
December 2020

Page | 1

6 VLC Sublayer 1

6.1 VLC Functional Block Diagram 2

6.2 VLC Classification and Translation Engine 3

 4

6.3 Receive path specification 5

6.3.1 Principles of operation 6

The receive path of the VLC sublayer includes the Receive process. The Receive process waits for a frame 7

to be received on MACCSI:MA_DATA interface (via MACCSI:MA_DATA.indication() primitive as 8

defined in 4.3.1.1.2). When a frame is received, it is processed by the ingress Classification and Translation 9

Engine (CTE) and if a match is found, the frame is modified according to the matched rule action. If the 10

frame does not match any rules, it is passed through the CTE block unmodified. 11

After traversing the ingress CTE block (highlighted in Figure 6-4), the frame is dispatched to one of the 12

VLCSI interfaces: (VLCSI:VLCPDU, VLCSI:OMCI, or VLCSI:MA_DATA). The dispatching decision is 13

based on the values of the MAC destination address, Ethertype, and VLC subtype. 14

VLCPDUs with the destination address matching the local MAC address and the VLC subtype equal to 15

SUBTYPE_VLC (see Table 5-1) are modified to match the parameters expected by the VLCSI:VLCPDU. 16

indication() primitive (see 4.3.1.3.2) and are passed to the VLCSI:VLCPDU interface. In addition, the 17

source address of these VLCPDUs is stored and used later as the default destination address for transmitted 18

VLCPDUs with SUBTYPE_VLC subtype. 19

VLCPDUs with the destination address matching the local MAC address and the VLC subtype equal to 20

SUBTYPE_OAM (see Table 5-1) are converted into OAMPDUs and are passed to the VLCSI:MA_DATA 21

interface. 22

VLCPDUs with the destination address matching the local MAC address and the VLC subtype equal to 23

SUBTYPE_OMCI (see Table 5-1) are modified to match the parameters expected by the 24

VLCSI:OMCI.indication() primitive (see 4.3.1.4.2) and are passed to the VLCSI:OMCI interface. In 25

addition, the source address of these VLCPDUs is stored and used later as the default destination address 26

for transmitted VLCPDUs with SUBTYPE_OMCI subtype. 27

All other xPDUs are passed unmodified to the VLCSI:MA_DATA interface. Note that there still may be 28

other local clients that are able to intercept/consume these xPDUs at a higher layer. 29

The Receive process does not discard any frames, i.e., every MACCSI:MA_DATA.indication() 30

primitive results in a generation of a single indication primitive on either VLCSI:VLCPDU, VLCSI:OMCI, 31

or VLCSI:MA_DATA interface. 32

Note that no provisioning of the ingress tunnel exit rules is required in situations where the tunnel is 33

terminated at the same port where the xPDUs are to be consumed by their respective clients. The 34

functionality to convert VLCPDUs into xPDUs is built-in into the Receive process. 35

December 2020

Page | 2

6.3.2 Constants 1

ETHERTYPE_SP 2

This constant holds the value of the Ethertype identifying the Slow Protocol 3

(see IEEE Std 802.3, 57A.4). 4

ETHERTYPE_VLC 5

TYPE: 16-bit Ethertype 6

This constant holds the Ethertype value identifying the VLCPDUs. 7

VALUE: 0xA8-C8 8

LOCAL_MAC_ADDR 9

TYPE: 48-bit MAC address 10

This constant holds the value of the MAC address associated with the port where the Receive 11

process state diagram is instantiated. Some devices may associate the same MAC address value 12

with multiple ports. The format of the MAC address is defined in IEEE Std 802.3, 3.2.3. 13

VALUE: device-specific 14

NULL_MAC_ADDR 15

TYPE: 48-bit MAC address 16

This constant holds the placeholder value of destination MAC address, before the actual 17

destination address value was determined or configured for the given frame. Frames witrh the 18

