
12 Discovery and maintenance

12.1 Introduction

Clause 12 focuses on ONU identity and capability discovery processes, together with maintenance
mechanisms. The described maintenance mechanisms include the definition of a software upgrade process,
which allows operators to remotely modify the software loaded on the ONU.

12.2 Device discovery and capability discovery

12.2.1 DPoE eOAM management

12.2.212.2.1 MPCP/OAM discovery process

Figure 12-1Figure 12-8 shows the relationship between the process of registration, initialization, and
negotiation in EPON prior to establishing the data plane connectivity. First, the MPCP discovery and
registration process is executed, as defined in IEEE Std 802.3ca, 144.3.764.3.3 for 1G-EPON and 77.3.3
for 10G-EPON. Next, the process of OAM discovery, as defined in IEEE Std 802.3, Clause 57, and eOAM
discovery, as defined in the following subclauses, is executed.

Figure 12-1—MPCP/OAM discovery process

12.2.312.2.2 eOAM discovery process

The eOAM discovery process in the EPON is used to identify whether the given connected ONU supports
the specific subtype of the Organization Specific OAM extensions (as identified by the OUI) and further to
identify the capabilities of such an ONU device in terms of the supported OAM functions.

The eOAM discovery proces is executed once per physical ONU device.

OLT ONU

IEEE Std 802.3, 64.3.3 / 77.3.3
Discovery and registration process

IEEE Std 802.3, 57.3.2.1
OAM Discovery process

+ Extended Information TLVtim
e

12.2.3.112.2.2.1 Requirements

The EPON system shall implement the eOAM discovery process and the eOAM Capability Notification
mechanism, using the Organization Specific extensions to the Information TLV specified in
IEEE Std 802.3, 57.5.2.3.

The OLT shall enable any data services for the given ONU only upon the successful completion of the
eOAM discovery process, as defined in 12.212.2.3, and after the completion of the authentication process if
enabled by the operator.

The OLT shall deregister any ONU that does not complete the eOAM discovery process, as defined in
12.212.2.3, within five seconds of the time when the OLT sends the first Extended Information TLV to this
specific particular ONU. The OLT shall deregister any ONU that does not participate in the eOAM
discovery process, as defined in 12.212.2.3.

The ONU and OLT shall implement the eOAM discovery process by exchanging the Organization Specific
Information TLV, as defined in IEEE Std 802.3, 57.5.2.3, and further specified in 13.4.1.3.113.2.4.1,
referred to as Extended Information TLV. The Extended Infomration TLV is , embedded in the Information
OAMPDU, as defined in IEEE Std 802.3, 57.4.3.1. The format of the Extended Information TLV is defined
in 13.4.1.3.113.2.4.1. An ONU complying with the requirements of this profile shall include the Extended
Information TLV in all Information OAMPDUs exchanged during the eOAM discovery process. An ONU
complying with the requirements of this profile shall start the eOAM discovery process not later than five
seconds after the successful completion of the MPCP discovery and registration process.

The presence of the Extended Information TLV, indicating support for a specific version of the eOAM
management suite, embedded in the Information OAMPDU transmitted by the ONU during the eOAM
discovery process, indicates support of 12.212.2.3, 13.4Clause 13, and Clause 1414.4. The lack of such an
Extended Information TLV is treated as a lack of support for the requirements set forth in 12.212.2.3,
Clause 1313.4, and Clause 1414.4, and consequently the OLT deregisters such an ONU as indicated above.

12.2.3.212.2.2.2 Ordering of Organization Specific Information TLVs

 Source OAM Client requirements

A single IEEE Std 802.3, Clause 57, compliant Information OAMPDU may carry more than one
Organization Specific Information TLV. To simplify both the reception and transmission processes, a
specific order of transmission of such TLVs is required. In such a case, the Local Information TLV
(IEEE Std 802.3, 57.5.2.1) and Remote Information TLV (IEEE Std 802.3, 57.5.2.2) shall be transmitted
first, followed by the series of Organization Specific Information TLVs.

There are no specific transmission order requirements for Organization Specific Information TLVs. The
Extended Information TLV as defined in 13.2.4.113.2.2.3.1 may be transmitted as the first Organization
Specific Information TLV, followed by other Organization Specific Information TLVs, if present.

 Destination OAM Client requirements

The destination OAM Client shall support the processing of multiple Information TLVs in a single
Information OAMPDU, including Local Information TLV, Remote Information TLV, and at least one
Organization Specific Information TLV.

