1 Contents

2	ANNEX 7A	(INFORMATIVE) UMT CONFIGURATION EXAMPLES	2
3		UMT use case, UMT-unaware end points	
4	7A.1.1 Intro	oduction	2
5	7A.1.2 UM	T provisioning to establish tunnels	2
6	7A.1.2.1	Addition of tunnel entrance rule at the ingress of Bridge X, port 3	2
7	7A.1.2.2	Addition of tunnel exit rule at the egress of Bridge Y, port 0	2
8	7A.1.2.3	Addition of UMT tunnel entrance rule at the ingress of Bridge Y, port 0	2
9	7A.1.2.4	Addition of UMT tunnel exit rule at the egress of Bridge X, port 3	2
10	7A.1.3 UM	T provisioning to delete tunnels	2
11	7A.1.3.1	Deletion of UMT tunnel entrance rule at the ingress of Bridge X, port 3	
12	7A.1.3.2	Deletion of UMT tunnel exit rule at the egress of Bridge Y, port 0	
13	7A.1.3.3	Deletion of UMT tunnel entrance rule at the ingress of Bridge Y, port 0	
14	7A.1.3.4	Deletion of UMT tunnel exit rule at the egress of Bridge X, port 3	2
15		UMT use case, UMT-aware end points	
16		oduction	
17	7A.2.2 UM	T provisioning to establish tunnels	
18	7A.2.2.1	Addition of tunnel entrance rule at the egress of Manager M	
19	7A.2.2.2	Addition of UMT tunnel entrance rule at the egress of Station S	
20	7A.2.3 UM	T provisioning to delete tunnels	
21	7A.2.3.1	Deletion of UMT tunnel entrance rule at the egress of Manager M	
22	7A.2.3.2	Deletion of UMT tunnel entrance rule at the egress of Station S	
23		UMT use case, UMT-aware end point and UMT-unaware end point	
24		oduction	
25		T provisioning to establish tunnels	
26	7A.3.2.1	Addition of tunnel entrance rule at the egress of Manager M	
27	7A.3.2.2	Addition of tunnel exit rule at the egress of Bridge Y, port 0	
28	7A.3.2.3	Addition of UMT tunnel entrance rule at the ingress of Bridge Y, port 0	
29		T provisioning to delete tunnels	
30	7A.3.3.1	Deletion of UMT tunnel entrance rule at the egress of Manager M	
31	7A.3.3.2	Deletion of UMT tunnel exit rule at the egress of Bridge Y, port 0	
32	7A.3.3.3	Deletion of UMT tunnel entrance rule at the ingress of Bridge Y, port 0	10

33

- 1 Annex 7A
- 2 (informative)
- 3 **UMT configuration examples**
- 4 7A.1 OAM over UMT use case, UMT-unaware end points
- 5 7A.1.1 Introduction
- 6 7A.1.2 UMT provisioning to establish tunnels
- 7 7A.1.2.1 Addition of tunnel entrance rule at the ingress of Bridge X, port 3
- 8 7A.1.2.2 Addition of tunnel exit rule at the egress of Bridge Y, port 0
- 9 7A.1.2.3 Addition of UMT tunnel entrance rule at the ingress of Bridge Y, port 0
- 10 **7A.1.2.4** Addition of UMT tunnel exit rule at the egress of Bridge X, port 3
- 11 7A.1.3 UMT provisioning to delete tunnels
- 12 7A.1.3.1 Deletion of UMT tunnel entrance rule at the ingress of Bridge X, port 3
- 13 7A.1.3.2 Deletion of UMT tunnel exit rule at the egress of Bridge Y, port 0
- 14 **7A.1.3.3** Deletion of UMT tunnel entrance rule at the ingress of Bridge Y, port **0**
- 15 7A.1.3.4 Deletion of UMT tunnel exit rule at the egress of Bridge X, port 3
- 16

17 **7A.2 OAM over UMT use case, UMT-aware end points**

18 **7A.2.1 Introduction**

- 19 This example illustrates OAM communication between a Manager M and a Station S carried over UMT that
- 20 traverses multiple L2 bridges (see Figure 7A-2). Both the Manager and the Station are UMT-aware. The
- 21 UMT awarness is not required in the intermediate Bridges X and Y, as well as any possible other bridges
- between them.

3 In Figure 7A-2, the Manager M, station S, Bridges X and Y have MAC addresses M, S, X, and Y respectively.

For simplicity, it is assumed that all ports in a given device use the same MAC address, but this is not a requirement.

