
SIEPON.4 Authentication Proposal
v0.5 – 2023-11-30

Craig Pratt | Lead Software Engineer
c.pratt@cablelabs.com

ONU Encryption Initialization
OLT ONU

Both parties sending data in the clear

MPCP Discovery and Registration

eOAM Discovery

Authentication/Credential Provisioning

Initial Shared Key Derivation

Encrypted with new session key

Initial Key Activation

Session Key Activation

Encrypted with initial key

Loop

Session Key Update

SIEPON MA - Approaches/assumptions:
1. SIEPON should enable authentication methods, while

allowing the policy to be dictated/described by the
operator

2. Credentials must be attested/verified
• e.g. via challenge/response and hash/signatures

3. Trust store/lists must be operator-configurable (on OLT
and ONU) and initialization/updates to the ONU trust
store should be securely updatable by the operator via
the OLT.

4. Initial AES key must ephemeral and mutually verified
• To provide forward secrecy and prevent Machine in the Middle

(MITM) attacks
5. Having mandatory authentication with simplified

credentials is better than having optional/no
authentication

6

Questions to answer
• Q1: How should authentication be performed?

• Have looked into a couple options...
• Q2: What formats of credentials are allowed?

• X.509 is widely supported and supports a wide variety of PKI systems,
but has some complexities. Should we support more than one
credential type and if so, which?

• Q3: How should initial authentication be performed?
• What credential/key(s) should be built into the ONU for authentication?
• What information should be provided by the installer/operator during

onboarding to enable initial authentication?
• Q4: How to enable and configure OLT authentication?

• ONU must have a way to validate the OLT to provide full mutual
authentication, but how?

8

Q1:
How should authentication be performed?

• Proposal: Use 802.1X
• Can deal with limited frame sizes
• Concept of ”Controlled Port” and

“Supplicant” matches up well with
OLT and ONU, respectively

• Allows for use of different
credential types

• Widely supported and
maintained/updated technology

9

80
2.

1X R
epeat

OLT ONU

Retrieve ONU identity

Authentication Flow using 802.1X
MPCP Discovery and Registration, eOAM Discovery, and initial key activation complete

EAP-Request Identity

EAP-Response Identity
Look up ID in database

Determine expected credential

EAP-Response

EAP-Request
Process Request/Form Response

Form cred-specific Request

Complete cred-specific auth EAP-Success

All LLIDs encrypted using initial EDH-derived AES key

eOAM_Set_Response(InitialKeyMac, c_hmac)

EAP-Request

Confirm s_hmac
Compute c_hmac (pmk/msk | dhe_key)

Auth complete – but initial ECDHE-derived key needs to be confirmed authentic

eOAM_Set_Request(InitialKey, s_hmac)Compute s_hmac (dhe_key | pmk/msk)

Confirm c_hmac

Number and
contents of

messages depend
on EAP method
and negotiated

parameters

Needs to be computed
differently to prevent

mirroring

This will involve
cryptographic

credential verification

Q1 Discussion:
How should authentication be performed?

• Had looked into straight encapsulation of TLS
messages into OAM PDUs, but quickly ran into
complexities

• Many credentials and signatures are too large – so would
have to come up with a fragmentation system

• Would potentially be simpler, but more custom code (no
library support)

• EAP can be a can of worms if underspecified
• Open-ended options will reduce interoperability
• Spec text should specify what can be allowed/disallowed and

require ONUs to support both credential types (to provide
operator flexibility)

11

Q2:
What formats of credentials should be supported?
• Proposal: Support 2 credential forms to give operators options

• X.509 certificates: RFC-5280
• Widely supported legacy technology, especially with existing PKI (Public Key

Infrastructure) systems
• Structure and coding are complicated
• Requires a well-designed PKI system for robust authentication

• Java Web Tokens with signatures (JWT/JWS): RFC-7519/RFC-7515
• Widely supported in web applications and used in some IoT protocols
• Structure and coding are simple
• Can interoperate with PKI systems for robust authentication

