
DR
AF
T
8.3

Chapter 1
P1788/D8.3, December 3, 2013

Draft Standard For Interval Arithmetic §7.2

7. Flavors

7.1. Flavors overview. The standard permits different interval behavior via the flavor con-
cept described in this clause. An interval model means a particular foundational approach to
interval arithmetic, in the sense of a Level 1 abstract data type of entities called intervals and of
operations on them. A flavor is an interval model that conforms to the core specification described
below.

A provided flavor is a flavor that the implementation provides in finite precision, see §7.6.
An included flavor is one that has a specification in this standard, which extends the core

specification. The (list to be confirmed) flavors are the currently included flavors. The procedure
for submitting a new flavor for inclusion is described in Annex A.

An implementation shall provide at least one included flavor. The implementation as a whole
is conforming if each included flavor conforms to the specification of that flavor, and each non-
included flavor conforms to the core specification.

Flavor is a property of program execution context, not of an individual interval. Therefore,
just one flavor shall be in force at any point of execution. It is recommended that at the language
level, the flavor should be constant over a procedure/function or a compilation unit.

For brevity, phrases such as “A flavor shall provide, or document, a feature” mean that an
implementation of that flavor shall provide the feature, or its documentation describe it.

The core specification of a flavor is summarized as follows, and detailed in the following sub-
clauses.

(i) There is a flavor-independent set of common intervals, defined in §7.2.
(ii) There is a flavor-independent set of named common library operations; see Clause 9.
(iii) There is a flavor-independent set of common evaluations of library operations, defined in §7.2.

They have common intervals as input and, in the sense of §7.3, give the same Level 1 result
in any flavor.

(iv) There is a flavor-defined set of Level 1 intervals that shall, in the sense defined in §7.3, contain
the common intervals as a subset. There is a flavor-defined finite set of decorations that shall
conform to the specification in Clause 8; in particular it shall include the com decoration.

(v) There is a flavor-defined partial order called contains for the Level 1 intervals, see §7.5, which
for common intervals coincides with normal set containment.

(vi) At Level 2, intervals are organized into finite sets called (interval) types, see §7.6.1. A member
of a type T is called a T-datum. Each Level 2 interval denotes a unique Level 1 interval; it
may be regarded as being that interval, except that it may carry a type tag to make intervals
of different types different even if they denote the same Level 1 interval.

(vii) The relation between an interval-valued operation at Level 1 and a T-datum-valued version
of it at Level 2 is as follows, see §7.6.3. The latter performs the Level 1 operation on the
Level 1 values denoted by its operands, and returns a T-datum enclosing the Level 1 result.
If no such enclosing interval exists, an exception is signaled.

7.2. Definition of common intervals and common evaluations. This subclause specifies
at Level 1 the set of common intervals and the rules that determine the common evaluations for
each of the required and recommended operations of the standard listed in Clause 9.

The common intervals are defined to be the set IR of nonempty closed bounded real intervals
used in classical Moore arithmetic [6].

Each operation may be written y = ϕ(x1,x2, . . . ,xk), where each of the formal arguments xi

and result y is of a specified datatype—one of interval, real, boolean or string—and at least one is
of interval datatype.

The rules define those k-tuples x = (x1,x2, . . . ,xk) for which ϕ(x1,x2, . . . ,xk) shall have the
same value y in all flavors. Then x is called a common input and y is the common value of ϕ
at x. The (k+1)-tuple (x1,x2, . . . ,xk; y) is a common evaluation; it may be called a common
evaluation instance to emphasize that a specific tuple of inputs is involved.

Each interval argument in a common evaluation is a common interval; to simplify description,
by convention all non-interval argument instances are called common—e.g., any value of p in the
integer power function pown(x, p).

Two cases are distinguished:

17 December 3, 2013

DR
AF
T
8.3

Chapter 1
P1788/D8.3, December 3, 2013

Draft Standard For Interval Arithmetic §7.3

– ϕ is an interval arithmetic operation, which is an interval extension (Defn 4.2.34), of the corre-
sponding point function �ϕ. Its inputs xi are all intervals7 so that x = (x1,x2, . . . ,xk) is a box,
regarded as a subset of Rk.

