N

O© 00 N oo o1 AW

10

11
12

13
14
15
16
17

18
19

20
21
22
23
24

25

[Type here]

Contents
6 UMT SUBLAYER. ... ccsccrnssnsscsssssssssssssssssssssssnssssssnssmssssssnssmssssssmssns ssnssmssnnssnssasssnsnans 2
6.1 UMT Classification and Translation ENGINeccccviiiiiiiiiiiiiiiiniiiiiiiniiiiinninnnininnnininsnssssssssssssssssses 2
0 0 R O I Y T[S W ot { U f TSR P U PP ORI 3
6.1.1.1 CTE rule classification CONAitioNS......ccoouiiiiiiiiiiiiieeee et 3
6.1.1.1.1 COMPAriSON OPEIATOrS .cciiiiiiiiiiieiiiiiiieeeeeeeeeeeeeeee e eee e ee e e e e e e eeeeeeeeeeeeeseeeresereseseseseeesereeens 4
6.1.1.1.2 Classification fleldS......coiuiiiiiiie e e s 4
6.1.1.2 CTE rule modification @CtiONSocuviiiiiiiie ettt s e e s bae e e 4
L3 O A O N N U] [l o Y=o] =SSR 4
6.1.3 CTE rules involving operations on the VLAN tags.......cccouuiiieiiiiiciiiiieee et eecvvae e e e 4
6.2 Receive path specificationcccciiiiiiiiiiiiiiiiiiiiiinr s 4
(o3 2 R 4 Tel o] T=Y o) oY o T=T = [o [PPSO 4
6.2.2 (610] 0 1) - | £ PP PP PP RUPUPUPUPPRROPINE 5
LI T - T T o] L= TSP P O TROPPO 6
6.2.4 FUNCEIONS ettt ettt e e e e e e bttt e e e e e s s bbb b e eeeeesaanbnraeeeeeesennnneen 6
6.2.5 PrIMIIEIVES ettt et ettt e e e e e e ettt e e e e e e s b be et e e e e e s e bnraeeeeeesennnneee 7
6.2.6 Y LER DI < - o OO PP PPPPPPPTPPPRY 7
6.3 Transmit path specification........cccciiiiiiiiiiiiiirrrrrrcrrrrrrr s s s s s s s s s s s s s s s s s s 9
6.3.1 PrinCiples Of OPEratioNccueiiiiiiie ettt e e e e e e e e s te e e e et e e e esneaeeeenteee e e raeeeannes 9
6.3.2 (000 0 1) = | (PP OPPPPURPRRPPN 9
LT B VT =1 o] [T TP USPRPPPRROt 9
6.3.4 FURNCRIONS e e et e e e s e s er e e e e e s nnneeeeeeesennneee 10
6.3.5 PrIMITIVES ettt e e ettt e e e e e sttt e e e e e s e bbb et e e e e e s e nnrbeeeeeeseannrees 10
6.3.6 N LR DT < -] o o PRt 10

[Type here]

6 UMT sublayer
6.1 UMT Classification and Translation Engine

The function of the UMT Classification and Translation Engine (CTE) is to classify frames by certain criteria
and to perform specific modification on the frames that match the criteria. The classification criteria together
with the associated modification action comprise an entity called a rule. The concept of a rule is similar to
that defined in IEEE 1904.1, 6.5.2.1. By matching frames to specific rules, the CTE is able to translate
UMTPDUs into xPDUs (i.e., into frames with different Ethertype values) and vice versa. A-frame-that-does

There are separate CTE instances in the transmit path and in the receive path of each physical or virtual port.
The CTE located in the receive path is called Ingress CTE and the CTE located in the transmit path is called
Egress CTE (see Figure 6-1). Fundamentally, a CTE instance is simply a table that stores multiple rules.
Some of the rules are statically pre-configured (i.e., available and active at all times); other rules are
dynamically added/deleted by NMS when tunnels are established or destroyed.