Furthermore, it is assumed that Bridges X and Y, as well as all intermediate bridges, have already populated
their forwarding tables with entries for MAC addresses M and S. These entries may be created dynamically
by a MAC learning function or be provisioned statically by the NMS.

9 7A.2.2 UMT provisioning to establish tunnels

Since the Manager M is not directly linked with the managed Station S, the OAM messages need to be carried over UMTPDUs. Therefore, before the Manager M and the Station S are able to exchange OAM messages, two UMT tunnels need to be provisioned:

- 13 A forward UMT tunnel from Manager M to Station S.
- 14 A reverse UMT tunnel from Station S to Manager M.

15 To establish a UMT tunnel from Manager M to Station S, a tunnel entrance rule is provisioned at the egress

16 of Manager M. No tunnel exit rule is necessary at the ingress of Station S, since the UMT sublayer provides

1 a built-in translation of UMTPDUs with subtype OAM_subtype into OAMPDUs (see Receive Path

2 Specification in 6.2).

3 Similarly, to establish a UMT tunnel from Station S to Manager M, a tunnel entrance rule is provisioned at

4 the egress of Station S. No tunnel exit rule is necessary at the ingress of Manager M, since the UMT sublayer

provides a built-in translation of UMTPDUs with subtype OAM subtype into OAMPDUs. 5

Each rule is provisioned using a separate UMT_CONFIG message. The contents of two messages required to 6 establish two UMT tunnles for bidirectional communication for the network segment illustrated in Figure 7

8 7A-2 are shown below.

9 7A.2.2.1 Addition of tunnel entrance rule at the egress of Manager M

10 The UMT tunnel entrance rule at the egress of Manager M is shown in Table 7A-9. This rule converts an

11 OAMPDU into a UMTPDU in the transmit path of a given port of Manager M. The conversion replaces the

destination MAC address value (SP_DA) with the MAC address of Station S and replaces the Slow Protocol 12

- Ethertype (SP TYPE) with the UMT Ethertype (UMT TYPE). 13
- 14

Table 7A-9 — Tunnel entrance rule at the egress of Manager M

Conditions	Actions
1. DA == SP_DA 2. ETH_TYPE_LEN == SP_TYPE 3. SUBTYPE == OAM_SUBTYPE	1.REPLACE(DA, S) 2.REPLACE(ETH_TYPE_LEN, UMT_TYPE)

NOTE:

SP_TYPE - Slow Protocol Ethertype value (see IEEE Std 802.3, 57A.4)

UMT_TYPE – Ethertype value identifying UMTPDUs (see 5.1)

OAM_SUBTYPE - Subtype value identifying OAMPDUs (see IEEE Std 802.3, 57A.4)

SP_DA - Destination MAC address associated with Slow Protocols (see IEEE Std 802.3, 57A.3)

S – MAC address of Station S.

15

- 16 Table 7A-10 provides the contents of a UMT_CONFIG UMTPDU that provisions the rule shown in Table 7A-9.
- 17

18

Table 7A-10 — Contents of UMT_CONFIG message

Field	Subfield	Value	Description
DestinationAddress	n/a	М	UMT_CONFIG UMTPDU directed to Manager M
SourceAddress	n/a	any	Source address of the device that issued the UMT_CONFIG UMTPDU
LengthType	n/a	0xA8-C8	Ethertype value identifying UMTPDUs (see
Subtype	n/a	0x00	UMTPDU carrying UMT_CONFIG message
MacCada	MsgType	0x0	This message is a Request (see Table 8-1)
MsgCode	RequestCode	0x1	Request to add a rule (see Table 8-1)