DstAddr field equal to the NULL_MAC_ADDR are not transmitted by a compliant device. 19

VALUE: 0x00-00-00-00-00-00 20

 21

SP_ADDR 22

This constant holds the value of the destination MAC address associated with Slow Protocols 23

(see IEEE Std 802.3, 57A.3). 24

SUBTYPE_OAM 25

This constant represents the value of the VLC subtype that identifies OAM payload carried within 26

a VLCPDU as defined in Table 5-1. 27

SUBTYPE_OMCI 28

This constant represents the value of the VLC subtype that identifies OMCI payload carried within 29

a VLCPDU as defined in Table 5-1. 30

SUBTYPE_VLC 31

This constant represents the value of the VLC subtype that identifies VLC_CONFIG VLCPDU as 32

defined in Table 5-1. 33

6.3.3 Variables 34

DstAddress 35

This variable represents the DstAddress field as defined in Table 6-2. 36

December 2020

Page | 3

LengthType 1

This variable represents the LengthType field as defined in Table 6-2. 2

IngressRuleId 3

TYPE: 16-bit unsigned integer 4

This variable identifies one of the provisioned CTE ingress rules. It also may have a special value 5

none, that does not identify any of the provisioned rules. 6

OmciPeerAddr 7

TYPE: 48-bit MAC address 8

The OmciPeerAddr variable holds the MAC address value of the OMCI peer entity. This 9

variable is shared among the Receive process and the Transmit process. At initialization, this 10

variable is assigned the default value of NULL_MAC_ADDR. When a VLCPDU with the subtype 11

SUBTYPE_OMCI is received, this variable is set to the value of the SrcAddrs field of that 12

VLCPDU. 13

RxInputPdu 14

TYPE: structure containing an Ethernet frame 15

This variable holds an Ethernet frame received from the MACCSI:MA_DATA interface. The fields 16

of this structure correspond to the parameters of the MA_DATA.indication() primitive as 17

defined in IEEE Std 802.3, 2.3.2. 18

RxOutputPdu 19

TYPE: structure containing an Ethernet frame 20

This variable holds an Ethernet frame to be passed to one of the the VLCSI interfaces 21

(VLCSI:VLCPDU, VLCSI:OMCI, or VLCSI:MA_DATA). The fields of this structure correspond to 22

the parameters of the MA_DATA.indication() primitive as defined in IEEE Std 802.3, 2.3.2. 23

Additionally, the RxOutputPdu structure supports the RemoveField(field) method, 24

which removes the field from the structure. Thus, unlike the RxInputPdu structure, the 25

RxOutputPdu may contain only a partial Ethernet frame. The field parameter retpresents one 26

of the frame fields defined in Table 6-2. 27

SrcAddress 28

This variable represents the SrcAddress field as defined in Table 6-2. 29

Subtype 30

This variable represents the Subtype field as defined in Table 6-2. 31

VlcPeerAddr 32

TYPE: 48-bit MAC address 33

The VlcPeerAddr variable holds the MAC address value of the VLC peer entity. This variable 34

is shared among the Receive process and the Transmit process. At initialization, this variable is 35

assigned the default value of NULL_MAC_ADDR. When a VLCPDU with the subtype 36

SUBTYPE_VLC is received, this variable is set to the value of the SrcAddrs field of that 37

VLCPDU. 38

December 2020

Page | 4

6.3.4 Functions 1

CheckIngressRules(input_pdu) 2

This function returns the identification of an ingress rule that matched the frame contained in the 3

RxInputPdu structure. If multiple rules match a frame, the function returns a single 4

identification of any of these rules. The selection criteria is vendor-specific and outside the scope 5

of this standard. If none of the rules matches the frame, a special value none is returned. 6

Modify(rule_id, input_pdu) 7

This function returns a frame that is a result of applying the modification action(s) of the rule 8

identified by the rule_id parameter to the frame contained in the input_pdu parameter. 9