The destination OAM Client shall process all received Information TLVs in the order of their reception,
discarding any Information TLVs that are either malformed or unsupported. A malformed Information
TLV is considered to have an invalid length and/or unexpected type value. An unsupported Information
TLV follows the Information TLV format requirements but is marked with an OUI not supported by the
given destination OAM Client.

Formatted: Highlight

12.2.3.312.2.2.3 Message flow during eOAM discovery process

The message flow during the eOAM discovery process for this profile is very simple. After the MPCP
discovery and registration process is successfully completed, an ONU complying with the requirements of
this profile starts sending periodically Information OAMPDUs carrying the Extended Information TLV as
defined in 13.4.1.3.113.2.4.1. Such an Extended Information TLV indicates the support of 12.212.2.3,
Clause 1313.4, and Clause 1414.4. The ONU may also send additional Organization Specific Information
TLVs if it supports other versions of management software. Their interpretation is outside the scope of this
standard.

Having received the Extended Information TLV from an ONU, the OLT retrieves the version of the eOAM
management suite supported by the device and proceeds to poll the ONU for more information, including
software version and number of supported LLIDs, and configure it as needed.

The eOAM version negotiation phase, such as the one described in 12.2.1, is not used in this profile, and
tThe OLT is expected to support all the versions of the eOAM management suite that are supported by the
fielded ONUs connected to its ports. The ONU does not learn, at any time during the eOAM discovery
process, the eOAM management suite version supported by the OLT.

12.2.412.2.3 OAM and eOAM keep-alive process

During the OAM keep-alive process, Information OAMPDUs are exchanged between the OAM Clients to
indicate that both link peers are operational. This process is defined in IEEE Std 802.3, 57.2.4. The
Information OAMPDU, exchanged after the completion of the eOAM discovery process as defined in
12.2.212.2.1.2, may carry the Extended Information TLV or any other Organization Specific Information
TLVs. An ONU complying with the requirements of this profile should include the Extended Information
TLV in all Information OAMPDUs exchanged during the eOAM keep-alive process.

The failure of the OAM keep-alive process, as defined above, is treated as a critical link condition. If the
ONU detects an OAM keep-alive failure, the ONU shall go through the MPCP deregistration process, as
defined in IEEE Std 802.3ca, 144.3.7Clause 144 for 25G-EPON 50G-EPON. If the OLT detects an OAM
keep-alive failure for the given ONU, the OLT shall deregister the ONU following the MPCP
deregistration process, as defined in IEEE Std 802.3ca, 144.3.7Clause 144 for 25G-EPON 50G-EPON.

12.3 Software updates

The software upgrade mechanism allows an ONU to receive a new software image from the OLT, verify it,
and switch to using the new image (i.e., load and execute the new software image upon the reboot.)

12.3.1 Software upgrade using DPoE eOAM management

This subclause describes the software upgrade process implemented using the extended OAM specified in
Clause 1313.4 and Clause 1414.4.

In this subclause, the following terms are used extensively:

 software: software and/or firmware. The process of upgrading ONU software and/or firmware is
the same, and specific separation of the downloaded software image is at the discretion of the
given system provider. It is also outside the scope of this standard.

 committed image: the software image stored in the ONU’s permanent memory and marked to be
used (i.e., loaded and executed) upon the ONU restart.

 committing: the process involving storing the software image in the ONU’s permanent memory,
verifying the integrity of the stored image, and marking the image to be used on next ONU restart.

The committing process does not invoke an automatic ONU restart. However, on subsequent
restarts, the image marked as committed is used.

12.3.212.3.1 Software image download process

The software image download process is outlined in Figure 12-2Figure 12-20 and is further defined in the
state diagram shown in Figure 12-3Figure 12-21 for the ONU and in the state diagram shown in Figure
12-4Figure 12-22 for the OLT.