<Replace figure 6-1 with the following figure>

Receive path

Transmit path

MACCSI:MA_DATA.indication MACCSI:MA_DATA.request

> UMT Client
|
> OMCI Client
c 5 l
o 2 1) —
g c 8 3 3
] S 5 > OAM sublayer T - =}
S = < o 3 o
= o < , < > =
-} k=] ~ i o -]
o £ < | < e 8
g 5 Dl | Dl) P~
= = < ! < = =
2 S = | = 0 S
0)) ! n) n
= = = I = = =
= = = ! = = =
5 =) > ! > =))
|
4_\ |
UMT sublayer Y y
UMT OMCI OAM i OMCI UMT
interface interface interface : interface interface
adapter adapter adapter : adapter adapter
|
t t 1 | - v |
\ Dispatcher / :
|
A l
HO I | ™ a
! < Ingress | ! 1 y 1
| | . !
i CTE : '/ Rule condition \ }
! Rule action ! I } |
i | I [‘ !
| i | ! | |
| |) |
3 ! I } Rule action |
! \ Rule condition / } : i Egress |
| K | L - CTE |
e 1 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
|
|
|
|
|
|
|

A\

MAC Control sublayer

Figure 6-1—UMT sublayer functional block diagram
6.1.1 CTE rule structure

<as is>

6.1.1.1 CTE rule classification conditions

<ais>

10

11

12
13

14

15
16

17
18
19
20

21
22
23
24
25
26

27

28

29
30
31
32
33

34
35
36

[Type here]

6.1.1.1.1 Comparison operators

<ais>

6.1.1.1.2 Classification fields

<ais>

6.1.1.2 CTE rule modification actions

<ais>

6.1.2 CTE rule categories

<ais>

6.1.3 CTE rules involving operations on the VLAN tags

The classification clauses in the CTE rules may classify the incoming xPDUs and UMTPDUs based on
VLANO or VLAN1 fields, or based on some sub-fields of these fields (see Table 6-2).

The action clauses in the CTE rules may add VLANO and VLAN1 tags to UMTPDUSs or delete these tags
from UMTPDUs. When performing a translation of an xPDU into a UMTPDU, and if the original xPDU
includes any VLAN tags, the action clauses may also copy these tags from xPDU into UMTPDU. The COPY
operation leaves the VLAN tags in the original xPDU intact.

Even though the UMT sublayer may be configured to manipulate VLAN tags in UMTPDUSs, it does not
imply that a given UMT-aware device is also VLAN-aware and that it is a participant in Multiple VLAN
Registration Protocol (MVRP). The VLAN manipulation applied by the UMT sublayer is entirely based on
the provisioned CTE rules and not on any higher-layer protocol behavior or device configuration. Ina VLAN-
enabled L2 network, the management entity responsible for UMT port configuration and provisioning is
expected to be aware of VLAN topology and to participate in MVRP if necessary.

6.2 Receive path specification
6.2.1 Principles of operation

The receive path of the UMT sublayer includes the Receive process. The Receive process waits for a frame
to be received on MACCSI:MA_DATA interface (via MACCSI:MA_DATA_request() primitive, as
defined in 4.4). When a frame is received, it is processed by the ingress Classification and Translation Engine
(CTE) and if match is found, the frame is modified according to the matched rule action. If the frame does
not match any rules, it is passed through the CTE block unmodified.

After traversing the ingress CTE block (highlighted in Figure 6-4), the frame is dispatched to one of the
UMTSI interfaces: (UMTSI:UMTPDU, UMTSI:OMCI, or UMTSI:MA_DATA). The dispatching decision
is based on the values of the MAC destination address, Ethertype, and UMT subtype.

10
11

12
13
14

15
16
17

18

19
20

21
22

23
24

25
26
27

28

29
30

31

32
33

34

35
36

[Type here]

The UMTPDUSs with the destination address matching the local MAC address and the UMT subtype equal
to UMT_SUBTYPE (see Table 5.1) are modified to match the parameters expected by the UMTS I : UMTPDU..
indication() primitive (see 4.4.X) and are passed to the UMTSI:UMTPDU interface.

The UMTPDUs with the destination address matching the local MAC address and the UMT subtype equal
to OAM_SUBTYPE (see Table 5.1) are converted into OAMPDUSs and are passed to the UMTSI:MA_DATA
interface.

The UMTPDUSs with the destination address matching the local MAC address and the UMT subtype equal
to OMC1_SUBTYPE (see Table 5.1) are modified to match the parameters expected by the UMTSI - OMCI .
indication() primitive (see 4.4.y) and are passed to the UMTSI:OMCI interface.