12

Example of creating an ONU JWT/JWS
Manufacturer code 1234, Serial number 987654321

header = {"alg": "ES256", "typ": "JWT", "kid": ”onu_1234_987654321_key"}

payload = {"sub": "1234_987654321", "iat": datetime.datetime.utcnow()}

jwt_token = jwt.encode(payload, ca_private_key, algorithm="ES256", headers=header)

print(f"Generated JWT ({len(jwt_token)} bytes):", jwt_token)

13

Generated JWT (220 bytes):

eyJhbGciOiJFUzI1NiIsImtpZCI6IjEyMzRfOTg3NjU0MzIxX2tleSIsInR5cCI6IkpXVCJ9.

eyJzdWIiOiIxMjM0Xzk4NzY1NDMyMV9rZXkiLCJpYXQiOjE3MDE1NjM0Nzh9.

TOp6n-zNDlTKoU9yykxllWFpsz1SRM9YVkVBrVydxNd3SGRI1nFrIUcy76juOMykVJ2kcOIzO91tLdqtM-A1Jg

R
epeat

OLT ONU A

Return encoded JWT JA

Auth Flow with EAP-TLS JWT
MPCP Discovery and Registration, eOAM Discovery, and initial key activation complete

EAP-Request Identity

EAP-Response Identity
Confirm JA’s signature and time
Look up ID in database from JA

Found public key PA

EAP-Response

EAP-Request
Process Request/Form Response

Perform EAP-TLS (raw keys)

Check public key EAP-Success

All LLIDs encrypted using initial EDH-derived AES key

eOAM_Set_Response(InitialKeyMac, c_hmac)

EAP-Request

Confirm s_hmac
Compute c_hmac (pmk/msk | dhe_key)

Auth complete – but initial ECDHE-derived key needs to be confirmed authentic

eOAM_Set_Request(InitialKey, s_hmac)Compute s_hmac (dhe_key | pmk/msk)

Confirm c_hmac

JWTA body:
{"sub": "1234_987654321",

"iat": 1701309600}

confirm that the ONU
presented and

confirmed ownership
of PA

EAP-TLS with raw keys is used
to confirm ONU’s public/private

key and create auth secret

Example of creating an ONU X.509
Manufacturer code 1234, Serial number 987654321

builder = x509.CertificateBuilder()

builder = builder.subject_name(x509.Name([

x509.NameAttribute(x509.NameOID.COMMON_NAME, "onu_1234_987654321_key")]))

builder = builder.issuer_name(x509.Name([

x509.NameAttribute(x509.NameOID.COMMON_NAME, "ACME CORP")]))

not_valid_before = datetime.utcnow()

not_valid_after = not_valid_before + timedelta(days=365) # Valid for 1 year

builder = builder.not_valid_before(datetime.utcnow())

builder = builder.not_valid_after(datetime.utcnow() + timedelta(days=365))

builder = builder.serial_number(serial_number)

builder = builder.public_key(ca_private_key.public_key())

15

-----BEGIN CERTIFICATE-----
MIIBIzCBy6ADAgECAgQSNFZ4MAoGCCqGSM49BAMCMBQxEjAQBgNVBAMMCUFDTUUg
Q09SUDAeFw0yMzEyMDQwMjE2MzJaFw0yNDEyMDMwMjE2MzJaMCExHzAdBgNVBAMM
Fm9udV8xMjM0Xzk4NzY1NDMyMV9rZXkwWTATBgcqhkjOPQIBBggqhkjOPQMBBwNC
AAR+1QQz1s/6hU4dWxUeql8xkFp731Gh/NBn+d2E9gHj5bnOnznAS1MGoDYbJh40
ty2jQa+86IktACXlv+jQ87P8MAoGCCqGSM49BAMCA0cAMEQCIAuM41m8IYkm1WsT
7Gpx0nPM4j9AEuuJGhjvtBDUSM05AiAxzB3bZWdU69xKE75OVSwTnr8oK+gXU7PQ
vsZ9qDJzGQ==
-----END CERTIFICATE-----

R
epeat

OLT ONU A

Return X.509 CN

Auth Flow with EAP-TLS with X.509
MPCP Discovery and Registration, eOAM Discovery, and initial key activation complete

EAP-Request Identity

EAP-Response Identity
Confirm JA’s signature

Look up ID in database from JA
Found public key PA

EAP-Response

EAP-Request
Process Request/Form Response

Perform EAP-TLS (X.509 certs)

