
1

11 Security-oriented mechanisms 1

Clause 11 introduces the security-related mechanisms, focusing in particular on ONU identity and various 2

aspects of ONU authenticationaccess management (see 11.2) and data encryption / decryption (see 11.3), 3

achieved in an interoperable manner. 4

11.1 IntroductionOverview of threats and mitigation measures 5

Clause 11 introduces the security-related mechanisms, focusing in particular on various aspects of ONU 6

authentication (see 11.3) and data encryption / decryption (see 11.7), achieved in an interoperable manner. 7

11.1.1 Threat model 8

The security threat model in PONs encompasses various risks and vulnerabilities that need to be addressed 9

to ensure a secure and reliable network infrastructure: 10

 Broadcast of downstream data: 11

One of the inherent vulnerabilities in PONs is the broadcast nature of downstream data 12

transmission. As downstream data is broadcasted to all ONUs attached to the OLT’s PON 13

port, a malicious user who gains control of an ONU or attaches an un-authorized device could 14

intercept and access downstream data intended for all connected users. This poses a 15

significant risk to the confidentiality and privacy of user data. 16

 Impersonation and service theft: 17

Due to the nature of upstream data transmission in PONs, where data can originate from any 18

ONU attached to the ODN, a malicious user with control over an ONU could forge packets to 19

impersonate a different ONU. This "theft of service" attack allows the attacker to masquerade 20

as a legitimate ONU, potentially gaining unauthorized access to network resources or services. 21

 Infrastructure Tampering: 22

An attacker could compromise the security of the PON infrastructure by physically tampering 23

with street cabinets, spare ports, or fiber cables. By connecting a malicious device at various 24

points within the network, the attacker could intercept and manipulate network traffic. 25

Depending on the location of the malicious device, it could impersonate the OLT, allowing 26

unauthorized access and control over the network, or impersonate an ONU to intercept and 27

tamper with data. 28

 Packet Replay and Bit-Flipping Attacks: 29

In PONs, a malicious user who successfully captures network packets transmitted on the PON 30

could store and replay them at a later time. This replay attack poses a threat to data integrity 31

and can lead to unauthorized access or service disruption. Additionally, an attacker could 32

conduct bit-flipping attacks, altering the content of transmitted packets, potentially 33

compromising the integrity and accuracy of the data. 34

 Data Capture and Offline Decrypt: 35

In PONs, a malicious user who successfully captures network packets transmitted on the PON 36

could store and attempt to decrypt them at a later time if/when the private key(s) of the peers 37

is cracked or compromised – gaining access to any encryption keys derived from the public 38

key exchange. This attack could compromise tremendous amounts of data retroactively – even 39

if/when compromised public/private key pairs are taken out of service. 40

2

11.1.2 Physical protection of security data in the ONU 1

The physical protection measures outlined in this sub-clause collectively ensure the secure storage and 2

protection of certificates and keys within ONUs in PON networks, safeguarding against unauthorized 3

access and potential security breaches. 4

11.1.2.1 Secure non-volatile storage 5

ONUs shall implement the requirements outlined in SECv3.0 for secure non-volatile storage of certificates 6

and their associated public/private keys. This ensures that sensitive cryptographic information remains 7

protected from unauthorized disclosure and modification. 8

11.1.2.2 Protection against unauthorized access 9

ONUs should employ measures to prevent unauthorized access to the ONU certificate private key, 10

particularly in production devices. One recommended approach is to restrict or block physical access to the 11

memory that contains the private key. This prevents unauthorized individuals from using debugger tools to 12

read the key. 13

11.1.2.3 Use of One-Time-Programmable (OTP) Memory 14

To enhance security and make it more challenging to replicate a valid ONU, ONUs should use one-time-15

programmable (OTP) memory for storing certificates and keys. OTP memory is designed to prevent 16

alteration or cloning of the stored data, thereby bolstering the overall security of the ONU. 17

11.1.2.4 Compliance with FIPS-140-2 Security Requirements 18

The ONU shall meet the security requirements specified in the Federal Information Processing Standard 19

(FIPS) 140-2 for all instances of permanent private and public key storage. FIPS-140-2 provides a rigorous 20

set of cryptographic security standards, ensuring the confidentiality and integrity of the stored keys. 21