Figure 12-2—Data flow during a successful
software image download and committing process

OLT ONU

eOAM_Software_WriteRequest

eOAM_Software_FileTransferAck

Block Number = 0x00-00, Response Code = 0x00

…
…

eOAM_Software_FileTransferData Block Number = 0x00-00

eOAM_Software_FileTransferAck

Block Number = 0x00-01, Response Code = 0x00

eOAM_Software_FileTransferAck

Block Number = N+1, Response Code = 0x00

eOAM_Software_FileTransferData Block Number = N

eOAM_Software_FileTransferAckBlock Number = 0x00-00, Response Code = 0x00

eOAM_Software_FileTransferAck

Block Number = 0x00-00, Response Code = 0x00

NMS requests OLT to
start software

download to ONU

OLT downloads
software to ONU

ONU receives blocks of
software image and

stores them in memory

OLT informs the ONU
that the download is

complete

ONU verifies and
commits the new image

successfully

ONU prepares internal
storage to receive the
new software image

OLT requests ONU to
reboot

eOAM_Set_RequestONU Reboot TLV (0xD9/0x00-01)

ONU reboots

During the eOAM discovery process, the OLT learns the basic information about the ONU, including type,
chipset version, ONU capabilities, software version, etc. This information is used by the NMS to determine
whether the software in the given registering ONU needs to be upgraded.

The decision to perform a software upgrade for the given ONU remains at the sole discretion of the NMS.
The NMS requests the OLT to initiate the software upgrade process for a given ONU as outlined in Figure
12-2Figure 12-20.

The software image download process has the form of a file transfer from the OLT to the ONU. This
process is similar to TFTP, but it includes a number of EPON-specific optimizations:

 The transfer protocol operates over the IEEE 802.3 OAM channel instead of IP channel. It uses
variable-length eOAMPDUs specified in 13.4.2.1013.3.6.

 The transfer mode includes only binary data encoding.

 The ONU responses indicate the next block that the ONU expects to receive rather than
acknowledge the last received block.

The software upgrade process comprises the following steps:

 Download initiation

 Download

 Verification

 Committing

12.3.2.112.3.1.1 Download initiation step

The software image download step is started by the NMS by requesting the OLT to download the updated
software image for the selected ONU. In response to this request, the OLT sends the
eOAM_Software_WriteRequest eOAMPDU (as specified in 13.3.6.2), containing the ONU software
filename to be stored in the aOnuFwFileName (0xDB/0x01-0E) attribute. The ONU responds to this
request by sending either

a) eOAM_Software_FileTransferAck eOAMPDU with BlockNumber = 0x00-00 and
ResponseCode = 0x00 (see 13.3.6.4), when the ONU is ready to accept the forthcoming
software image; or

b) eOAM_Software_FileTransferAck eOAMPDU, with BlockNumber = 0x00-00 and a specific
value in the ResponseCode field, indicating the type and additional description of the
encountered error (see Table 13-101Table 13-18). In this case, the software image download
process is interrupted and may be reinitialized in the future, if needed.

12.3.2.212.3.1.2 Download step

Once the eOAM_Software_FileTransferAck eOAMPDU with BlockNumber = 0x00-00 and
ResponseCode = 0x00 is received by the OLT, the OLT starts transmission of individual blocks of the
software image using the series of eOAM_Software_FileTransferData eOAMPDUs (as specified in
13.3.6.3).

For the transfer, the software image is divided into a number of data blocks, where each block is at most
1400 octets long and the last block may be smaller than 1400 octets. Each of the transmitted software
image blocks is accompanied by a sequentially increasing block number carried in the BlockNumber
field in the eOAM_Software_FileTransferData eOAMPDU. This block number is used in the

acknowledgment mechanism: each transmitted block is acknowledged by the ONU by sending the
eOAM_Software_FileTransferAck eOAMPDU with the value in the BlockNumber field equal to the
value carried in the BlockNumber field in the eOAM_Software_FileTransferData eOAMPDU plus one,
indicating the number of the next software image block expected by the ONU. The OLT sends the next
software image block only after the next software image block was requested by the ONU.

Once the file transfer begins, the OLT sends at least one eOAM_Software_FileTransferData eOAMPDU
every second. If the OLT does not receive an eOAM_Software_FileTransferAck eOAMPDU from the ONU
requesting the next block within one second of sending the last block, the OLT sends a keep-alive message
(eOAM_Software_FileTransferData eOAMPDU with the BlockWidth equal to 0x00). Upon sending
three keep-alive messages, the OLT aborts the software download process.

If the ONU fails to receive an eOAM_Software_FileTransferAck eOAMPDU every second, a timeout is
counted, and the ONU sends an eOAM_Software_FileTransferAck eOAMPDU. This message contains the
timeout error code and the sequence number indicating the desired block of the software image. Upon
detecting three successive timeouts, the ONU aborts the software download process.

If the software image downloading process is aborted by either the OLT or the ONU due to three
successive timeouts or other reasons, the ONU shall retain the software image that existed in the ONU prior
to the failed download attempt.

