UMT L3 INGRESS / EGRESS ISSUES AND ARCHITECTURE A SAMPLE END TO END USE CASE

Author: Mark Laubach

• One main goal expressed for UMT

- Move "management" traffic in the access network out of the "user channel" – avoid impact to user traffic statistics
 - In both directions
 - Management traffic is both L2 Ethernet (e.g., OAM) and L3 IP based

Realization of this:

- Consumer "CPE" requires support for UMT
- Service provider needs to be in control of what gets carried over UMT
 - Requirements UMT management protocol include:
 - Discovery of UMT support in CPE
 - Control of what management protocols will transit via UMT
 - Specification of UMT method: VLAN and/or UMT Encapsulation
- Service provider may have multiple L2 hops between consumer CPE and "back edge" of UMT domain
- Commercial "back edge" support for UMT

GENERAL UMT ARCHITECTURE – A SCENARIO

L3 Scenario Assumption: Subscriber CPE is a Firewall / NAT NOTE: UMT "Domain Manager" is DM

SUBSCRIBER CPE VISION

- UMT functionality would need to be added to existing CPE products
 - "UMT Certified" label
- With this functionality, the CPE would participate as a UMT client with the service provider, under direction of the service provider:
 - UMT discovery
 - Capabilities, MTU size, etc.
 - UMT subtype selection encapsulation
 - Assumption is the UMT encapsulation is always used, regardless of VLAN use
 - L2 processing of Ethernet protocol
 - E.g.. Place / extract OAM to / from UMT type
 - Based on EtherType
 - L3 processing for IP protocol
 - E.g. place / extract IP packets to / from UMT type
 - Requires deeper packet extraction to classify SNMP, TR-069, etc.
 - Firewalls / NATs already know how and must do this
 - Requires that IP routing be maintained
 - E.g. cannot tunnel a private IP subnet into a globally routable IP subnet
 - Best done on WAN side of Firewall, straight forward extension

GENERAL UMT ARCHITECTURE – A SCENARIO

First: private IP subnet number have no meaning in the access network

- Private address space is not globally routable by definition
 - Some cable operators may use private in the access, but separate subnet
 - same problem.
- Same IP private space generally assigned to *every* subscriber
 - E.g. 10.1.10.0/24, 192.168.0.0/24
- Second: Firewall/NAT functions already maintain necessary state tables to map IP/protocol/port numbers to proper destination based on CPE WAN IP address
 - Firewall/NAT already can do UMT IP inspection and classifications function
 - Just need to augment to place / extract to / from UMT tunnel type
 - Based on UMT directive, handles Ethernet encapsulation different on transmit and extractions

Only over WAN port

- Frames received only on UMT EtherType are processed by UMT function
- No User / Customer Configuration

SAMPLE SKELETON CONVERSATION

UMT DOMAIN MANAGER

UMT CLIENT

P.O.S.T.

>

- < UMT Client "Hello"
- < UMT Client caps / version
- UMT Set <subtype> flush >

UMT Master Response

- < UMT set ack
- UMT Add <subtype> <ipvers> <ipdest/mask>> <proto> > <startport> <endport> e.g. Add <TR069> <4> <1.2.3.4/32> <TCP> <80> <80>
 - < UMT add ack
- UMT Add <subtype> <ipv> <ipdest/mask>> <proto> > <startport> <endport> e.g. Add <TR069> <4> <1.2.3.4/32> <TCP> <443> <443>
 - < UMT add ack
 - UMT Close >
 - < UMT close ack

SUMMARY OF ADDING L3 UMT TO CPE FIREWALL/NAT CPE DEVICES

BROADCOM.

Looks straight forward

- Need to define UMT protocol support required
- Need to specify required UMT tunnel types:
 - VLAN and UMT encapsulation
- Vendors will need to augment Firewall/NAT WAN Ethernet interface to add necessary VLAN and UMT encapsulation support
- IPv4 is easiest to overview, need to look at IPv6 addressing enhancements versus Firewall / NAT forwarding, etc.
 - Need IPv6 expertise

BROADCOM.

Basic functions

- Remove upstream traffic from UMT tunnel
- Places downstream traffic into UMT tunnel
- UMT Domain is anchored from Back Edge device to each subscriber "WAN" edge CPE (Firewall / NAT)

Issues

- Since each CPE Firewall / NAT will assign different source port numbers, this information must be learned by the UMT Back Edge network element
- Desired IP packet destined (down) for a subscriber CPE needs to be inspected
 - If UMT match criteria is met, traffic needs to be placed into UMT tunnel type

UMT L3 "BACK EDGE" ARCHITECTURE – A SCENARIO

UMT Learning: UMT packets examined and learned:

UMT Encapsulation type, Source: IP, Protocol, Port, MAC WAN SA
UMT traffic removed from the UMT tunnel
DOWN

All IP packets examined, those matching:

- UMT Encapsulated, Destination MAC, placed in UMT tunnel
- All non-matching packets follows normal user traffic

Access Network can be UMT EtherType and UMT Subtype aware for L2 switching to support traffic to/from different servers:

Upstream UMT learning in UMT Back Edge devices support flexible back end architectures

GENERAL UMT ARCHITECTURE – SCENARIO

Example: ACS load balancing with failover ACS

Viable

- Upstream UMT learning is essential
 - One enabled for UMT, process is self learning
- Permits different switching and aggregation architectures
 - Enables flexibility for service providers
- May be embedded function, may be a stand alone device
 - Needs to support aggregation, load balancers, fail-over and other service provider configurations

Suggested Focus for UMT Version 1:

- UMT Domain Master
- UMT Client
- UMT "Back Edge" function
- UMT Master <> Client protocol

Thank you