The common inputs shall comprise those x = (x1,x2, . . . ,xk) such that each xi is common,
and �ϕ is defined and continuous at each point of x. The common value y shall be the range

y = Rge(�ϕ |x) = { �ϕ(x1, . . . , xn) | xi ∈ xi for each i }.

Thus the common evaluations comprise a restriction to a subset of the set of all possible boxes
of the natural interval extension of �ϕ. Necessarily, by theorems of real analysis, y is nonempty,
closed, bounded and connected, so it is a common interval.

– In all other cases, ϕ has a direct definition unrelated to a point function. The common inputs shall
comprise those x = (x1,x2, . . . ,xk) such that each xi is common, and y = ϕ(x1,x2, . . . ,xk) is
(a) defined and (b) if of interval datatype, is a common interval. The common value shall be y.

[Examples.

1. For interval division x1/x2 (an arithmetic operation), the common inputs are the (x1,x2) with
xi ∈ IR and 0 /∈ x2.

2. For interval square root
√
x (an arithmetic operation), the common inputs are the x = [x, x] ∈ IR

for which 0 ≤ x ≤ x < +∞.
3. For intersection(x1,x2) = x1 ∩ x2 (an interval-valued non-arithmetic operation), with inputs

(x1,x2) that are common intervals, the result is a common interval iff it is nonempty. Hence, the
common inputs are the (x1,x2) with xi ∈ IR and x1 ∩ x2 �= ∅. For convexHull(x1,x2) =
hull(x1 ∪ x2), all (x1,x2) with xi ∈ IR are common inputs.

4. The midpoint function mid(x) (a real-valued non-arithmetic operation) has the formula mid(x) =
(x+ x)/2 for every common interval x = [x, x]. Thus every common interval is a common input.

5. For pown(x, p), the interval version of the integer power function (an arithmetic operation in its first
argument, with p regarded as a parameter), the common inputs depend on the sign of p. If p ≥ 0
they are all (x, p) with common x. If p < 0 they are all (x, p) with common x such that 0 /∈ x.

6. The above definition for arithmetic operations requires R1 “�ϕ is defined and continuous at each point
of x”, which is a stronger constraint (results in fewer common evaluations) than R2 “the restriction
of �ϕ to x is everywhere defined and continuous”. R1 produces a weaker constraint on what interval
arithmetics can be flavors (with fewer rules, more arithmetics obey them). In particular, requirement
R1 permits cset arithmetic to be a flavor, while R2 does not.

E.g., the common inputs for (the interval extension of) floor(x) are all nonempty intervals that
are disjoint from Z. Thus floor([1, 1.9]) = [1, 1] is not common, because floor() is not continuous at
1, despite its restriction to [1, 1.9] being everywhere continuous. If it were required to be common,
cset arithmetic could not be a flavor.

]

7.3. Common evaluations in a flavor. The formal definition of common evaluations takes
into account that the common intervals are not necessarily a subset of the intervals of a given
flavor, but are identified with a subset of it by an embedding map.
[Examples.

– A Kaucher interval is defined to be a pair (a, b) of real numbers—equivalently, a point in the plane
R2—which for a ≤ b is “proper” and identified with the normal real interval [a,b], and for a > b is
“improper”. Thus the embedding map is x �→ (inf x, supx) for x ∈ IR.

– For the set-based flavor, every common interval is actually an interval of that flavor (IR is a subset
of IR), so the embedding is the identity map x �→ x for x ∈ IR.

]
Formally, a flavor is identified by a pair (F, f) where F is a set of Level 1 entities, the intervals

of that flavor, and f is a one-to-one embedding map IR → F. Usually, f(x) is abbreviated to fx.
To simplify description, by convention f applied to a non-interval (real, boolean or string) value x

leaves it unchanged, fx = x.

7
Non-interval arguments such as the p of pown(x, p) are treated as parameters; see Example 5.

18 December 3, 2013

DR
AF
T
8.3

Chapter 1
P1788/D8.3, December 3, 2013

Draft Standard For Interval Arithmetic §7.6

It is then required that operation compatibility holds for each library operation ϕ and for each
flavor (F, f). Namely, given x1,x2, . . . ,xk and y in IR,

If (x1,x2, . . . ,xk; y) is a common evaluation instance of ϕ,
then (fx1, fx2, . . . , fxk; fy) shall be an evaluation instance of ϕ in flavor F.