RxOutputPdu.ReplaceField(target_field, source_field) 10

This function is a method associated with RxOutputPdu structure used in the Receive process 11

state diagram. This method replaces the value of a field in the structure, specified by 12

target_field, with the value from the field specified by source_field. The 13

target_field and source_field parameters are one of the frame fields defined in Table 14

6-2. 15

RxOutputPdu.RemoveField(field) 16

This function is a method associated with RxOutputPdu structure used in the Receive process 17

state diagram. This method removes the field from the structure. The field parameter 18

represents one of the frame fields defined in Table 6-2. 19

6.3.5 Primitives 20

The primitives referenced in this state diagram are defined in 4.3.1. 21

6.3.6 State Diagram 22

The VLC sublayer shall implement the Receive process as defined in the state diagram in Figure 6-4. 23

December 2020

Page | 5

 1

Figure 6-1—Receive process state diagram 2

WAIT_FOR_FRAME

BEGIN

RxOutputPdu.DstAddress == LOCAL_MAC_ADDR

DISPATCH_MAC_ADDR

DISPATCH_ETHERTYPE

DISPATCH_SUBTYPE

MACCSI:MA_DATA.indication(RxInputPdu)

RxOutputPdu.LengthType == ETHERTYPE_VLC

RxOutputPdu.Subtype == SUBTYPE_VLC

RxOutputPdu.Subtype == SUBTYPE_OMCI a

PASS_TO_MA_DATA_IF

VLCSI:MA_DATA.indication(RxOutputPdu)

else

else

else

UCT a

PASS_TO_OMCI_CLIENT
 a

OmciPeerAddr = RxOutputPdu.SrcAddr
RxOutputPdu.RemoveField(DstAddress)
RxOutputPdu.RemoveField(SrcAddress)
RxOutputPdu.RemoveField(LengthType)
RxOutputPdu.RemoveField(Subtype)
VLCSI:OMCI.indication(RxOutputPdu)

PASS_TO_VLC_CLIENT

VlcPeerAddr = RxOutputPdu.SrcAddr
RxOutputPdu.RemoveField(DstAddress)
RxOutputPdu.RemoveField(SrcAddress)
RxOutputPdu.RemoveField(LengthType)
VLCSI:VLCPDU.indication(RxOutputPdu)

UCT

UCT

UCT

CTE_CHECK_CONDITION

IngressRuleId = CheckIngressRules(RxInputPdu)

CTE_APPLY_ACTION

RxOutputPdu = Modify(IngressRuleId, RxInputPdu)

CTE_BYPASS

RxOutputPdu = RxInputPdu

IngressRuleId == noneelse

UCT

Classification

and Translation

Engine (CTE)

Provisioned

Ingress Rules

a
 This state/transition is not present

 in devices that do not implement

 the optional OMCI client

CONVERT_INTO_OAMPDU

RxOutputPdu.ReplaceField(DstAddress, SP_ADDR)
RxOutputPdu.ReplaceField(LengthType, ETHERTYPE_SP)
VLCSI:MA_DATA.indication(RxOutputPdu)

RxOutputPdu.Subtype == SUBTYPE_OAM

UCT

Deleted: 3

WAIT_FOR_FRAME

BEGIN

RxOutputPdu.DstAddress == LOCAL_MAC_ADDR

DISPATCH_MAC_ADDR

DISPATCH_ETHERTYPE

DISPATCH_SUBTYPE

MACCSI:MA_DATA.indication(RxInputPdu)

RxOutputPdu.LengthType == ETHERTYPE_VLC

RxOutputPdu.Subtype == SUBTYPE_VLC

RxOutputPdu.Subtype == SUBTYPE_OMCI
 a

PASS_TO_MA_DATA_IF

VLCSI:MA_DATA.indication(RxOutputPdu)

else

else

else

UCT
 a

PASS_TO_OMCI_CLIENT
 a

RxOutputPdu.RemoveField(DstAddress)