All other xPDUs are passed unmodified to the UMTSI:MA_DATA interface. Note that there still may be
other local clients that will intercept/consume these xPDUs at a higher layer.

The Receive process does not discard any frames, i.e., every MACCSI:MA_DATA. indication()
primitive results in a generation of a single indication primitive on either UMTSI:UMTPDU, UMTSI:OMCI,
or UMTSI:MA_DATA interface.

Note that no provisioning of the ingress tunnel exit rules is required in situations where the tunnel is
terminated at the same port where the XPDUs are to be consumed by their respective clients. The functionality
to convert UMTPDUs into xPDUs is built-in into the Receive process.

6.2.2 Constants

DST_ADDR

This constant identifies a field in a frame, as defined in Table 6.1.

ETH_TYPE_LEN

This constant identifies a field in a frame, as defined in Table 6.1.

LOCAL_MAC_ADDR
TYPE: 48-bit MAC address

This constant holds the value of the MAC address associated with the port where the Receive
process state diagram is instantiated. Some devices may associate the same MAC address value with
multiple ports. The format of MAC address is defined in IEEE Std 802.3, 3.2.3.

VALUE: device-specific

OMCI_SUBTYPE
This constant represents a UMTPDU subtype as defined in Table 5.1.

SP_ADDR

This constant holds the value of the destination MAC address associated with Slow Protocols (see
IEEE Std 802.3, 57A.3).

SP_TYPE

This constant holds the value of the Ethertype identifying the Slow Protocol (see IEEE Std 802.3,
57A.4).

I

o N o O

10
11

12

13
14
15
16
17
18

19
20
21

22
23

24
25
26
27

28
29
30
31

32

33

34
35
36

[Type here]

SRC_ADDR

This constant identifies a field in a frame, as defined in Table 6.1.

SUBTYPE

This constant identifies a field in a frame, as defined in Table 6.1.

UMT_ETHERTYPE

TYPE: 16-bit Ethertype
This constant holds the Ethertype value identifying the UMTPDUs.
VALUE: 0xA8-C8

UMT_SUBTYPE

This constant represents a UMTPDU subtype as defined in Table 5.1.

6.2.3 Variables

IngressRuleld
TYPE: 16-bit unsigned integer
This variable identifies one of the provisioned CTE ingress rules. It also may have a special value
none that does not identify any of the provisioned rules.

RxInputPdu
TYPE: structure containing an Ethernet frame
This variable holds an Ethernet frame received from the MACCSI:MA_DATA interface. The fields
of this structure correspond to the parameters of the MA_DATA. indication() primitive, as
defined in IEEE Std 802.3, 2.3.2.

RxOutputPdu
TYPE: structure containing an Ethernet frame
This variable holds an Ethernet frame to be passed to one of the the UMTSI interfaces
(UMTSL:UMTPDU, UMTSIL:OMCI, or UMTSI:MA DATA). The fields of this structure
correspond to the parameters of the MA_DATA. indication() primitive, as defined in IEEE Std
802.3,2.3.2.
Additionally, the RxOutputPdu structure supports the RemoveField(field_code) method,
which removes a field identified by the field_code from the structure. Thus, unlike the
RxInputPdu structure, the RxOutputPdu may contain only a partial Ethernet frame. The
Tield_code parameter takes values as defined in Table 6.1.

6.2.4 Functions

ChecklngressRules(input_pdu)

This function returns the identification of an ingress rule that matched the frame contained in
RxInputPdu structure. If multiple rules macthed the frame, the function returns an identification
of any of these rules. If none of the rules matched the frame, a special value none is returned.

[Type here]

Modify(rule_id, input_pdu)

This functions returns a frame that is a result of applying the modification action(s) of the rule
identified by the rule_id parameter to the frame contained in the input_pdu parameter.