11.1.2.5 Compliance with FIPS-140-2 Security Level 1 22

The ONU shall also comply with FIPS-140-2 Security Level 1. This level requires minimal physical 23

protection and shall be achieved through the use of production-grade enclosures. The enclosures for ONUs 24

shall meet production-grade quality standards, including standard passivation sealing. The circuitry within 25

the ONU shall be implemented as a production-grade multi-chip embodiment, typically in the form of an 26

IC printed circuit board. The ONU itself should be contained within a metal or hard plastic enclosure, 27

which may include doors or removable covers. 28

11.1.211.1.3 Security mechanisms 29

The physical security and tamper-proof installation of the ODN, optical splitters, and ONUs can enhance 30

the overall security of the PON infrastructure. By implementing physical security measures, such as those 31

listed in 11.1.2secure enclosures, access controls, and tamper-evident mechanisms, the risk of unauthorized 32

access or tampering can be significantly reduced. The recommended physical security measures are 33

outlined in 11.10. 34

However, the specific threat landscape of PON installations requires deployment of specific security 35

measures, such as robust authentication protocols, encryption mechanisms, network monitoring systems, 36

and intrusion detection systems, to mitigate the identified threats effectively. By adopting a comprehensive 37

and multi-layered security approach, PON operators can ensure the confidentiality, integrity, and 38

authenticity of data transmitted over the network, even in scenarios where physical security measures are 39

compromised or absent. 40

3

11.1.2.111.1.3.1 Establishment of security mechanisms 1

The process of adding a new ONU to a PON follows a series of defined steps, ensuring secure ONU 2

integration and subsequent operation. Figure 11-4 illustrates these steps: 3

4

 1

OLT ONU

MPCP Discovery

and Registration

eOAM Discovery

Initial Key Derivation

Initial Key Activation

ONU Authentication

First Session Key Distribution

Session Key Activation

Secure ONU Provisioning*

Secure exchange of data

Next Session Key Distribution

Step 1

Step 2

No encryption

(messages are

exchanged in

clear text)

AES-CTR mode

using the Initial Key

AES-CTR mode

using a Session Key

Step 3

Step 4

Step 5

Step 6

Key expiration timer

EAP-TLS (TLS 1.3)

with TLS-negotiated

packet-level cipher

Encryption mode

* performed as needed

5

 1

Figure 11-4–Sequence of steps to establish secure ONU operation 2

Step 1 – ONU Discovery and Registration: 3

Upon completion of the boot/restart sequence, the ONU completes the MPCP. OAM, and eOAM 4

discovery processes as specified in 13.3.1 and 13.3.2. At this time, ONU gets is assigned two 5

Step 1

Step 2

No encryption

(messages are

exchanged in clear

text)

AES-CTR mode using

the Initial Key

AES-CTR mode using

the first Session Key

Step 3

Step 4

Step 5

Step 6

EAP-TLS (TLS 1.3) with

TLS-negotiated packet-

level cipher

Encryption mode

OLT ONU

MPCP Discovery

and Registration

OAM / eOAM Discovery

ONU Authentication

First Session Key Distribution

Initial Key

Derivation

Initial Key

Derivation

Initial Key

Activation

Initial Key

Activation

First Session

Key Activation

Secure ONU Provisioning

Secure exchange of data

Next Session Key Distribution

ONU Authorization

Step 7

First Session

Key Activation

6

logical links: PLID for exchanging the GATE and REPORT MPCPDUs and MLID for 1

exchanging the OAM control messages (OAMPDUs). The MPCP and OAM discoveries are 2

performed in the clear, i.e., using unencrypted MPCP and OAM messages. 3

Step 2 – Establishment of the initial key: 4

Once the OLT and the ONU have established an MLID, they exchange keying material used for mutual 5

derivation of an initial symmetric cryptographic key that enables private communication between the ONU 6

and OLT and perfect forward secrecy. This is described in detail in 11.3. 7

Step 3 – ONU Authenticationauthentication: 8

Upon establishment of the initial keycompletion of eOAM discovery, the ONU and OLT proceed 9

with ONU authentication using the method defined in 11.2.2. This step cryptographically 10

verifiesensures that the ONU is a trusted entityidentity within the network and that the initial key 11

is authentic. If the ONU fails to authenticate, the OLT may retry the authentication procedure with 12

a different ONU’s credential. The OLT does not provision user services to an ONU that has failed 13

to authenticate using any of its available certificates. 14

Step 3 – Establishment of the initial key: 15

Once the ONU and OLT have completed the authentication exchange, both the OLT and ONU 16

independently derive the initial symmetric encryption key. The key derivation and activation 17

methods are specified in 11.3.2. 18

Step 4 – Secure distribution and activation of session keys: 19

The OLT/NMS distributes the new first session key to the ONU using the session key distribution 20

protocol (see 11.3.3). The messages exchanged under the session key distribution protocol are 21

encrypted using the initial key obtained in Step 23. After the encryption key is distributed to the 22

