

RoE RTT measurement considerations

Jouni Korhonen May 29, 2015

2 June 2015

IEEE 1904 Access Networks Working Group, City, Country

Referring back to documents <u>tf3 1506 korhonen 3.pdf</u> (drafting the link setup) and <u>tf3 1506 korhonen 7.pdf</u> (time-synchronization assumptions) there may be cases where e.g. 1588 or 802.1AS are not present..

- The RoE system "master" and "slave" could measure the link roundtrip time themselves and also get synchronized.
- Proposal to introduce a simple mechanism for link synchronization that also is able to measure the roundtrip time.

Approach

- Once "slave" enters the active state it still defers sending *any* RoE packets.
- Once "master" enters the active state is starts sending RoE packets at the agreed rate.
- The reception of the first RoE packet (with S=1,E=?) triggers "slave" to respond with RoE packet (also S=1,E=?).
 - The "master" timestamps (internally) the packet it sends and receives.
 - The difference is the roundtrip time + "slave" internal delay.
 - S & E bits need to be set accordingly.
 - Continue transmission for e.g. 5 "start of frame" worth of time. After that both end can start normal operation.
- If SNs were used the "master" and "slave" SNs are "echoed" back.

 \Box This is similar to CPRI "DL & UL frame timing".

Approach cont'd

The Toffs is known in advance e.g. by configuration or learned during link setup.
RoE master can measure link RTT using the mechanism described here at any time.

Motion

Approve the proposed way to measure roundtrip time as presented in tf3_1506_korhonen_10.pdf as a baseline.

Xx making the motionSecond by xx

□Technical motion (>2/3)