RxOutputPdu.RemoveField(SrcAddress)

RxOutputPdu.RemoveField(LengthType)

RxOutputPdu.RemoveField(Subtype)

VLCSI:OMCI.indication(RxOutputPdu)

PASS_TO_VLC_CLIENT

RxOutputPdu.RemoveField(DstAddress)

RxOutputPdu.RemoveField(SrcAddress)

RxOutputPdu.RemoveField(LengthType)

VLCSI:VLCPDU.indication(RxOutputPdu)

UCT

UCT

UCT

CTE_CHECK_CONDITION

IngressRuleId = CheckIngressRules(RxInputPdu)

CTE_APPLY_ACTION

RxOutputPdu = Modify(IngressRuleId, RxInputPdu)

CTE_BYPASS

RxOutputPdu = RxInputPdu

IngressRuleId == noneelse

UCT

Classification

and Translation

Engine (CTE)

Provisioned

Ingress Rules

a
 This state/transition is not present

 in devices that do not implement

 the optional OMCI client

CONVERT_INTO_OAMPDU

RxOutputPdu.ReplaceField(DstAddress, SP_ADDR)

RxOutputPdu.ReplaceField(LengthType, ETHERTYPE_SP)

VLCSI:MA_DATA.indication(RxOutputPdu)

RxOutputPdu.Subtype == SUBTYPE_OAM

UCT

Deleted: 44

December 2020

Page | 6

6.4 Transmit path specification 1

6.4.1 Principles of operation 2

The transmit path of the VLC sublayer includes the Transmit process. The Transmit process waits for an 3

xPDU to be received from one of the VLCSI interfaces: (VLCSI:MA_DATA, VLCSI:VLCPDU, or 4

VLCSI:OMCI). 5

If a VLC xPDU is received from the VLCSI:VLCPDU interface, it is converted into a VLCPDU with 6

subtype SUBTYPE_VLC (see Table 5-1) by prepeding a VLCPDU header to the VLC xPDU payload. The 7

header cosnsists of the destination address, source address, and Ethertype fields. If a VLCPDU with 8

subtype SUBTYPE_VLC has been previously received from the peer VLC entity, the destination address 9

value is set to the MAC address of that VLC peer. Otherwise, the destination address is set to the default 10

value of NULL_MAC_ADDR. 11

If an OMCI xPDU is received from the VLCSI:OMCI interface, it is converted into VLCPDU with subtype 12

SUBTYPE_OMCI (see Table 5-1) by prepeding a VLCPDU header to the VLC xPDU payload. The header 13

cosnsists of the destination address, source address, Ethertype, and subtype fields. If a VLCPDU with 14

subtype SUBTYPE_OMCI has been previously received from the peer OMCI entity, the destination address 15

value is set to the MAC address of that OMCI peer. Otherwise, the destination address is set to the default 16

value of NULL_MAC_ADDR. 17

After the above modifications, the VLC or OMCI xPDU is formed into a complete frame, which is then 18

processed by the Egress Classification and Translation Engine (CTE). If a match is found, the frame is 19

modified according to the matched rule action. If the frame does not match any rules, it is passed through 20

the CTE block unmodified. 21

Note that to enter a tunnel, any VLCPDU that contains the default destination address value of 22

NULL_MAC_ADDR require a matching egress CTE rule that, at a minimum, overwrites the 23

NULL_MAC_ADDR value with the MAC address associated with the xPDU destination for the given tunnel. 24

In absence of such rule, a frame that is left with a default destination address value of NULL_MAC_ADDR is 25

discarded by the VLC Transmit process. 26

NOTE – An OAMPDU received from the higher-layer entity (OAM sublayer) via the 27

VLCSI:MA_DATA.request() primitive is not unconditionally converted into VLCPDU by the 28

Transmit process state diagram. However, if there is an egress rule provisioned that matches that 29