(3)

That is, if the evaluation ϕ(x1,x2, . . . ,xk) = y is common in IR, then ϕ(fx1, fx2, . . . , fxk) shall
be defined in F with value fy; it is then called a common evaluation in F.

In the rest of this clause, the map f is omitted and IR is treated as a subset of F.

7.4. Non-common evaluations in a flavor. Outside the common evaluations, the Level 1
action of a library operation is flavor-defined, but it shall be a partial function. That is, if inputs
(x1,x2, . . . ,xk) of the appropriate datatypes are given, where any interval inputs belong to the
flavor F, then ϕ(x1,x2, . . . ,xk) is either undefined, or has a unique Level 1 value in the flavor.
[Note. Generally the Level 1 value, if an interval, is defined to be the tightest of various possible values,
in the “contains” order of the flavor.

For example, [1, 2]/[−1, 1] has common inputs but is not a common evaluation. In the classical
Moore flavor and in the Kaucher flavor it is undefined. In the set-based flavor its unique Level 1 value is
Entire, being the tightest interval that contains the exact range {x/y | x ∈ [1, 2], y ∈ [−1, 1], and y �= 0 } =
{ z | −∞ < z ≤ −1 or 1 ≤ z < +∞ }.

[1, 2]∩ [3, 4] has common inputs but is not a common evaluation. In the classical Moore flavor it is
undefined. In the set-based flavor its unique Level 1 value is Empty. In the Kaucher flavor its unique
Level 1 value is the improper interval [3, 2].]

7.5. Containment. For each flavor F, a relation ⊇, called contains or encloses, shall be
defined between intervals. It shall be a partial order: x ⊇ y and y ⊇ z imply x ⊇ z, and x = y if
and only if both x ⊇ y and y ⊇ x hold. For common intervals it shall have the normal meaning:
if x,y ∈ IR ⊆ F then x ⊇ y in F if and only if x ⊇ y in the sense of set containment.
[Example. In the Kaucher flavor, (a, b) is defined to contain (a�, b�) if and only if a ≤ a� and b ≥ b�;
e.g., [1, 2] ⊇ [2, 1] is true. For proper intervals, this coincides with normal containment.]

7.6. The relation of Level 1 to Level 2.
7.6.1. Types. At Level 2, bare intervals shall be organized into finite sets called (interval)

types. (For decorated intervals see §8.) A type is an abstraction of a particular way to represent
intervals. What types are provided by an implementation is both flavor-defined and language- or
implementation-defined.

Level 2 entities are called datums. A flavor may define some special values, e.g., a “Not an
Interval” datum, besides those that denote intervals. A T-datum means a general member of a
type T; a T-interval means a T-datum that is not a special value. If the type has no special
values, these terms are synonymous.

Each Level 2 interval denotes a unique Level 1 interval x and is normally regarded as being
that interval. However a flavor may formally define it as a pair (x, t) where t (the type name) is
a symbol that uniquely identifies the type, thus making datums of different types different even if
they denote the same Level 1 interval.

7.6.2. Hull. Each type T has a T-hull operation. At Level 1 it shall be defined by an algorithm
that maps an arbitrary interval x of the flavor to a minimal T-datum y such that y ⊇ x in the
flavor’s “contains” order, if such a y exists, and otherwise is undefined.

At Level 2, an implementation should provide the T-hull for each supported type T, as an
operation that maps an arbitrary interval of any other supported type to its T-hull if this exists,
and signals the flavor-independent ContainmentFailure exception otherwise. Its action on special
values is flavor-defined.

7.6.3. Level 2 operations. The relation between an operation ϕ at Level 1 and a T-datum-
valued version ϕT of it at Level 2 shall be as follows. If any input is a special datum, the result
is flavor-defined. Otherwise, ϕT performs the Level 1 operation (§7.4) on the Level 1 values—of
interval, or other, datatype—denoted by its operands.