Check public key EAP-Success

All LLIDs encrypted using initial EDH-derived AES key

eOAM_Set_Response(InitialKeyMac, c_hmac)

EAP-Request

Confirm s_hmac
Compute c_hmac (pmk/msk | dhe_key)

Auth complete – but initial ECDHE-derived key needs to be confirmed authentic

eOAM_Set_Request(InitialKey, s_hmac)Compute s_hmac (dhe_key | pmk/msk)

Confirm c_hmac

EAP Identity is the X.509
Common Name field

“ONU_1234_987654321

confirm that the ONU
presented and

confirmed ownership
of PA

EAP-TLS with X.509 confirms
the ONU’s public/private key

and issuer signature

Q2 Discussion:
What formats of credentials should be supported?
• Proposed solution notes:

• Both the JWT and X.509 auth essentially do the same thing:
• Confirm ownership of public key and associated identity
• Confirm issuer
• Confirm valid time period

• Credential issuance isn’t covered here (discussed below), but the type and
makeup of the credential is entirely at the discretion of the OLT

• Can switch from JWT to X.509, and vice-versa
• Necessarily should issue new credentials to deal with dates

• Authentication of the OLT must be performed using the same mechanism as
the ONU – no mixing and matching

• To enable JWT MA, OLT must provide a trust store to validate OLT JWTs
• To enable X.509 MA, OLT must provide a trust store to validate X.509 certificates

Intent here is to require authentication using one form or the other
– ”no auth” should not be an option.

17

Q3:
How should ONU initial authentication be
performed?
• Initial authentication: When ONU is first installed/delivered
• operational credential: Credential loaded onto ONU by operator for daily

operation (via the OLT)
• signed using operator- or operator-outsourced key/CA

• activation credential: Credential provided by ONU to enable it to be put
into operation

• ONU-signed key (self-signed) with two-factor authentication, or
• Operator-signed if preloaded out-of-channel
• Has a special token out of large address space (non-sequential)

• Assumptions:
• All credentials bind the ONU SN to a public key
• public/private authorization keypair is initialized at factory or on first power-on – with

private key well protected (already specified)
• Device serial number (SN) will be put into a “ready to activate” (RtA) list when

installed by technician, sent to a user, or activated via phone/app/etc
• Activation time period should be limited

18

Operational vs Activation Credentials

Operational Credential Activation Credential

For ongoing authentication of the ONU Just for onboarding the ONU

Certificate or JWT containing the ONU ID,
public key, and anything else the operator

wants

Certificate or JWT containing the ONU ID,
public key, and onboarding token

Signed by operator or third-party Self-signed

Provided by operator
to provide robust, ongoing trust

Provided by manufacturer
to provide initial trust

Robust and attestable Not robust on its own – depends on multi-
factor authentication

NEW HIRE

EMPLOYEE

R
epeat

OLT ONU A

Return encoded JWT JA

Auth Flow for initial authentication (JWT)

EAP-Request Identity

EAP-Response Identity

Self-signed cred →
Look up ID in ready-to-activate list

EAP-Response

EAP-Request
Process Request/Form Response

Perform EAP-TLS (raw keys)

Confirm signature on JA EAP-Success

All LLIDs encrypted using initial EDH-derived AES key

JA header:
{”kid":

"1234_987654321_KEY"}

ONU presents PA
and ownership of
associated private

key (pA) is
confirmed

JA body:
{"sub":

"1234_987654321",
"iat": 1701309600}

Operational credential
will be used for

authentication on next
ONU initialization

Initial key derivation confirmed via MAC

Store operational cred

Construct operational
credential with PA eOAM_Credential_Write(op_cred)

Operational cred loaded →
Remove ID from ready-to-activate list

Record op cred loaded

R
epeat

OLT ONU A

Return encoded Cert CA

Auth Flow for initial authentication (X.509)

EAP-Request Identity

EAP-Response Identity

Self-signed cred →
Look up ID in ready-to-activate list

EAP-Response

EAP-Request
Process Request/Form Response

Perform EAP-TLS (X.509)