OAMPDU, it may get converted into a VLCPDU, as explained in 6.2. 30

6.4.2 Constants 31

The constants referenced in this state diagram are defined in 6.3.2. 32

6.4.3 Variables 33

DstAddress 34

This variable is defined in 6.3.3. 35

EgressRuleId 36

TYPE: 16-bit unsigned integer 37

This variable identifies one of the provisioned CTE egress rules. It also may have a special value 38

none that does not identify any of the provisioned rules. 39

Deleted: Note that both the destination and the source addresses 40
are equal to the local MAC address assigned to the given port.41

Deleted: Note that both the destination and the source addresses 42
are equal to the local MAC address assigned to the given port.43

Deleted: the VLC xPDU or the OMCI xPDU 44

Deleted: local MAC address45

Deleted: in the VLCPDU destination address field 46

December 2020

Page | 7

LengthType 1

This variable is defined in 6.3.3. 2

OmciPeerAddr 3

This variable is defined in 6.3.3. 4

SrcAddress 5

This variable is defined in 6.3.3. 6

Subtype 7

This variable is defined in 6.3.3. 8

TxInputPdu 9

TYPE: structure containing an Ethernet frame 10

This variable holds a PDU received from one of the the VLCSI interfaces (VLCSI:VLCPDU, 11

VLCSI:OMCI, or VLCSI:MA_DATA). When received from the VLCSI:MA_DATA interface, the 12

TxInputPdu structure contains a complete and properly-formed Ethernet frame. When received 13

from VLCSI:VLCPDU or VLCSI:OMCI interfaces, the TxInputPdu structure contains a partial 14

frame, that only includes the parameters defined for the respective request() primitive (see 15

4.3.1). 16

Additionally, the TxInputPdu structure supports the AddField(field, field_value) 17

method, which adds a field identified by the field and having the value field_value to the 18

structure. 19

TxOutputPdu 20

TYPE: structure containing an Ethernet frame 21

This variable holds an Ethernet frame to be passed to the MACCSI:MA_DATA interface. The 22

fields of this structure correspond to the parameters of the MA_DATA.request() primitive as 23

defined in IEEE Std 802.3, 2.3.1. 24

VlcPeerAddr 25

This variable is defined in 6.3.3. 26

6.4.4 Functions 27

CheckEgressRules(input_pdu) 28

This function returns the identification of an ingress rule that matched the frame contained in 29

TxInputPdu structure. If multiple rules match a frame, the function returns a single 30

identification of any of these rules. The selection criteria is vendor-specific and outside the scope 31

of this standard. If none of the rules matches the frame, a special value none is returned. 32

IsValidFrame(output_pdu) 33

This function returns true if the output_pdu structure contains a valid Ethernet frame. 34

Otherwise, false is returned. This function verifies the presence of the DstAddr, SrcAddr, 35

LengthType, and Subtype fileds and that the DstAddr field value is not equal to the default 36

value of NULL_MAC_ADDR. 37

 38

December 2020

Page | 8

bool IsValidFrame(output_pdu) 1

{ 2

return (exists(output_pdu.DstAddr) AND 3

 exists(output_pdu.SrdAddr) AND 4

 exists(output_pdu.LengthType) AND 5

 output_pdu.DstAddr != NULL_MAC_ADDR); 6

} 7

The exists(field) operator is defined in Table 6-1. 8

Modify(rule_id, input_pdu) 9

This functions is defined in 6.3.4. 10

TxInputPdu.AddField(field, field_value) 11

This function is a method associated with TxInputPdu structure used in the Transmit process 12

state diagram. This method adds the field with the value of field_value into the structure. 13

The field parameter represents one of the frame fields defined in Table 6-2. 14

6.4.5 Primitives 15

The primitives referenced in this state diagram are defined in 4.3.1. 16

6.4.6 State Diagram 17

The VLC sublayer shall implement the Transmit process as defined in the state diagram in Figure 6-5. 18