Field	Subfield	Value	Description
	MsgCounter	0x00-01	
MsgSequence	EndOfSequence	1	This request consists of a single message
	PortIndex	1	The rule is to be provisioned for port #1
PortInstance	Direction	0	The rule is to be provisioned for the transmit path (i.e., an egress rule)
	Туре	0xCO	This is a condition TLV (see Table 8-3)
	Length	0x0A	TLV length is 10 octets
RuleTLV	Operation	0x11	Comparison for equality (see Table 6-1)
(condition)	FieldCode	0x01	Compare DST_ADDR field (see Table 6-2)
	Value	0x01-80- C2-00- 00-02	IEEE 802.3 Slow_Protocols_Multicast address (see IEEE Std 802.3, 57A.3)
	Туре	0xCO	This is a condition TLV (see Table 8-3)
	Length	0x06	TLV length is 6 octets
RuleTLV	Operation	0x11	Comparison for equality (see Table 6-1)
(condition)	FieldCode	0x03	Compare ETH_TYPE_LEN field (see Table 6- 2)
	Value	0x88-09	Slow Protocol Ethertype value (see IEEE Std 802.3, 57A.4)
	Туре	0xCO	This is a condition TLV (see Table 8-3)
	Length	0x05	TLV length is 5 octets
RuleTLV	Operation	0x11	Comparison for equality (see Table 6-1)
(condition)	FieldCode	0x26	Compare SUBTYPE field (see Table 6-2)
	Value	0x03	Slow Protocol Subtype value for OAM (see IEEE Std 802.3, 57A.4)
	Туре	0xAC	This is an action TLV (see Table 8-3)
	Length	0x0A	TLV length is 10 octets
RuleTLV	Operation	0xCE	Change (replacement) of a field (see Table 6-3)
(action)	FieldCode	0x01	Modify DST_ADDR field (see Table 6-2)
	Value	S	Set Station S MAC address as the destination for resulting UMTPDUs.
	Туре	0xAC	This is an action TLV (see Table 8-3)
	Length	0x06	TLV length is 6 octets
RuleTLV	Operation	0xCE	Change (replacement) of a field (see Table 6-3)
(action)	FieldCode	0x03	Modify ETH_TYPE_LEN field (see Table 6-2)
	Value	0xA8-C8	Set Ethertype to be equal to UMT Ethertype (UMT_TYPE) in the resulting UMTPDUs.

Field	Subfield	Value	Description
	Type	0x00	This is a termination (end-of-rule) TLV (see Table 8-3)
RuleTLV	Length	0x04	TLV length is 4 octets
(termination)	Operation	0x00	Filled with zeros when not used (see Table 8-3
	FieldCode	0x00	note)

1 7A.2.2.2 Addition of UMT tunnel entrance rule at the egress of Station S

2 The UMT tunnel entrance rule at the egress of Station S is shown in Table 7A-11. This rule converts an 3 OAMPDU into a UMTPDU in the transmit path of port 0. The conversion replaces the destination MAC 4 address value (SP_DA) with the MAC address of Manager M and replaces the Slow Protocol Ethertype

5 (SP_TYPE) with the UMT Ethertype (UMT_TYPE).

6

Table 7A-11 — UMT tunnel entrance rule at the ingress of Station S

Conditions	Actions				
<pre>4. DA == SP_DA 5. ETH_TYPE_LEN == SP_TYPE 6. SUBTYPE == OAM_SUBTYPE</pre>	3.REPLACE(DA, M) 4.CHANGE(ETH_TYPE_LEN, UMT_TYPE)				
NOTE: SP_TYPE – Slow Protocol Ethertype value (see IEEE Std 802.3, 57A.4) UMT_TYPE – Ethertype value identifying UMTPDUs (see 5.1) OAM_SUBTYPE – Subtype value identifying OAMPDUs (see IEEE Std 802.3, 57A.4) SP_DA – Destination MAC address associated with Slow Protocols (see IEEE Std 802.3, 57A.3) M – MAC address of Manager M.					

7

8 Table 7A-12 provides the contents of a UMT_CONFIG UMTPDU that provisions the rule shown in Table 7A-11.

9

10

Table 7A-12 — Contents of UMT_CONFIG message

Field	Subfield	Value	Description
DestinationAddress	n/a	S	UMT_CONFIG UMTPDU directed to Station S
SourceAddress	n/a	any	Source address of the device that issued the UMT_CONFIG UMTPDU
LengthType	n/a	0xA8-C8	Ethertype value identifying UMTPDUs (see 5.1)
Subtype	n/a	0x00	UMTPDU carrying UMT_CONFIG message
Marcala	MsgType	0x0	This message is a Request (see Table 8-1)
MsgCode	RequestCode	0x1	Request to add a rule (see Table 8-1)
MsgSequence	MsgCounter	0x00-01	This request consists of a single message