12.3.2.312.3.1.3 Verification step

Once the OLT receives the eOAM_Software_FileTransferAck eOAMPDU confirming the successful
reception of the last software image block, the OLT sends the eOAM_Software_FileTransferAck
eOAMPDU with BlockNumber = 0x00-00 and ResponseCode = 0x00, requesting the ONU to verify
that the software image was received, assembled, and stored correctly in the internal ONU storage.

The verification step uses the software image ICS. The downloaded software image contains an embedded
ICS value (its location relative to the beginning of the software image is outside the scope of this
specification). The ONU calculates the ICS for the downloaded software image and compares it with the
ICS embedded in the software image. Other methods of software image verification are also allowed, but
remain outside the scope of this standard.

If the verification was successful, the ResponseCode field holds the value of 0x00. In this case, the
software download process is complete, and the ONU automatically starts the software image committing
step. Otherwise, the ONU responds to the OLT with the eOAM_Software_FileTransferAck eOAMPDU
(see 13.3.6.4) with the appropriate value of the ResponseCode field (per Table 13-101Table 13-18).

12.3.2.412.3.1.4 Committing step

The software image committing step is used to make the newly downloaded software image a default boot
image from the next ONU restart onward. The OLT does not provide additional signaling for the ONU to
start the software image committing process.

The software image committing step starts automatically once the ONU successfully verifies the received
software image. This step involves writing a new software image into the permanent memory on the ONU
and verifying the integrity of the written software image.

Once the software image committing step has successfully completed, the ONU sends the
eOAM_Software_FileTransferAck eOAMPDU with BlockNumber = 0x00-00 and ResponseCode =
0x00, indicating the success of the software image committing step. If the committing process is successful,
the ONU uses the newly committed software image on next restart of the device. ONU restart is not
performed automatically as part of the committing step.

In the case of any errors detected during the process of committing the newly downloaded software image,
the ONU sends the eOAM_Software_FileTransferAck eOAMPDU with BlockNumber = 0x00-00 and
ResponseCode field that holds any of the values specified in Table 13-101Table 13-18, indicating a
problem with the software image committing step. If the ONU is unable to complete the committing step
(due to power interruption or other reasons) or if the integrity of the image written to the permanent storage
is not confirmed, the ONU shall retain the previous version of the software image.

When the OLT receives the eOAM_Software_FileTransferAck eOAMPDU with BlockNumber = 0x00-
00 and ResponseCode = 0x00, confirming the successful committal of the software image, it issues the
eOAM_Set_Request eOAMPDU (see 13.4.2.413.3.4) with the ONU Reboot TLV (0xDD/0x00-01), as
defined in 14.4.5.1.114.6.1.1, instructing the ONU to restart. The ONU loads the new software image as
part of the restart process.

12.3.312.3.2 State diagrams

This subclause specifies the state diagrams for the software download process for the ONU and the OLT.

The software image download process on the OLT side is driven by the NMS. The OLT returns the
completion result of individual steps to the NMS using the appropriate NMSI type primitives, as defined in
12.3.2.512.3.3.2.5.

12.3.3.112.3.2.1 Constants

receiveTimeout

TYPE: 16-bit unsigned integer

This constant represents the duration of the time interval between reception of subsequent
messages at the given ONU. This constant is expressed in units of milliseconds.

VALUE: 0x03-E8 (1 second)

retryLimit

TYPE: 8-bit unsigned integer

This constant represents the maximum number of retransmission attempts for a single message.
Once the retryLimit transmission attempts fail, the given device reacts per Figure 12-3Figure
12-21 for the ONU and Figure 12-4Figure 12-22 for the OLT.

VALUE: 3

storeTimeout

TYPE: 16-bit unsigned integer

This constant represents the duration of the time interval between subsequent reattempts of the
software image committing process for the downloaded software image. This constant is expressed
in units of milliseconds.

VALUE: 0x3A-98 (15 seconds)

transmitTimeout

TYPE: 16-bit unsigned integer

This constant represents the duration of the time interval between subsequent retransmissions of
the same software image block encapsulated in the eOAM_Software_FileTransferData
eOAMPDU to the given ONU. This constant is expressed in units of milliseconds.