ONU, the OLT initiates a switch to the new key (i.e., key activation by both the OLT and the 23

ONU), using the procedure described in 11.3.4. 24

Step 5 – ONU authorization 25

ONU authorization refers to the verification of ONU’s eligibility to operate on the operator’s 26

network. ONU authorization is initiated by the NMS/AAA server after the ONU has successfully 27

authenticated and symmetric encryption has been established for secure communication between 28

the OLT and the ONU. The ONU authorization procedure is specified in 11.2.3. The exchange of 29

information between the OLT and ONU pertaining to the ONU authorization is carried over the 30

encrypted MLID logical link. 31

Step 5 6 – Secure provisioning of additional logical links: 32

With the encryption of the PLID and MLID of the given ONU establishedIf the NMS determines 33

that the ONU is authorized to operate on a given PON network, it proceeds , the NMS can proceed 34

with the provisioning of the additional bidirectional and unidirectional (multicast) logical links for 35

this ONU. The additional logical links are provisioned using the extended action acConfigLlid 36

(see 14.6.2.8). 37

Note that no additional encryption configuration steps are needed for the newly-provisioned 38

bidirectional links. These links automatically begin operating with the ONU’s currently active 39

session encryption key. However, this is not the case for the newly provisioned unidirectional 40

(multicast) logical links. As explained in 11.3.3.3, each of multicast logical link uses a unique 41

encryption key that is shared among all members of this multicast group. Therefore, before the 42

7

ONU is able to process the data frames received on the multicast logical link, it needs to obtain the 1

specific encryption key for that multicast group. The multicast keys are distributed using the same 2
extended action acConfigEncrKey (see 14.6.5.1) as is used for the unicast keys. 3

The control messages that provision additional logical links (acConfigLlid actions) and the 4

messages that convey encryption keys for the multicast LLIDs (acConfigEncrKey action) are 5

securely exchanged between the OLT and an ONU via the encrypted MLID link. 6

Step 6 7 – Exchange of encrypted data and control messages: 7

With the session keys distributed by the OLT and additional ULIDs provisioned for carrying the 8

subscriber data, the OLT and the ONU can securely exchange data frames over the PON. The data 9

frames are encrypted using the session key to ensure confidentiality and integrity during 10

transmission. The cryptographic method is defined in 11.3.5. The OLT can also provide 11

credential and trust store updates to the ONU for future authentication as described in TBD. 12

11.2 Authentication of the ONU identity and access management 13

Before an ONU is allowed access to the operator’s network and symmetric encryption keys established for 14

secure communication between the OLT and the ONU, the ONU’s identity needs to be determined and 15

verified. The authenticated ONU identity can then be used by the NMS to reliably establish what level of 16

access the ONU is granted. This subclause defines how this authentication is performed. 17

11.2.1 ONU identity 18

The SIEPON.4 system uses the ONU MAC address associated with the ONU’s PON port as the identity of 19

the ONU (see 14.4.1.2). However, tThe ONU identity cannot be trusted until the ONU has successfully 20

completed the Authentication procedure (see 11.3.4). 21

When an ONU is powered on, it reports its MAC address to the OLT through the MPCP Discovery process, 22

as defined in IEEE Std 802.3, Clause 144. 23

The OLT shall use the ONU MAC address associated with PON port as the identity of the ONU. 24

11.2.2 Network Access ControlONU authentication 25

The OLT shall initiate the ONU Aauthentication procedure immediately after the completion of 26

OAM/eOAM discovery (see Figure 11-4). At this time, the ONU’s access to the network is restricted; it has 27

only two “system” logical links assigned to it: PLID used for providing connectivity (carries GATE and 28

REPORT MPCPDUs) and MLID used for ONU management (carries OAMPDUs). The ONU cannot 29

support any data services at this time. 30

ONU authentication in SIEPON.4 is accomplished using EAP-TLS 1.3 (see RFC-9190) with the OLT 31

operating as the ”EAP Authenticator”/“EAP-TLS Server” and the ONU operating as the ”EAP 32