6.2.5 Primitives
The primitives referenced in this state diagram are defined in 4.4.
6.2.6 State Diagram

UMT sublayer shall implement the Receive process as defined in the state diagram in Figure 6-4.

iBEGIN

WAIT_FOR_FRAME <

[Type here]

| Classification \ 4

MACCSI:MA_DATA.indication(RxInputPdu)

i and Translation

CTE_CHECK_CONDITION

: Engine (CTE)

IngressRuleld = CheckingressRules(RxInputPdu)

| ..
| Provisioned

| Ingress Rules
Y

else

A 4

IngressRuleld == none

CTE_APPLY_ACTION

CTE_BYPASS

RxOutputPdu = Modify(IngressRuleld, RxInputPdu)

RxOutputPdu = RxInputPdu

UCT

UCT

DISPATCH_MAC_ADDR

RxOutputPdu.DestAddr == LOCAL_MAC_ADDR

DISPATCH_SUBTYPE

v
DISPATCH_ETHERTYPE olse
RxOutputPdu.Ethertype == UMT_ETHERTYPE
y
else A 4

»

\ 4

PASS_TO_MA _DATA_IF

UMTSI:MA_DATA.indication(RxOutputPdu)

UCT

RxOutputPdu.Subtype == UMT_SUBTYPE

PASS_TO_UMT_CLIENT

RxOutputPdu.RemoveField(DST_ADDR)
RxOutputPdu.RemoveField(SRC_ADDR))
RxOutputPdu.RemoveField(ETH_TYPE_LEN)
UMTSI:UMTPDU.indication(RxOutputPdu)

UCT

\ 4

RxOutputPdu.Subtype == OAM_SUBTYPE

»
>

CONVERT_INTO_OAMPDU

RxOutputPdu.ReplaceField(DST_ADDR, SP_MAC_ADDR)
RxOutputPdu.ReplaceField(ETH_TYPE_LEN, SP_TYPE)
UMTSI:MA_DATA.indication(RxOutputPdu)

UCT

\ 4

RxOutputPdu.Subtype == OMCI_SUBTYPE?#

& This state/transition is not present
in devices that do not implement
the optional OMCI client

A 4

PASS_TO_OMCI_CLIENT?

RxOutputPdu.RemoveField(DST_ADDR))
RxOutputPdu.RemoveField(SRC_ADDR))
RxOutputPdu.RemoveField(ETH_TYPE_LEN)
RxOutputPdu.RemoveField(SUBTYPE)
UMTSI:OMCl.indication(RxOutputPdu)

ucTt®

A 4

Figure 6-4—Receive process state diagram

23

24

25
26

27
28

29
30

31
32
33
34
35
36

37
38
39
40

[Type here]

6.3 Transmit path specification
6.3.1 Principles of operation

The transmit path of the UMT sublayer includes the Transmit process. The Transmit process waits for an
xPDU to be received from one of the UMTSI interfaces: (UMTSI:MA_DATA, UMTSI:.UMTPDU, or
UMTSI:OMCI).

If an UMT xPDU is received from the UMTSI:UMTPDU interface, it is converted into UMTPDU with
subtype UMT_CONFIG (see Table 5.1) by prepeding a UMTPDU header to the UMT xPDU payload. The
header cosnsists of the destination address, source address, and Ethertype fields. Note that both the
destination and the source addresses are equal to the local MAC address assigned to the given port.

If an OMCI xPDU is received from the UMTSI:OMCI interface, it is converted into UMTPDU with subtype
OMCI1_SUBTYPE (see Table 5.1) by prepeding a UMTPDU header to the UMT xPDU payload. The header
cosnsists of the destination address, source address, Ethertype, and subtype fields. Note that both the
destination and the source addresses are equal to the local MAC address assigned to the given port.

After the above modifications, the UMT or OMCI xPDU is formed into a complete frame, which is then
processed by the Egress Classification and Translation Engine (CTE). If match is found, the frame is modified
according to the matched rule action. If the frame does not match any rules, it is passed through the CTE
block unmodified.

Note that to enter a tunnel, the UMT xPDU or the OMCI xPDU require a matching egress CTE rule that, as
a minimum, overwrites the local MAC address value in the UMTPDU destination address field with the
MAC address associated with the xPDU destination for the given tunnel.

6.3.2 Constants
The constants referenced in this state diagram are defined in 6.2.2.
6.3.3 Variables

EgressRuleld
TYPE: 16-bit unsigned integer

This variable identifies one of the provisioned CTE egress rules. It also may have a special value
none that does not identify any of the provisioned rules.