Confirm signature on JA EAP-Success

All LLIDs encrypted using initial EDH-derived AES key

Version: 3
CN: 1234_987654321
Issuer:1234_987654321_KEY
Subject Public Key: PA
Signature Algo: ECDSA
Signature Value: (self-signed)

ONU presents PA
and ownership of
associated private

key (pA) is
confirmedInitial key derivation confirmed via MAC

Construct operational
credential with PA eOAM_Credential_Write(op_cred)

Operational cred loaded →
Remove ID from ready-to-activate list

Record op cred loaded

Operational credential
will be used for

authentication on next
ONU initialization

Store operational cred

ID is CN field:

1234_987654321

Q3 Discussion:
How should ONU initial authentication be
performed?
• Self-signed credentials with 2-factor authentication

• PROs:
• Simple for vendors – just have to have a persistent public/private key to generate
• Doesn’t require powering on or physical interaction with the ONU
• Could be augmented with a passphrase – would require a bit more specification

• CONs:
• Theoretical window of opportunity for rogue ONU to get onboarded *
• Some logic required to support updating of credentials from activation credential

to operational credential **

22

Q4:
How to enable and configure OLT authentication?
• To prevent possible impersonation of an OLT on a PON

network, the ONU can be configured to authenticate the OLT it
connects to (Mutual Authentication)

• Using the same mechanisms described for ONU authentication,
an OLT can assert an identity/credential and associated public
key

• The public key is verified by verifying ownership of the private key.
• Metadata/identity is verified via signature verified using the public key

23

Q4:
How to enable and configure OLT authentication?
• For the ONU to authenticate the connected OLT, it needs to be

provided some criteria about what OLTs are “authentic”. This
can take different forms:

• ONU can be given an explicit list of what OLT IDs and public key
signatures are legitimate (presumably a small number)

• ONU can be given a value that must be present in a secondary field of
the credential (e.g. “GROUP_A”)

• ONU can be given a certificate(s) which the OLT credential must be
signed by (e.g. X.509 CA certificates)

• The database of what credentials/credential forms can be
trusted by an entity during authentication is called a “trust
store”.

24

Q4:
How to enable and configure OLT authentication?
• Assumptions:

• The number of OLTs an ONU should be authorized to connect to is
small

• Operators will want to phase in OLT authentication
• Operators will want to be able to update ONU’s OLT trust store on-

demand
• Trust store needs to be empty when supplied by the vendor – but may

be operator-loaded (similar to operational credential)
• Trust store needs to be persistent across power cycles, cleared on

factory reset
• It’s acceptable for the ONU to trust the first OLT it connects to – by

virtue of the activation credential
• “Trust On First Use – But Verify” (via 2-factor authentication) 25

Q4:
How to enable and configure OLT authentication?
• Proposal:

• Allow for different forms of trust specification as list of:
• Explicit OLT ID + pubkey signature.

• e.g. “OLT.12345678”: ”0x505387c4688063ff...2af552d”
• Explicit name/value pair + pubkey signature

• e.g. “olt_group”: “1A”, “pubkey_signature”: ”0x505387c4688063ff...2af552d”
• X.509 CA certificate:

e.g.
Certificate:

Data:
Version: 3
Serial Number: 12345 (0x3039)

Signature Algorithm: ecdsa-with-SHA256
Issuer: CN=ACME INTERNET
Validity

Not Before: Dec 1 08:22:19 2023 GMT
Not After : Dec 9 08:22:19 2033 GMT

Subject: CN=ACME OLT Network
Subject Public Key Info:

Public Key Algorithm: id-ecPublicKey
0001: 04 63 D8 A3 E8 65 8A 8E 83 30 94 9E DC 60 1E 53 ...

Signature Algorithm: ecdsa-with-SHA256
30:44:02:20:65:76:c3:02:3b:47:59:f9:4e:4d:b7:91:7d:e2...

Q4:
How to enable and configure OLT authentication?
• Proposal:

• Provide a file transfer paradigm updating trust store by the OLT

repeat
OLT ONU

eOAM_Credential_WriteRequest(trust_store)

eOAM_Credential_FileTransferAck(block_num)

prepare for transfer

eOAM_Credential_TransferData(block_num, block)

write block

30

Q4 Discussion:
How to enable and configure OLT authentication?

31

BACKUP MATERIAL

37

