

UMT Layering

Glen Kramer, Broadcom

UMT emulates virtual links

- A device may support separate instances of a link layer protocol on separate ports.
 - Figure on the right uses
 OAM as an example
- UMT function emulates multiple virtual links that terminate at the same physical port.
 - Only P2P links or P2MP?
- A device can simultaneously terminate some UMTs and forward other UMTs
 - ex. Bridge C →

Generic UMT-aware device

- A generic UMT-aware device shall be able to support the following three modes of operation:
 - 1) Terminate native protocol X (e.g., OAM)
 - 2) Terminate protocol X carried in UMT
 - 3) Relay UMT traffic to other devices (bridging mode)

- From a protocol "x" point of view, there should be no difference whether the PDUs are carried as native xPDUs or as UMTPDUs
 - Full set of protocol "x" capabilities should be supported regardless of PDU encapsulation
- We need to develop a layering model that supports all these modes. This is the main stumbling block right now.

Tunnelization & De-tunnelization

OAM peers

OAM peers

OAM peers

UMT tunnel

UMT tunnel

UMT-

aware device

- There may be one more mode of operation
 - 4) Terminate a tunnel and forward native protocol xPDUs to other devices.In reverse direction, receive as native xPDU and forward as UMTPDU.
- □ In this mode, the device relays
 UMTPDU based on DA using
 regular bridging function, but
 at the egress port, converts it back into the native xPDU.
- Conversion from UMTPDU into xPDU involves the following:
 - Possible replacement of unicast DA with a well-known slowprotocol DA
 - Replacement of UMT EtherType with another EtherType
 - Possible replacement or removal of Opcode field.

Layering Diagram (ver. 1)

OAM loopback

- □ OAM defines a optional loopback function (802.3, 57.2.11)
- When activated, this function causes all frames to be sent back (data and OAMPDUs).

Figure 57-4—OAM remote loopback

- Should this function be supported for OAMPDUs carried over UMT?
- Data frames are not carried under UMT. What frames should be looped-back?

Loop-back behavior

One would expect identical OAM loop-back behaviors regardless of whether a device is managed using native OAM or OAM over UMT. But it is not the case.

A loopback command received as native OAM (OAMPDU) will cause all frames to be looped back (OAMPDUs and data frames). This is the behavior defined in 802.3, C57.

A loopback command received over UMT will loop back only locally-consumed frames (i.e., frames with DA

== local MAC address)

802.1 MAC Bridge Architecture

- OAM was defined as a link-layer protocol
 - Behavior affects physical port and the associated link
 - DA is irrelevant (ignored)
- But UMT is a multi-hop protocol and the DA is important.
 - Only UMTPDUs withDA == local are processed.
 - All frames
 (including
 UMTPDUs)
 with DA != local
 are forwarded.

Figure 8-3—MAC Bridge architecture

Layering Diagram (ver. 2)

- This diagram is simpler.
- The loop-back behavior is correct for bothOAMPDUs and UMTPDUs
- There is only one OAM sublayer. The OAM sublayer operates as defined in 802.3 and is not aware whether OAMPDUs are sent natively or as UMTPDUs.
- This layering model can support operation mode #4 shown on slide #3 (terminate a tunnel and forward native PDU to another device).

A look inside UMT sublayer

UMT sublayer – Rx direction

UMT sublayer – Tx direction

Four modes of operation

#	Mode of operation	Rx direction	Tx direction
1	Process native protocol (OAM)	A→1→3→C	C → 6 → B
2	Process OAM carried over UMT	A→1→2→4→C	C→6→8→10→B
3	Relay UMT traffic to other devices	A→1→2→D	D→6→7→B
4	De-tunnelize and forward as xPDU Tunnelize and forward as UMTPDU	A→1→2→D A→1→3→5→D	D→6→7→9→B D→6→7→B

Thank You