Field	Subfield	Value	Description
	EndOfSequence	1	
	PortIndex	0	The rule is to be provisioned for port #0
PortInstance	Direction	0	The rule is to be provisioned for the transmit path (i.e., an egress rule)
	Туре	0xCO	This is a condition TLV (see Table 8-3)
	Length	0x0A	TLV length is 10 octets
RuleTLV	Operation	0x11	Comparison for equality (see Table 6-1)
(condition)	FieldCode	0x01	Compare DST_ADDR field (see Table 6-2)
	Value	0x01-80- C2-00- 00-02	IEEE 802.3 Slow_Protocols_Multicast address (see IEEE Std 802.3, 57A.3)
	Туре	0xCO	This is a condition TLV (see Table 8-3)
	Length	0x06	TLV length is 6 octets
RuleTLV	Operation	0x11	Comparison for equality (see Table 6-1)
(condition)	FieldCode	0x03	Compare ETH_TYPE_LEN field (see Table 6- 2)
	Value	0x88-09	Slow Protocol Ethertype value (see IEEE Std 802.3, 57A.4)
	Туре	0xCO	This is a condition TLV (see Table 8-3)
	Length	0x05	TLV length is 5 octets
RuleTLV	Operation	0x11	Comparison for equality (see Table 6-1)
(condition)	FieldCode	0x26	Compare SUBTYPE field (see Table 6-2)
	Value	0x03	Slow Protocol Subtype value for OAM (see IEEE Std 802.3, 57A.4)
	Туре	0xAC	This is an action TLV (see Table 8-3)
	Length	0x0A	TLV length is 10 octets
RuleTLV	Operation	0xCE	Change (replacement) of a field (see Table 6-3)
(action)	FieldCode	0x01	Modify DST_ADDR field (see Table 6-2)
	Value	М	Set Manager M MAC address as the destination for resulting UMTPDUs.
	Туре	0xAC	This is an action TLV (see Table 8-3)
	Length	0x06	TLV length is 6 octets
RuleTLV	Operation	0xCE	Change (replacement) of a field (see Table 6-3)
(action)	FieldCode	0x03	Modify ETH_TYPE_LEN field (see Table 6-2)
	Value	0xA8-C8	Set Ethertype to be equal to UMT Ethertype (UMT_TYPE) in the resulting UMTPDUs.

Field	Subfield	Value	Description
	Type	0x00	This is a termination (end-of-rule) TLV (see Table 8-3)
RuleTLV	Length	0x04	TLV length is 4 octets
(termination)	Operation	0x00	Filled with zeros when not used (see Table 8-3
	FieldCode	0x00	note)

1

2 7A.2.3 UMT provisioning to delete tunnels

3 The deletion of a UMT tunnel involves the deletion of a rule that controls UMT tunnel entrance. Therefore,

4 to delete a tunnel from Manager M to Station S, the UMT tunnel entrance rule at the egress of Manager M is

deleted. And to delete a UMT tunnel from Station S to Manager M, the UMT tunnel entrance rule at the

6 egress of Station S is deleted.

Each rule deletion is provisioned using a separate UMT_CONFIG UMTPDU. The contents of two messages
 required to delete two tunnels illustrated in Figure 7A-2 are described below.

9 7A.2.3.1 Deletion of UMT tunnel entrance rule at the egress of Manager M

10 The contents of a UMT_CONFIG UMTPDU that deletes the UMT tunnel entrance rule at the egress of

11 Manager M are identical to the UMT_CONFIG UMTPDU shown in Table 7A-10, with the exception of the

12 value of the field MsgCode, subfield RequestCode, which in case of rule deletion has the value of 0x2

13 (see Table <mark>8-1</mark>).

14 7A.2.3.2 Deletion of UMT tunnel entrance rule at the egress of Station S

The contents of a UMT_CONFIG UMTPDU that deletes the UMT tunnel entrance rule at the ingress of Bridge Y, port 0 is identical to the UMT_CONFIG UMTPDU shown in Table 7A-12, with the exception of the value of the field MsgCode, subfield RequestCode, which in case of rule deletion has the value of 0x2 (see Table 8-1).

19

20 7A.3 OAM over UMT use case, UMT-aware end point and UMT-unaware end point

21 7A.3.1 Introduction

This example illustrates OAM communication between a Manager M and a Station S carried over UMT that traverses multiple L2 bridges (see Figure 7A-3). The Manager M is UMT-aware, while the Station S is UMTunaware. The Bridge X nearest to the Manager M may or may be not UMT-aware. The Bridge Y nearest to the Station S is UMT-aware and is responsible for converting OAMPDUs into UMTPDUs and vise versa. There can be numerous other bridges between the Bridges X and Y; those bridges may or may be not UMT-

aware.