VALUE: 0x03-E8 (1 second)

12.3.3.212.3.2.2 Variables

blockData

TYPE: bit array

This bit array contains the software image fragment (block) carried in the
eOAM_Software_FileTransferData eOAMPDU. The size of the blockData bit array is derived
from the BlockWidth field of this eOAMPDU.

blockNumber

TYPE: 16-bit unsigned integer

This variable identifies the software image block number in the sequence of transmission.

blockSize

TYPE: 16-bit unsigned integer

This variable identifies the maximum size of a single software image block that may be delivered
to the ONU. This variable is set locally by the OLT prior to starting the software download
process.

blockWidth

TYPE: 16-bit unsigned integer

This variable represents the size of the software image block, as extracted from the
eOAM_Software_FileTransferData eOAMPDU.

commitDone

TYPE: Boolean

The value of true indicates that the software image committing process successfully completed
operations in the COMMIT_IMAGE or ACK_BUSY states. Otherwise, the value of
commitDone is set to false.

fileName

TYPE: null-terminated ASCII string

This variable represents the ONU software filename, as indicated by the NMS.

imageSize

TYPE: 32-bit unsigned integer

This variable represents the size of the software image, expressed in units of octets.

lastBlock

TYPE: 16-bit unsigned integer

This variable represents the index (sequence number) of the last software image block in the
software image received from the NMS.

localTimeoutCount

TYPE: 8-bit unsigned integer

This variable counts the number of local timeout events observed by the OLT during the software
download and committing process for a single message, as shown in Figure 12-4Figure 12-22.

nextBlock

TYPE: 16-bit unsigned integer

This variable represents the index (sequence number) of the software image block that the ONU
expects next. The first image block has an index of 0x00-00.

remoteTimeoutCount

TYPE: 8-bit unsigned integer

This variable counts the number of remote timeout events observed by the OLT during the
software download and committing process for a single message, as shown in Figure 12-4Figure
12-22.

resultCode

TYPE: 16-bit unsigned integer

This variable represents the numeric error code for the given error event as returned by the
function.

retryCount

TYPE: 8-bit unsigned integer

This variable represents the current number of retransmission attempts for the given message.

storageDone

TYPE: Boolean

The value of true indicates that the verifyStorage() function in the ONU has completed
preparing storage for the new software image. Otherwise, the value of storageDone is set to
false.

12.3.3.312.3.2.3 Timers

retryTimer

This timer is used to measure the time interval between reception of subsequent messages from the
ONU or the OLT. If three consecutive timeouts are announced, the given part of the software
download process is aborted.

12.3.3.412.3.2.4 Functions

clearStorage(newImage)

This function deletes the partially downloaded image when the download process is aborted.

commitImage(newImage)

This function is used to write a new software image into the permanent memory on the ONU and
verify the integrity of the written software image. On completion, this function sets the
commitDone variable to true. This function returns the values as defined in Table
13-101Table 13-18.

getBlock(image, block#)

This function extracts the software image block number block# from the software image pointed
to by image and returns it in the form of a bit array saved into the blockData variable. The
retrieved software image block is then delivered to the ONU.

verifyImage(imageId)

This function verifies the integrity of the downloaded and assembled software image, identified by
the parameter imageId. This function verifies that the ICS calculated for the stored software
image, identified by a parameter imageId, matches the ICS embedded in the software image
itself. The location of the embedded ICS code in the downloaded software image is
implementation dependent. In addition, this function may also check for implementation-
dependent criteria, such as verification of correct image type or version, verification of correct
product ID vendor ID, etc. This function returns the values as defined in Table 13-101Table 13-18.

verifyStorage(storageId)

This function prepares the memory storage identified by the parameter storageId and verifies
that it is ready to receive a new software image. This function may perform flash memory erasure
and other necessary operations. On completion, this function sets the storageDone variable to
true. This function returns the values as defined in Table 13-101Table 13-18.

write(image, block)

This function is used to write a data fragment (block) passed in the block parameter into the
selected software image, identified by the image parameter. This function returns the values as
defined in Table 13-101Table 13-18.

12.3.3.512.3.2.5 Primitives

eOAMI_Any

This primitive represents the reception of any eOAMPDU related to the software download
protocol (defined in 13.4.2.1013.3.6). It replaces the following logical condition:

OPI(source_address, flags, code, Opcode) AND
code == 0xFE AND
Opcode == 0x09

eOAMI_FTA(block, code)

Acronym for eOAM_Software_FileTransferAck eOAMPDU, as defined in 13.3.6.4. It replaces the
following logical condition:

