

RoE generic header and the control plane v2

Jouni Korhonen May 19, 2015 revised May 27

27 May 2015

IEEE 1904 Access Networks Working Group, City, Country

Bit and byte ordering

Byte ordering

- RoE shall use network byte order.
- MSB first..

Bit numbering for on-wire order From 0 (MSB) to the highest (LSB)

□ Example:

RoE for non-control packets

- ver version field; current 00b
- pkt_type RoE packet type;
 - 0 reserved for control packet
 - 1-31 other packet types
- flow_id for multiplexing flows between SA/DA pair:
 - For example flow_id can be AxC number.

□ Flags:

- C = whether additional 32 bith "extended_header_space" follows the timestamp/seqnum; 0=no, 1=yes
- S & E bits:
 - 10b start of frame (e.g. CPRI hyperframe; interpretation depends on the pkt_type).
 - 01b end of a frame.
 - 00b middle part of a frame.
 - 11b whole frame within the payload.
- T = timestamp/seqnum selector; 0=seqnum, 1=timestamp

RoE header with extended_header_space

\Box C-flag = 1

□ The content of the "extended_header_space" is opaque to RoE and used by the application.

Possible uses include:

- Control data that has to be delivered in timely manner along with the AxC and samples.
- Data that must always follow the exact same processing path as the payload e.g. not forwarded to the management CPU.

About timestamp & seqnum

Timestamp

- 31 bits in size; units in nanoseconds
- Represented as a _presentation_time_ at the received (and calculated by the sender based on its clock)
- Can present time ~1s in future
- Carries lower 31 bits of the calculated presentation time (~2s on wire but ~1s window)

Sequence number (seqnum)

- 31 bits in size; after 2^31-1 wraps to 0
- Increments by a constant value known by both sender and receiver (configured or negotiated)

RoE control packet and payload TLVs

- □ In a RoE control packet the header level flow_id is insignificant
- S & E flags can be used to spread the control message over multiple RoE packets.
- - tlv_type (0-127 ignored if not understood by the receiver, 128-255 cause error if not understood by the receiver)
 - tlv_length excludes tlv_type, tlv_length and M/T/AxC_id
 - M = the TLV continuation flag;
 - flow_id which flow this TLV concerns; optional and depends on the tlv_type

Potential TLVs

Configuration:

- Sample width, number of samples per RoE packet (i.e. how many Tc to interleave into one packet), ...
- (obviously a state machine needed here for the link configuration time)
- □ For CPRI mapper use:
 - Link setup/negotiation TLVs -> C&M speeds, "CPRI" link speed, mapper method (and Na, K, S, M, etc)
 - Container for VSDs
 - Container for Slow/Fast C&M
 - Container for ctrl_AxC
- Generic container TLVs:
 - Carry some "alien" protocols like 1588.
- For path measurements/debug purposes
 - E.g. figure out intermediate node residence times.
- And so on.. A registry needed to be maintained somewhere.

Additional discussion

- Current RoE Control packet is designed to curry TLV and has implicitly only one packet type.
- Question: Do we need packet sub-type in the header format or is a "sub-type TLV" adequate?

Proposal

- Approve the RoE header format for data traffic.
- Approve the RoE header format for control traffic.
- Approve the RoE control packet's TLV format.