In Figure 7A-3, the Manager M, station S, Bridges X and Y have MAC addresses M, S, X, and Y respectively.

For simplicity, it is assumed that all ports in a given device use the same MAC address, but this is not a requirement.

6 Furthermore, it is assumed that Bridges X and Y, as well as all intermediate bridges, have already populated

their forwarding tables with entries for MAC addresses M and S. These entries may be created dynamically
 by a MAC learning function or be provisioned statically by the NMS.

8 by a MAC learning function or be provisioned statically by the NMS.

9 **7A.3.2 UMT** provisioning to establish tunnels

Since the Manager M is not directly connected to the managed Station S, the OAM messages need to be carried over UMTPDUs. Therefore, before the Manager M and the Station S are able to exchange OAM messages, two UMT tunnels need to be provisioned:

- 13 A forward UMT tunnel from Manager M to Bridge Y, port 0.
- 14 A reverse UMT tunnel from Bridge Y, port 0 to Manager M.
- 15 To establish a UMT tunnel from Manager M to Bridge Y, port 0, the following rules are provisioned:
- 16 A UMT tunnel entrance rule at the egress of Manager M
- 17 A UMT tunnel exit rule at the egress of Bridge Y, port 0

- 1 To establish a UMT tunnel from Bridge Y, port 0 to Manager M, only one rule is provisioned:
- 2 A UMT tunnel entrance rule at the ingress of Bridge Y, port 0
- No tunnel exit rule is necessary at the ingress of Manager M, since the UMT sublayer provides a built-in translation of UMTPDUs with subtype OAM_subtype into OAMPDUs.
- 5 Each rule is provisioned using a separate UMT_CONFIG message. The contents of all three messages required
- 6 to establish two UMT tunnles for bidirectional communication for the network segment illustrated in Figure
- 7 **7A-3** are described below.

8 7A.3.2.1 Addition of tunnel entrance rule at the egress of Manager M

9 The CTE rule and the content of the UMT_CONFIG UMTPDU are identical to those described in 7A.2.2.1.

10 7A.3.2.2 Addition of tunnel exit rule at the egress of Bridge Y, port 0

11 The CTE rule and the content of the UMT_CONFIG UMTPDU are identical to those described in 7A.1.1.2.

12 7A.3.2.3 Addition of UMT tunnel entrance rule at the ingress of Bridge Y, port 0

13 The CTE rule and the content of the UMT_CONFIG UMTPDU are identical to those described in 7A.1.1.3.

14 **7A.3.3 UMT** provisioning to delete tunnels

- 15 The deletion of a UMT tunnel involves the deletion of rules that control UMT tunnel entrance and UMT
- 16 tunnel exit Therefore, to delete a tunnel from Manager M to Station S, the following rules are removed:
- 17 UMT tunnel entrance rule at the egress of Manager M
- 18 UMT tunnel exit rule at the egress of Bridge Y, port 0
- 19 To delete a UMT tunnel from Station S to Manager M, the following rule is removed:
- 20 UMT tunnel entrance rule at the ingress of Bridge Y, port 0

21 Each rule deletion is provisoned using a separate UMT_CONFIG UMTPDU. The contents of all three

22 messages required to delete two tunnels for bidirectional communication for the network segment illustrated

- 23 in Figure 7A-3 are described below.
- 24

25 **7A.3.3.1 Deletion of UMT tunnel entrance rule at the egress of Manager M**

The contents of a UMT_CONFIG UMTPDU that deletes the UMT tunnel entrance rule at the egress of Manager M are identical to the UMT_CONFIG UMTPDU described in 7A.2.3.1.

28 7A.3.3.2 Deletion of UMT tunnel exit rule at the egress of Bridge Y, port 0

- 29 The contents of a UMT_CONFIG UMTPDU that deletes the UMT tunnel entrance rule at the egress of Bridge
- 30 Y, port 0 are identical to the UMT_CONFIG UMTPDU described in 7A.1.2.2.

31 7A.3.3.3 Deletion of UMT tunnel entrance rule at the ingress of Bridge Y, port 0

- 32 The contents of a UMT_CONFIG UMTPDU that deletes the UMT tunnel entrance rule at the egress of Bridge
- 33 Y, port 0 are identical to the UMT_CONFIG UMTPDU described in 7A.1.2.3.
- 34