Supplicant”/“EAP-TLS Client” (see RFC-3748). By utilizing TLS 1.3 as described in this clause, the TLS 33

handshake is encrypted and authenticated using an ephemeral key that provides a shared secret to both 34

parties while ensuring privacy and perfect forward secrecy (PFS). The shared secret is then used by both 35

the OLT and ONU to independently derive the SIEPON.4 initial traffic encryption key, as described in 36

11.3.2. 37

 38

Before provisioning data services to the ONU, the OLT shall authenticate the ONU identity and verify that 39

the ONU is authorized to operate on the given network. If port-based access control is enabled, the OLT 40

shall verify that given ONU is authorized for the particular OLT PON port on which it is discovered. 41

8

The OLT may consult NMS/AAA servers to determinefor assistance with the ONU’s authorization 1

authentication. to access the network resources. The mechanism of communication with the NMS/AAA 2

servers or the nature of information passed between the OLT and the servers is outside the scope of this 3

standard. 4

The OLT shall restrict access to the network deny service provisioning to the following categories of 5

ONUs: 6

 An ONUs that failed authentication,; 7

 An ONU whose identity matches that of another authenticated ONU; 8

 An authenticated ONU that has been administratively prohibited from connecting to the given 9

network (i.e., an ONU on a “Deny list”). 10

Several possible methods to restrict ONU’s access to the network are described in 11.2.4. is unauthorized to 11

connect to the network from any location, 12

An authenticated and authorized ONU that has been discovered on a PON port different from the one on 13

which it is authorized. 14

The OLT may analyze various ONU parameters, capabilities, and operational characteristics of the ONU in 15

addition to the ONU identity and PON port to determine its access to the PON and connected resources. 16

For example, the OLT may compare the ONU’s round-trip time to the previous measurement,deny access 17

to the ONU that has unexpectedly relocated and/or require the ONU to repeat the onboarding process. 18

11.2.2.1 ONU Authentication authentication Credentialscredentials 19

The ONU may be authenticated using the built-in credential (the Device Authentication Credential) or an 20

operator-provided credential (the Network Authentication Credential). In either case, the ONU identity is 21

attested via the built-in keypair (the Device Authentication Keypair). When properly used, these credentials 22

provide the ability for an NMS to cryptographically verify the identity of the ONU attempting to access the 23

PON and determine what access the ONU is granted. 24

 The Device Authentication Keypair (DAK) Rrequirements 25

The Device Authentication Keypair (DAK) facilitates robust identification and authentication of ONUs on 26

the PON network. 27

All SIEPON.4 ONUs and OLTs shall have a unique DAK of type Curve P-384 (see FIPS 186-4, D.2.4). 28

The keypair shall be generated in accordance to NIST ST SP 800-57 Part 1R5 section 8.1.5.1. The DAK 29

shall persist across device power cycles and factory resets. 30

Requirements for securing the DAK private key can be found in 11.1011.1.2. 31

 Credential Identification and Selection 32

In order to provide the NMS/OLT the ability to select the particular ONU credential to use for 33

authentication, the TLS 1.3 CertificateRequest extension “SIEPON.4 Credential Type” is defined in the 34

IEEE namespace as OID 1.3.111.2.1904.4.1.1 with the following definition: 35

enum { 36
undefined(0), 37

dac(1), 38
nac(2), 39

9

reserved(3..255) 1
} SIEPON4CredentialType; 2

 The Device Authentication Credential (DAC) Requirements 3

The DAC is a data structure containing the DAK public key, metadata identifying the PON ONU device 4

(including the aOnuId attribute), and a cryptographic signature(s) used to verify the authenticity of the 5

DAC. The DAC shall neet the following requirements: 6

 be fFormatted and authenticated in accordance to X.509v3 (see X.509/RFC-6818). 7

Specifically, 8

 Shall Ccontains the SIEPON4CredentialType extension with a value of “1” (dac). (see 9

11.3.3.2) 10

 For ONUs, tThe Subject Common Name (CN) field shall conforms to with the PrintableString 11

definition as described in RFC-5280 and shall contains the aOnuId attribute value encoded 12

into 12 hexadecimal digits preceded by the string “SIEPON4_ONU_”. For example, 13

“CN=SIEPON4_ONU_0A7FB49E2CF1” (see RFC-4648, section 8) 14

 The public key field shall contains the DAK public key of the device encoded according to 15