OPI(source_address, flags, code, OUI_1904_4 | Opcode |
FileTransferOpcode | BlockNumber | ResponseCode) AND
code == 0xFE AND
Opcode == 0x09 AND
FileTransferOpcode == 0x03 AND
BlockNumber == block AND
ResponseCode == code

eOAMI_FTA_End

Acronym for eOAMI_FTA(0x00-00, OK). The value OK is defined in Table 13-101Table 13-18.

eOAMI_FTA_Error

Acronym for eOAM_Software_FileTransferAck eOAMPDU, as defined in 13.3.6.4. It replaces the
following logical condition:

OPI(source_address, flags, code, OUI_1904_4 | Opcode |
FileTransferOpcode | BlockNumber | ResponseCode) AND
code == 0xFE AND
Opcode == 0x09 AND
FileTransferOpcode == 0x03 AND
ResponseCode != 0x00 AND
ResponseCode != 0x08

eOAMI_FTA_ErrorCommit

Acronym for eOAM_Software_FileTransferAck eOAMPDU, as defined in 13.3.6.4. excluding
eOAMPDUs carrying response codes 0x00 (OK), 0x08 (Timeout), and 0x09 (Busy). The values
for the response codes are defined in Table 13-101Table 13-18. This acronym replaces the
following logical condition:

eOAMI_FTA_Error AND ResponseCode != 0x09

eOAMI_FTA_OK

Acronym for eOAM_Software_FileTransferAck eOAMPDU, as defined in 13.3.6.4. It replaces the
following logical condition:

OPI(source_address, flags, code, OUI_1904_4 | Opcode |
FileTransferOpcode | BlockNumber | ResponseCode) AND
code == 0xFE AND
Opcode == 0x09 AND
FileTransferOpcode == 0x03 AND
ResponseCode == 0x00

eOAMI_FTA_Timeout

Acronym for eOAM_Software_FileTransferAck eOAMPDU, as defined in 13.3.6.4. It replaces the
following logical condition:

OPI(source_address, flags, code, OUI_1904_4 | Opcode |
FileTransferOpcode | BlockNumber | ResponseCode) AND
code == 0xFE AND
Opcode == 0x09 AND
FileTransferOpcode == 0x03 AND
ResponseCode == 0x08

eOAMI_FTD

Acronym for eOAM_Software_FileTransferData eOAMPDU, as defined in 13.3.6.3. It replaces
the following logical condition:

OPI(source_address, flags, code, OUI_1904_4 | Opcode |
FileTransferOpcode) AND
code == 0xFE AND
Opcode == 0x09 AND
FileTransferOpcode == 0x02

eOAMI_WR

Acronym for eOAM_Software_WriteRequest eOAMPDU, as defined in 13.3.6.2. It replaces the
following logical condition:

OPI(source_address, flags, code, OUI_1904_4 | Opcode |
FileTransferOpcode | FileName) AND
code == 0xFE AND
Opcode == 0x09 AND
FileTransferOpcode == 0x01

eOAMR_FTA(block, code)

Acronym for eOAM_Software_FileTransferAck eOAMPDU, as defined in 13.3.6.4. It replaces the
following code:

code = 0xFE
Opcode = 0x09
FileTransferOpcode = 0x03
BlockNumber = block

ResponseCode = code
source_address = OLT or ONU MAC
OPR(source_address, flags, code, OUI_1904_4 | Opcode |
FileTransferOpcode | BlockNumber | ResponseCode)

eOAMR_FTA_Code(code)

Acronym for eOAMR_FTA(0x00-00, code). The argument code represents an 8-bit unsigned
integer that can take on values defined in Table 13-101Table 13-18.

eOAMR_FTA_End

Acronym for eOAMR_FTA(0x00-00, 0x00).

eOAMR_FTD(blockData, blockNumber)

Acronym for eOAM_Software_FileTransferData eOAMPDU, as defined in 13.3.6.3. It replaces
the following logical condition:

code = 0xFE
Opcode = 0x09
FileTransferOpcode = 0x03
BlockNumber = blockNumber
BlockWidth = size of blockData parameter in units of octets
BlockData = blockData
source_address = OLT MAC
OPR(source_address, flags, code, OUI_1904_4 | Opcode |
FileTransferOpcode | BlockNumber | BlockWidth | BlockData)

eOAMR_FTD_KeepAlive

Acronym for eOAM_Software_FileTransferData eOAMPDU, as defined in 13.3.6.3. It replaces
the following logical condition:

code = 0xFE
Opcode = 0x09
FileTransferOpcode = 0x03
BlockNumber = 0x00-00
BlockWidth = 0x00
source_address = OLT MAC
OPR(source_address, flags, code, OUI_1904_4 | Opcode |
FileTransferOpcode | BlockNumber | BlockWidth)

eOAMR_Reboot

Acronym for eOAM_Set_Request eOAMPDU, as defined in 13.4.2.413.3.4, containing ONU
Reboot TLV (0xDD/0x00-01), as defined in 14.4.5.1.114.6.1.1. It replaces the following logical
condition:

code = 0xFE
Opcode = 0x03
ONU_Reboot_TLV.Branch = 0xDD
ONU_Reboot_TLV.Leaf = 0x00-01
source_address = OLT MAC

