radius, the
values of its “domain” and “continuous” properties, etc. For an ill-formed datum—whatever may be stored
in the level 3 representation—none of these things have any meaning. Its bounds should be returned as
NaN, for instance. Hence at level 2, ill-formed intervals cannot be told apart. To put it another way, there
is not a multiplicity of ill-formed decorated interval data, but only one, to which we may as well give our
old name “Not an Interval”, Nal.

In view of the above, the getter function for the value of formed becomes the enquiry function isnai(),
which returns true for an Nal and false otherwise, analogously to isnan() for FP values.

Date: October 5, 2010.
1Formally, the datum is a pair (interval, idatatypeID), where the idatatypelD is ignored in some contexts.
1

Version 1 What are Level 2 Datums? §1.6

1.3. Interval part of “ill-formed”. As a level 2 entity, a decorated interval is a pair (interval, deco-
ration). Schemes for packing the decoration into the storage used by the interval part, which have been
discussed recently, are just potential level 3 optimisations and must not contradict the (interval, decoration)
concept.

There is to be a function, say bare, which extracts the bare interval part of any decorated interval.
The Nal defined above is a level 2 decorated interval, by definition. Therefore

z = bare(Nal) must be defined and be a bare interval datum.

What should z be? As said above there is “only one” ill-formed interval, so z must be well-defined:
whatever values are inside the Nal at level 3, we must always get the same z. I see two possibilities.
In principle the choice could depend on the i-datatype, but I think that would complicate the standard
pointlessly, so I reject it.
(a) z is a special “bare Nal” value different from all ordinary bare intervals.
(b) z is some ordinary interval.

I did (a) in my trial C++ implementation (inf-sup, based on Profil-BIAS), but group discussions have
persuaded me against it. “Ask five hardware/compiler experts, and you get six opinions”—nevertheless,
I think there was a consensus that P1788’s design choices should be angled to making bare interval
computation as fast as possible; but to make each interval operation test (in software) for a special “bare
Nal” value would compromise speed.

That leaves (b). Either of the two natural choices, Empty or Entire, has its advantages. I propose
Empty, since my impression is that most people prefer it because it propagates through all operations
except “hull”.

1.4. Other operations on “ill-formed”. Any decorated interval valued operation returns Nal if any
of its inputs is Nal. That is part of the definition, and is very efficient if the implementation follows the
recommendation of representing well/ill-formedness by a decoration bit. (Later—mnot now pleasel—we may
consider exceptions to this, analogous to 754’s max(xz, NaN) = x where the NaN is regarded as “missing
data” rather than as “nonsense”.)

A floating-point valued operation of a decorated interval, f(x), must return a well-defined FP value
when x is Nal. This applies to

inf(), sup(), mid(), rad(),
and any other getter functions required by exotic i-datatypes if Motion 19 passes. I propose that f(Nal)
shall be NaN for all of these. (What about FP systems without a NaN? A good reason to exclude these
from the standard.)

For 754’s “positive” comparison relations (left halves of 754 Tables 5.1, 5.2), NaN compares false with
everything, including itself. By analogy, I propose Nal shall compare false with everything, including itself,
for the decorated interval version of each comparison specified by Motion 13.04, if that passes.

In the spirit of Motion 8, I suggest decoration property values for Nal, as returned by the appropriate
getter functions, should be as pessimistic as possible: 0 for the Hayes domain tetrit, “discontinuous” for
the continuity bit, etc. What is actually stored in the level 3 object is up to the implementation.

1.5. Bare decorations? We need enquiry functions to return the value (whether a bit, trit or tetrit) of
each supported property within a decoration. But the motion 8 model also has bare decoration objects. 1
can’t for the life of me see what advantages these bring in the construction of interval algorithms. So I
propose that, for the sake of K.I.S.S., bare decorations be abolished as a level 2 concept. (I am open to
being persuaded otherwise.)

1.6. Summary. I propose:

1. At level 2, P1788 shall support bare interval and decorated interval datums, as well as the kinds of
value (bit, trit, tetrit, ...) taken by supported decoration properties. These values also count as level
2 datums.

2. Bare and decorated intervals are considered tagged by their i-datatype, or not, according to context.

A decoration is a list of decoration properties as in Motion 8 §1.2 but not restricted to trits.

4. Every bare interval is a (tagged) mathematical interval. A decorated interval is either the special value
Nal, or a pair (bare interval, decoration). The bare interval part of Nal shall be defined as Empty.

5. Any operation with Nal as an input shall return its most pessimistic result: decorated interval output
is Nal, floating-point output is NaN, boolean output is false (except for “negated” relations in the
sense of 754§5.11, of which the enquiry isnai() is one).

6. Bare decorations shall not be supported as a separate type.

b

	1. Introduction
	1.1. Equality of intervals
	1.2. Ill-formed intervals
	1.3. Interval part of ``ill-formed''
	1.4. Other operations on ``ill-formed''
	1.5. Bare decorations?
	1.6. Summary