TxInputPdu
TYPE: structure containing an Ethernet frame

This variable holds a PDU received from one of the the UMTSI interfaces (UMTSI:UMTPDU,
UMTSI:OMCI, or UMTSI:MA_DATA). When received from the UMTSI:MA_DATA interface,
the TxInputPdu structure contains a complete and properly-formed Ethernet frame. When
received from UMTSI:UMTPDU or UMTSI:OMCI interfaces, the TxInputPdu structure
contains a partial frame, that only includes the parameters defined for the respective request()
primitive (see 4.4).

Additionally, the TxInputPdu structure supports the AddField(Field_code,
Ffield_value) method, which adds a field identified by the Field_code and having the value
field_value to the structure. The Field_code parameter takes values as defined in Table
6.1.

OOk, W N P

10
11

12
13

14

15

16

17

[Type here]

TxOutputPdu
TYPE: structure containing an Ethernet frame

This variable holds an Ethernet frame to be passed to the MACCSI:MA_DATA interface. The fields

of this structure correspond to the parameters of the MA_DATA . request() primitive, as defined

in IEEE Std 802.3, 2.3.1. A CTE egress rule is considered misconfigured if applying this rule to the

TxInputPdu results in a malformed Ethernet frame being stored in the TxOutputPdu structure.
6.3.4 Functions

CheckEgressRules(input_pdu)

This function returns the identification of an egress rule that matched the the frame contained in
TxInputPdu structure. If multiple rules macthed the frame, the function returns an identification
of any of these rules. If none of the rules matched the frame, a special value none is returned.

Modify(rule_id, input_pdu)

This functions is defined in 6.2.4.
6.3.5 Primitives
The primitives referenced in this state diagram are defined in 4.4.
6.3.6 State Diagram

UMT sublayer shall implement the Transmit process as defined in the state diagram in Figure 6-5.

10

\ 4

lBEGIN

WAIT_FOR_FRAME

UMTSI:MA_DATA.request(TxInputPdu)

UMTSI:UMTPDU.request(TxInputPdu)

4

FORM_UMT_FRAME

TxInputPdu.AddField(DST_ADDR, LOCAL_MAC_ADDR)
TxInputPdu.AddField(SRC_ADDR, LOCAL_MAC_ADDR)
TxInputPdu.AddField ETH_TYPE_LEN, UMT_ETHERTYPE)

[Type here]

UMTSI:OMCl.request(InputPdu) ? uer P
A\ 4 <
FORM_OMCI_FRAME?
TxInputPdu.AddField(DST_ADDR, LOCAL_MAC_ADDR) .
TxInputPdu.AddField(SRC_ADDR, LOCAL_MAC_ADDR) This state/transition is not
TxInputPdu.AddField(ETH_TYPE_LEN, UMT_ETHERTYPE) present in devices that do
TxInputPdu.AddField(UMT_SUBTYPE, OMCI_SUBTYPE) not implement the optional
a OMCI client
UCT
g
| Classification v v
I'and Translation CTE_CHECK_CONDITION

: Engine (CTE)

EgressRuleld = CheckEgressRules(TxInputPdu)

Provisioned

else
Egress Rules

\ 4

EgressRuleld == none
v

CTE_BYPASS

TxOutputPdu = Modify(EgressRuleld, TxInputPdu)

TxOutputPdu = TxInputPdu

[}
[}
|
i CTE_APPLY_ACTION
[}
[}
[}
[}
[}

UCT

. . . J|.

UCT

PASS_TO_MA_DATA_INTERFACE

MACCSI:MA_DATA .request(TxOutputPdu)

Figure 6-5—Transmit process state diagram

11

	6 UMT sublayer
	6.1 UMT Classification and Translation Engine
	6.1.1 CTE rule structure
	6.1.1.1 CTE rule classification conditions
	6.1.1.1.1 Comparison operators
	6.1.1.1.2 Classification fields

	6.1.1.2 CTE rule modification actions

	6.1.2 CTE rule categories
	6.1.3 CTE rules involving operations on the VLAN tags

	6.2 Receive path specification
	6.2.1 Principles of operation
	6.2.2 Constants
	6.2.3 Variables
	6.2.4 Functions
	6.2.5 Primitives
	6.2.6 State Diagram

	6.3 Transmit path specification
	6.3.1 Principles of operation
	6.3.2 Constants
	6.3.3 Variables
	6.3.4 Functions
	6.3.5 Primitives
	6.3.6 State Diagram