December 2020

Page | 9

 1

Figure 6-2—Transmit process state diagram 2

 3

UCT

EgressRuleId == noneelse

UCT

CHECK_OUTPUT_PDU

UCT

WAIT_FOR_FRAME

BEGIN

VLCSI:MA_DATA.request(TxInputPdu)

VLCSI:VLCPDU.request(TxInputPdu)

VLCSI:OMCI.request(TxInputPdu) a

FORM_VLC_FRAME

TxInputPdu.AddField(DstAddress, VlcPeerAddr)
TxInputPdu.AddField(SrcAddress, LOCAL_MAC_ADDR)
TxInputPdu.AddField(LengthType, ETHERTYPE_VLC)

FORM_OMCI_FRAME
 a

TxInputPdu.AddField(DstAddress, OmciPeerAddr)
TxInputPdu.AddField(SrcAddress, LOCAL_MAC_ADDR)
TxInputPdu.AddField(LengthType, ETHERTYPE_VLC)
TxInputPdu.AddField(Subtype, SUBTYPE_OMCI)

UCT a

UCT

CTE_CHECK_CONDITION

EgressRuleId = CheckEgressRules(TxInputPdu)

CTE_APPLY_ACTION

TxOutputPdu = Modify(EgressRuleId, TxInputPdu)

CTE_BYPASS

TxOutputPdu = TxInputPdu

Classification

and Translation

Engine (CTE)

Provisioned

Egress Rules

a
 This state/transition is

 not present in devices

 that do not implement

 the optional OMCI

 client

PASS_TO_MA_DATA_INTERFACE

MACCSI:MA_DATA.request(TxOutputPdu)

else

IsValidFrame(TxOutputPdu)
Deleted: 4

UCT

EgressRuleId == noneelse

UCT

PASS_TO_MA_DATA_INTERFACE

MACCSI:MA_DATA.request(TxOutputPdu)
UCT

WAIT_FOR_FRAME

BEGIN

VLCSI:MA_DATA.request(TxInputPdu)

VLCSI:VLCPDU.request(TxInputPdu)

VLCSI:OMCI.request(TxInputPdu)
 a

FORM_VLC_FRAME

TxInputPdu.AddField(DstAddress, LOCAL_MAC_ADDR)

TxInputPdu.AddField(SrcAddress, LOCAL_MAC_ADDR)

TxInputPdu.AddField(LengthType, ETHERTYPE_VLC)

FORM_OMCI_FRAME
 a

TxInputPdu.AddField(DstAddress, LOCAL_MAC_ADDR)

TxInputPdu.AddField(SrcAddress, LOCAL_MAC_ADDR)

TxInputPdu.AddField(LengthType, ETHERTYPE_VLC)

TxInputPdu.AddField(Subtype, SUBTYPE_OMCI)

UCT
 a

UCT

CTE_CHECK_CONDITION

EgressRuleId = CheckEgressRules(TxInputPdu)

CTE_APPLY_ACTION

TxOutputPdu = Modify(EgressRuleId, TxInputPdu)

CTE_BYPASS

TxOutputPdu = TxInputPdu

Classification

and Translation

Engine (CTE)

Provisioned

Egress Rules

a
 This state/transition is

 not present in devices

 that do not implement

 the optional OMCI

 client

Deleted: 55

	6 VLC Sublayer
	6.1 VLC Functional Block Diagram
	6.2 VLC Classification and Translation Engine
	6.3 Receive path specification
	6.3.1 Principles of operation
	6.3.2 Constants
	6.3.3 Variables
	6.3.4 Functions
	6.3.5 Primitives
	6.3.6 State Diagram

	6.4 Transmit path specification
	6.4.1 Principles of operation
	6.4.2 Constants
	6.4.3 Variables
	6.4.4 Functions
	6.4.5 Primitives
	6.4.6 State Diagram