OPR(source_address, flags, code, OUI_1904_4 | Opcode |
ONU_Reboot_TLV)

eOAMR_WR(fileName)

Acronym for eOAM_Software_WriteRequest eOAMPDU, as defined in 13.3.6.2. It replaces the
following code:

code = 0xFE
Opcode = 0x09
FileTransferOpcode = 0x01
FileName = fileName
source_address = OLT MAC
OPR(source_address, flags, code, OUI_1904_4 | Opcode |
FileTransferOpcode | FileName)

NMSI(commit, status)

This primitive is used to notify the NMS about the result of the software image committing
process, where the status parameter corresponds to the return code, as defined in Table
13-101Table 13-18.

When status is equal to OK, this primitive is used to notify the NMS about the successful
completion of the software image committing process per Figure 12-4Figure 12-22.

NMSI(download, status)

This primitive is used to notify the NMS about the result of the software image download process,
where the status parameter corresponds to the return code, as defined in Table 13-101Table 13-
18.

When status is equal to OK, this primitive is used to notify the NMS about the successful
completion of the software image download process per Figure 12-4Figure 12-22.

NMSR(download, imageData, imageSize, fileName)

This primitive is used by the NMS to request the OLT to start the software image download
process per Figure 12-4Figure 12-22, where the software image is delivered to the OLT within the
imageData parameter and the size of the received image is provided in the imageSize
parameter. The ONU software filename is provided in the fileName parameter.

12.3.3.612.3.2.6 State diagrams

The ONU shall implement the software image download process as shown in Figure 12-3Figure 12-21.

The OLT shall implement the software image download process as shown in Figure 12-4Figure 12-22. The
state diagram defined in Figure 12-4Figure 12-22 is instantiated for each ONU and is operated
independently as requested by the NMS.

Figure 12-3—ONU software image download and committing
process state diagram

WAIT_WRITE_REQUEST

BEGIN

eOAMI_WR

eOAMI_FTA_Error OR
eOAMI_FTA_Timeout

else

ACK_ILLEGAL
eOAMR_FTA_Code (IllegalOp)

eOAMI_FTD OR
eOAMI_FTA_End OR
eOAMI_FTA_Error OR
eOAMI_FTA_Timeout

UCT

ACK_DISCARD
[stop retryTimer]
clearStorage (newImage)
eOAMR_FTA_Code (OK)

eOAMI_FTA_End eOAMI_WR

UCT

eO
AM

I_
FT

D

UCT

WAIT_DATA_TRANSFER
[start retryTimer, receiveTimeout]

retryTimer_done

TIMEOUT
retryCount --
eOAMR_FTA (nextBlock, Timeout)

elseretryCount == 0

resultCode == OK

SEND_ACK
eOAMR_FTA (nextBlock, resultCode)

UCT

else

blockWidth > 0 AND
blockNumber == nextBlock

WRITE_BLOCK
blockData = eOAMI_FTD.BlockData
resultCode = write (newImage, blockData)
nextBlock ++

else

resultCode == OK

CHECK_NEXT_BLOCK
[stop retryTimer]
blockWidth = eOAMI_FTD.BlockWidth
blockNumber = eOAMI_FTD.BlockNumber
retryCount = retryLimit
resultCode = OK

ACK_REQUEST
eOAMR_FTA_Code (resultCode)

storageDone

UCT

VERIFY_IMAGE
[stop retryTimer]
resultCode = verifyImage (newImage)

resultCode == OK

CONFIRM_IMAGE
eOAMR_FTA_Code (resultCode)

commitDone

else

ACK_BUSY
eOAMR_FTA_Code (Busy)

COMMIT_IMAGE
resultCode = commitImage (newImage)

eOAMI_Any

commitDone eOAMI_Any

ILLEGAL_FWR
[stop retryTimer]
eOAMR_FTA_Code (IllegalOp)