RFC-5480, section 2.1. 16

 The DAC must be is signed using the device’s DAK private key producing an ECDSA 17

signature with a SHA-256, SHA-384, or SHA-512 HMAC according to RFC-5480, section 18

2.1. 19

 The DAC may also be signed using a device manufacturer’s CA private key producing an 20

ECDSA signature with a SHA-256, SHA-384, or SHA-512 HMAC according to RFC-5480, 21

section 2.1. 22

 The Key Usage Extension shall indicates the certificate’s public key usage is “Digital 23

Signature” and “Key Encipherment”. (see RFC-5280, section 4.2.1.12). 24

 The total size of the DAC shall does not exceed 1491 bytesoctets. 25

 The certificate shall does not include any extensions marked “critical” unless required by 26

RFC-5280 or required above. 27

The DAC may also be signed using a device manufacturer’s CA private key producing an ECDSA 28

signature with a SHA-256, SHA-384, or SHA-512 HMAC according to RFC-5480, section 2.1. 29

Every ONU shall present a DAC during the authentication process (see). An example DAC is provided in 30

Annex 11A, TBD. 31

 The Network Authentication Credential (NAC) Requirements 32

The Network Authentication Credential (NAC) is a data structure containing an end-entity certificate (see 33

RFC-5280) containing the DAK public key, operator-defined metadata, and a cryptographic signature used 34

to verify the authenticity of the NAC. 35

The network operator may create a NAC for an ONU to contain network operator-defined metadata. The 36

NAC is signed using an operator-defined Certificate Authority (CA) – enabling the ONU to be validated 37

using a network operator-defined Public Key Infrastructure (PKI) system. For example, a network operator 38

may create an NAC containing a unique serial number, an alternate operator-defined identify for the ONU, 39

10

identify the customer or management entity associated with the ONU, the ONU’s assigned service level, 1

and/or the network locale the ONU can operate within. An example NAC is provided in Annex 11A, TBD. 2

A NAC may be pre-installed into an ONU before the ONU’s deployment/installation, or it may be installed 3

remotely after the ONU has successfully authenticated using the built-in DAC (see 11.2.2.1.3). 4

To ensure that ONUs do not operate with expired NACs, a network operator may revoke the existing NAC 5

and/or install a new NAC in the ONU at any time using the eOAM_Install_NAC_Request eOAMPDU (see 6

13.4.6.7.1). Intermediate CA certificates and the root CA can also be uploaded along with the NAC as long 7

as the total size of the certificate chain does not exceed the specified maximum NAC length. NAC creation 8
is facilitated by the eOAM_Retrieve_DAC_Request eOAMPDU (see 13.4.6.7.3), which allows for on-9

demand retrieval of the ONU’s DAC, containing the DAK public key. 10

The OLT shall not generate the eOAM_Install_NAC_Request eOAMPDU containing the NAC that 11

 Is not formatted in accordance with the RFC-5280 12

 Has size exceeding 1489 octets 13

 Is not signed using an ECC Named Curve as defined in RFC-5480, section 2.1.1.1. 14

The ONU shall set the field CertificateStatus in the eOAM_Install_NAC_Response eOAMPDU 15

(see 13.4.6.7.2) to the value Invalid Format (0x03), if the received NAC 16

 Is not formatted in accordance with the RFC-5280 17

 Contains a public key that does not match the ONU’s DAK public key 18

 Does not contain the SIEPON4CredentialType extension with a value of “2 (nac)”. (see 19

11.3.3.2) 20

The NAC should be formatted and authenticated in accordance to RFC-5280. Specifically, 21

 The public key field of the NAC leaf certificate should contain the DAK public key of the 22

device encoded according to RFC-5480, section 2.1. 23

 Should contain the SIEPON4CredentialType extension with a value of “2 (nac)”. (see 24

11.3.3.2) 25

 The total size of the NAC should not exceed 1491 octets. 26

 Should be signed using an ECC Named Curve as defined in section 2.1.1.1. 27

The network operator may create a NAC for an ONU to contain network operator-defined metadata. The 28

NAC shall be signed using an operator-defined Certificate Authority (CA) – enabling the ONU to be 29

validated using a network operator-defined Public Key Infrastructure (PKI) system. For example, a network 30

operator may create an NAC containing a unique serial number, alternate operator-defined identify for the 31