– Any error that occurs, apart from that in the next item, is handled in a flavor-defined way.
– If y is an interval, ϕT returns a T-interval enclosing y. If no such enclosing T-interval can

be computed, ϕT signals the flavor-independent ContainmentFailure exception; the returned
result, if any, is flavor-defined.

19 December 3, 2013

DR
AF
T
8.3

Chapter 1
P1788/D8.3, December 3, 2013

Draft Standard For Interval Arithmetic §8.1

– If y is numeric, ϕT returns a flavor-defined approximation to y.
– If y is a boolean or string, ϕT returns y.

An evaluation, for which both the inputs and the Level 2 result are common, is called a
Level 2 common evaluation (or a finite-precision common evaluation). An evaluation of an
expression, in which only Level 2 common evaluations occur, is a Level 2 common evaluation
of the expression in the relevant flavor.
[Note. For an arithmetic expression, this is a finite-precision evaluation where the expression’s inputs
are in IR, and the result of each of its operations, including the final result, is in IR.

The com decoration makes it possible to determine whether common evaluation of an arithmetic
expression has occurred, see §8.3.]

7.6.4. Measures of accuracy. Two accuracy modes for an interval-valued operation are de-
fined for all flavors. An accuracy mode is in the first instance a property of an individual evaluation
of an operation ϕ, over an input box x, returning a result of type T. If the evaluation does not
have an interval value at Level 1, its accuracy mode is undefined. The basic property of enclosure,
defined in §7.6.3 and required for conformance, is called valid accuracy mode. The property that
the result equals the T-hull of the Level 1 value is called tightest accuracy mode.

A flavor may define other accuracy modes, and may make requirements on the accuracy
achieved by an implementation. Modes shall be linearly ordered by strength, with tightest the
strongest and valid the weakest, where mode M is stronger than mode M � if M implies M �.

7.7. Flavors and the Fundamental Theorem. For a common evaluation of an arithmetic
expression, each library operation is (i.e., can be regarded as, modulo the embedding map) defined
and continuous on its inputs so that it satisfies the conditions of the strongest, “continuous” form
of the FTIA, Theorem 6.1. At Level 1, using the tightest interval extension of each operation, the
range enclosure obtained by a common evaluation is (again modulo the embedding map) the same,
independent of flavor.

It is possible in principle for an implementation to make this true also at Level 2 by providing
shared number formats and interval types that represent the same sets of reals or intervals in each
flavor; and library operations on these types and formats that have identical numerical behavior
in each flavor. For example, both set-based and Kaucher flavors might use intervals stored as
two IEEE754 binary64 numbers representing the lower and upper bounds, and might ensure that
operations, when applied to the intervals recognized by both flavors, behave identically. Such
shared behavior might be useful for testing correctness of an implementation.

Beyond common evaluations, versions of the FTIA in different flavors can be strictly incom-
parable. For example, the set-based FTIA handles unbounded intervals, which the Kaucher fla-
vor does not; while Kaucher intervals have an extended FTIA, involving generalized meanings of
“contains” and “interval extension” applicable to reverse-bound intervals, which has no simple
interpretation in the set-based flavor.

8. Decoration system

8.1. Decorations overview. A decoration is information attached to an interval; the com-
bination is called a decorated interval. Interval calculation has two main objectives:

– obtaining correct range enclosures for real-valued functions of real variables;
– verifying the assumptions of existence, uniqueness, or nonexistence theorems.

Traditional interval analysis targets the first objective; the decoration system, as defined in this
standard, targets the second.

A decoration primarily describes a property, not of the interval it is attached to, but of the
function defined by some code that produced the interval by evaluating over some input box.

The function f is assumed to be represented by an expression in the sense of Clause 6. For
instance, if a section of code defines the expression

�
y2 − 1+xy, then decorated-interval evaluation

of this code with suitably initialized input intervals x,y gives information about the definedness,
continuity, etc. of the point function f(x, y) =

�
y2 − 1 + xy over the box (x,y) in the plane.

The decoration system is designed in a way that naive users of interval arithmetic do not notice
anything about decorations, unless they inquire explicitly about their values. For example, in the
set-based flavor, they only need

20 December 3, 2013