WRITE_REQUEST
resultCode = verifyStorage (newImage)
nextBlock = 0
retryCount = retryLimit
aOnuFwFileName = eOAMI_WR.FileName

Figure 12-4—OLT software image download
process state diagram

TRANSFER_ERROR
[stop retryTimer]
resultCode = eOAMI_FTA_Error.ResponseCode
NMSI (download, resultCode)

RESET_COUNTERS
localTimeoutCount = retryLimit
remoteTimeoutCount = retryLimit

UCT

else nextBlock != 0xFF-FF AND
nextBlock > lastBlock

eO
AM

I_
FT

A_
Er

ro
r

WAIT_FOR_ONU_RESPONSE

retryTimer_done

else

CHECK_ONU_RESPONSE

UCT

localTimeoutCount ≤ 0 OR
remoteTimeoutCount ≤ 0

retryTimer_done

LOCAL_TIMEOUT
localTimeoutCount --

UCT

nextBlock == 0xFF-FF AND
localTimeoutCount > 0

UCT

UCT

eOAMI_FTA_OK

NEW_BLOCK_NUMBER
nextBlock = eOAMI_FTA_OK.BlockNumber
localTimeoutCount = retryLimit
remoteTimeoutCount = retryLimit

ne
xt

Bl
oc

k
!=

 0
xF

F-
FF

 A
N

D
lo

ca
lT

im
eo

ut
C

ou
nt

 >
 0

WAIT

BEGIN

NMSR(download, imageData, imageSize, fileName)

SEND_WRITE_REQUEST
eOAMR_WR (fileName)
[start retryTimer, storeTimeout]

UCT

eOAMI_FTA_Timeout

UCT

INIT
nextBlock = 0xFF-FF
lastBlock = imageSize / blockSize -1
localTimeoutCount = retryLimit
remoteTimeoutCount = retryLimit

GET_NEXT_BLOCK
blockData = getBlock (imageData, nextBlock)

blockAvailable

SEND_BLOCK
eOAMR_FTD (blockData, nextBlock)
[start retryTimer, transmitTimeout]

SEND_KEEP_ALIVE
eOAMR_FTD_KeepAlive
[start retryTimer, transmitTimeout]

UCT

SEND_COMMIT_REQUEST
eOAMR_FTA_End
[start retryTimer, storeTimeout]

localTimeoutCount > 0 AND
remoteTimeoutCount > 0

eOAMI_FTA_OK

COMMIT_ERROR
[stop retryTimer]
resultCode = eOAMI_FTA_ErrorCommit.ResponseCode
NMSI (commit, resultCode)

eO
AM

I_
FT

A_
Er

ro
rC

om
m

it

L_TIMEOUT
localTimeoutCount --

R_TIMEOUT
remoteTimeoutCount --

CHECK_COMMIT_REQUEST

eOAMI_FTA_Timeout retryTimer_done

UCT UCT

else

UCT

UCT

UCT

COMMIT_SUCCESS
[stop retryTimer]
NMSI (commit, OK)
eOAMR_Reboot

UCT

COMMIT_TIMEOUT
[stop retryTimer]
NMSI (commit, Timeout)

BLOCK_TIMEOUT
[stop retryTimer]
NMSI (download, Timeout)

REMOTE_TIMEOUT
nextBlock = eOAMI_FTA_Timeout.BlockNumber
localTimeoutCount = retryLimit
remoteTimeoutCount --

	12 Discovery and maintenance
	12.1 Introduction
	12.2 Device discovery and capability discovery
	1.1.1 DPoE eOAM management
	12.2.1 MPCP/OAM discovery process
	12.2.2 eOAM discovery process
	12.2.2.1 Requirements
	12.2.2.2 Ordering of Organization Specific Information TLVs
	12.2.2.2.1 Source OAM Client requirements
	12.2.2.2.2 Destination OAM Client requirements

	12.2.2.3 Message flow during eOAM discovery process

	12.2.3 OAM and eOAM keep-alive process

	12.3 Software updates
	1.1.1 Software upgrade using DPoE eOAM management
	12.3.1 Software image download process
	12.3.1.1 Download initiation step
	12.3.1.2 Download step
	12.3.1.3 Verification step
	12.3.1.4 Committing step

	12.3.2 State diagrams
	12.3.2.1 Constants
	12.3.2.2 Variables
	12.3.2.3 Timers
	12.3.2.4 Functions
	12.3.2.5 Primitives
	12.3.2.6 State diagrams