ONU, identify the customer or management entity associated with the ONU, the ONU’s assigned service 32

level, and/or the network locale the ONU can operate within. Note that any PKI system is expected to 33

incorporate a robust certificate renewal and revocation system to ensure that ONUs do not operate with 34

expired NACs and to enable ONUs to be disabled on-demand. An example NAC is provided in Annex 11A, 35

x.yTBD. Once an ONU is authenticated, a network operator may create, install, renew, or revise a NAC on 36
the ONU at any time using the eOAM_Install_NAC_Request eOAMPDU (see 13.4.6.7.1). Intermediate CA 37

certificates and the root CA can also be uploaded along with the NAC so long as the total size of the 38

11

certificate chain does not exceed the maximum NAC length. NAC creation is facilitated by the 1

eOAM_Retrieve_DAC_Request eOAMPDU (see 13.4.6.7.3), which allows for on-demand retrieval of the 2

ONU’s DAC, containing the DAK public key. 3

 Network Authentication Credential (NAC) Intermediate Certificates 4

The Network Authentication Credential (NAC) may reference intermediate certificates. The which a NMS 5

way may install the intermediate certificates together with the NAC certificate into an ONU want to include 6

with the NAC certificate for the purposes of authenticating the NAC. For example, intermediate certs 7

certificates can be included to enable the authentication of NACs signed by intermediate CAs with AAA 8

servers that which only have root certificates in their trust store. NAC intermediate certificates shall beare 9

formatted and authenticated in accordance to RFC-5280. 10

Note that the OLT is able to include the intermediate certificates in the eOAM_Install_NAC_Request 11

eOAMPDU (see 13.4.6.7.1) only if the total size of the encoded certificate chain (i.e., the NAC certificate 12

and all the intermediate certificates) does not exceed 1489 octets. 13

Specifically, to limit the size of intermediate certificates, NAC intermediate certificates 14

 Should contain an ECC public key as defined in RFC-5280 and utilize a Named Curve as 15

defined in section 2.1.1.1. 16

 Should be signed using an ECC Named Curve as defined in section 2.1.1.1. 17

11.2.2.2 The ONU Aauthentication Procedureprocedure 18

Authentication in SIEPON.4 is accomplished using EAP-TLS 1.3 (see RFC-9190) with the OLT operating 19

as the ”EAP Authenticator”/“EAP-TLS Server” and the ONU operating as the ”EAP Supplicant”/“EAP-20

TLS Client” (see RFC-3748). By utilizing TLS 1.3 as described in this clause, the TLS handshake is 21

encrypted and authenticated using an ephemeral key that provides a shared secret to both parties while 22

ensuring privacy and perfect forward secrecy (PFS). The shared secret is then used to derive the SIEPON.4 23

initial traffic encryption key, as described in 11.4. 24

In order to perform EAP-based authentication, the OLT and ONU exchange EAPOL (Extensible 25

Authentication Protocol over LAN) frames over the MLID (see IEEE Std 802.1X, Clause 11,). The 26

authentication procedure is illustrated in Figure 11-5. 27

12

 1

Figure 11-5 — ONU authentication procedure 2

Additionally, theThe EAP authentication process procedure shall beis performed according to the following 3

guidelinesrequirements: 4

— The OLT and ONU shall support EAP-TLS 1.3 as defined in RFC-9190 and use EAP type EAP-5

TLS (type 13) in all EAP-Request and EAP-Response messages. EAP-Request/Response for 6

Identity (type 1) are not to be supported used by the ONU or OLT and the ONU shall return an 7

EAP-Response/Nak to any EAP-Request/Identity messages. 8

— The OLT and ONU shall only advertise TLS 1.3 in their respective TLS ClientHello and 9

ServerHello messages (exchanged via EAP), as defined in RFC-8446. The 10

legacy_version field shall be set to 0x0303 and the supported_versions extension 11

shall include TLS 1.3 (versions value 0x0304). 12

— The OLT and ONU may utilize any TLS 1.3 supported and negotiated DHE key exchange method. 13

Session resumption using PSK-based key exchange methods are not defined for use in SIEPON.4 14

at this time but may be supported in the future. 15

— In order to support ONU authentication, the OLT shall issue and the ONU shall honor the 16

CertificateRequest message, as described in TLS 1.3, section 4.3.2. 17

Step 2: ONU Authentication

Operator s action
(out of scope)

ONU suspended

Normal
EAP-TLS1.3
handshake

(no OID-Filter)

Cert. type

NAC valid?

