

CPRI Tunneling Packet Formats

Kevin Bross December 15, 2015

15 December 2015

IEEE 1904 Access Networks Working Group, San Jose, CA, USA

Tunneling Encoding

Presentation purpose:

- Provide recommendations for how to handle tunneling of RoE data in an agnostic manner
- Describes format for handling streams in raw and 8b/10b-decoded formats
 - Special-purpose characters, such as K-characters like K28.5 are treated as exceptions
- Focus is on CPRI (especially rates 1-7)
- Packet formats are proposed

Encoding Modes

Two primary methods are used for encoding data in today's communications:

- 8b/10b encoding (20% overhead)
- 64b/66b encoding (3% overhead)
- Consensus from October meeting:
 - 20% gain in removing 8b/10b was worthwhile
 - 3% gain in removing 64b/66b is not worth it
- Therefore, we need 2 modes:
 - Simple (non-decoded) mode
 - 8b/10b decoded mode

Frequency of Special Characters

CPRI is primary use case with 8b/10b
 CPRI only uses one special character

- K28.5 character used for start of frame (SoF)
- Multiple Ethernet packets between SoF's
- Proposal: support up to one special character per Ethernet packet

Need to know:

- Which special character occurred
- Where special character occurred

Encoding Special Characters (1)

I6 bits of RoE header added for tunneled RoE data:

Need to allocate a pkt_type for tunneled data

- The special_char_pos field indicates the location + 1 of the special character in payload
 - -0 = no special character found
 - Always 0 when simple tunneling is used
 - 1 = first payload character
 - 2 = second payload character, etc.

IEEE 1904 Access Networks Working Group, Hillsboro, OR, USA

Encoding Special Characters (2)

If special_char_pos is non-zero, that location (1-relative) contains enumerated value indicating the special character

Not limited to K28.5 only

Special 8b/10b characters:

Symbol	Нех
K28.0	0x1C
K28.2	0x5C
K28.4	0x9C
K28.6	0xDC
K23.7	0xF7
K29.7	0xFD

Nodes Involved in Tunneling

There can be 3 different nodes involved in managing and tunneling data:

- Endpoint A
- Endpoint B
- Management Entity C

- □ The Management Entity C can be the same node as A or B, but can be separate
 - Allows separate device to control tunnel between two endpoints

 There is no need for RoE tunnel to know which side (A or B) is uplink vs. downlink
 Management packets need a pkt_type

RoE Data Rates

Protocol does not need to limit itself to a few specific data rates

Proposal: specify data rates in kbps

- Allows 32-bit field to handle >10 Gbps
- Some implementations may support a subset of available rates

□ Data rates usually symmetric for RoE

 – Protocol does not need to assume symmetry
 □ Proposal: specify data rate independently for A → B and B ← A

Time Between Nodes

Protocol needs to know nominal transit time and maximum transit time between nodes

- IEEE 1588 data may be handled specially and use separate mechanisms than RoE data
- Difference between nominal and maximum transit time is the nominal buffer time
- Transit time may be different A \rightarrow B and B \leftarrow A
- Proposal: Tunnel setup protocol should specify nominal and maximum transit time
 - Future contributions may suggest ways to measure nominal time

Initiating a Tunnel

- Management Entity C sends message to Endpoints A and B to start tunnel
- Necessary data:
 - 8b: Management Packet ID: 0x01
 - 8b: Flow ID
 - 16b: Encoding Method and Payload Size
 - 96bx2: Endpoint A Address, Endpoint B Address
 - 96b: Management Entity C Address
 - 32bx2: Data Rate A \rightarrow B, B \leftarrow A
 - 32bx2: Nominal Transit Time A \rightarrow B, B \leftarrow A
 - 32bx2: Maximum Transit Time A \rightarrow B, B \leftarrow A
 - 32b: Starting Presentation Time (at both ends)

IEEE 1904 Access Networks Working Group, Hillsboro, OR, USA

Initiating a Tunnel

0 	8	16 24 31 		
ver pkt_type	flow_id	length		
32-bit ordering info				
mgmt_id: 0x01 flow_id		enc_method_payload_size		
endpoint_a_mac (0:63)				
endpoint_a	_mac (64:95)	endpoint_b_mac (0:31)		
endpoint_b_mac (32:95)				
management_c_mac (0:63)				
management	_c_mac (64:95)	reserved		
data_rate_ab				
data_rate_ba				
nominal_transit_ab				
nominal_transit_ba				
maximum_transit_ab				
maximum_transit_ba				
presentation_start				

- Management Packet ID: 0x01
- Flow ID
- Encoding Method and Payload Size
- Endpoint A Address, Endpoint B Address
- Management Entity C Address
- Data Rate A \rightarrow B, B \leftarrow A
- Nominal Transit Time A \rightarrow B, B \leftarrow A
- Maximum Transit Time A \rightarrow B, B \leftarrow A
- Starting Presentation Time (at both ends)

IEEE 1904 Access Networks Working Group, Hillsboro, OR, USA

Terminating a Tunnel

- Management Entity C sends message to Endpoints A and B to stop tunnel
- Necessary data:
 - Management Packet ID: 0x02
 - Flow ID