DAC NAC

TLS-Finished
EAP-Failure

Recovery
EAP-TLS1.3
handshake

(OID-Filter=DAC)

Yes

No

DAC valid?

TLS-Alert
EAP-Failure EAP-Success

No

ONU on
Deny list?

Yes

No

A
A

A
 s

er
ve

r
re

st
a

rt
s

au
th

en
tic

a
tio

n

From Step 1:
ONU Discovery and Registration

To Step 3:
Establishment of
Initial Encryption

Yes

13

— The ONU shall support TLS 1.3 OID Filters extension as described in TLS 1.3 (see RFC 8446, 1

section 4.2.5). The NMS/OLT may use this to perform credential selection, When a 2

SIEPON4CredentialType is present in the TLS 1.3 CertificateRequest OID Filters 3

extension (see RFC-8446, section 4.2.5), the filter shall only be considered matched against an 4

ONU credential if the ONU has an authentication certificate containing the 5

SIEPON4CredentialType extension with the same value as the one in the 6

CertificateRequest. 7

— If the ONU is not configured with a NAC, or the DAC is matched via the TLS 8

CertificateRequest OID Filter (see 11.2.2.1.2), the ONU shall include the DAC in its TLS 9

1.3 Certificate message as the “end-entity” certificate in the certificate_list. 10

Requirements for the DAC can be found in 11.2.2.1.3. 11

— If the ONU is configured with an NAC, and the DAC is not explicitly selected via a TLS 12

CertificateRequest OID Filter (see 11.2.2.1.211.3.3.2), then the ONU shall include the 13

NAC in its TLS 1.3 Certificate message as the end-entity certificate with any intermediate 14

certificates following the NAC in the certificate_list. Requirements for the NAC and 15

associated intermediate certificates can be found in 11.2.2.1.4 and 11.2.2.1.5, respectively. 16

— If the ONU is not configured with a credential that is explicitly selected via the TLS 17

CertificateRequest OID Filter (see 11.2.2.1.211.3.3.2), the ONU shall abort the handshake 18

with an “unsupported_certificate” alert. 19

An The OLT can initiates the EAP authentication process at a time of its choosing by issuing an EAP-20

Request with an EAP-Type of EAP-TLS (type 13). The OLT shall not initiate another EAP authentication 21

session until any ongoing authentication session has been completed with either Success or Failure, per 22

RFC-3748, section 2.1. 23

11.2.3 ONU authorization 24

ONU authorization refers to the verification of ONU’s eligibility to operate on the operator’s network. The 25

determination of ONU’s eligibility is based on a reasonable assurance that the ONU is compatible and 26

interoperable with the rest of equipment used in the operator’s network, that the user served by this ONU is 27

eligible to receive service, and that the ONU operates within the limits established by the operator. 28

ONU authorization is initiated by the NMS/AAA server after the ONU has successfully authenticated and 29

symmetric encryption has been established for secure communication between the OLT and the ONU. Only 30

two “system” logical links (PLID and MLID) are configured at the ONU at the time of the ONU’s 31

authorization. Any exchange of information between the OLT and ONU pertaining to the ONU 32

authorization is carried over the encrypted MLID logical link. 33

Subject to operator’s policies, the ONU authorization procedure maybe modified or bypassed altogether. 34

11.2.3.1 Authorization procedure 35

The ONU authorization procedure generally comprises the verification of ONU properties and capabilities 36

(see 11.2.5.1.1), the verification of user account / service eligibility (see 11.2.5.1.2), and the verification of 37

ONU’s operational parameters (see 11.2.5.1.3). If an ONU fails the get authorized, its access to the 38

network shall be restricted, as described in 11.2.4. The authorization procedure is illustrated in Figure 11-6. 39

14

 1

Figure 11-6 — ONU authorization procedure 2

 3

 Verification of ONU properties and capabilities. 4

This step ensures that the ONU device is compatible and interoperable with the rest of equipment used in 5

the operator’s network. The verification typically involves checking ONU’s manufacturer and/or model to 6

confirm that it belongs to the class of ONUs that were pre-qualified to operate on a given network. Various 7

ONU capabilities may also be queried and checked to ensure that the ONU is able to support the necessary 8

services. 9

The ONU properties and capabilities are immutable characteristics of the device. Therefore, this step is 10

generally performed only once, in the process of onboarding of a new ONU (see 11.2.3.2). It is also 11

possible to perform this step offline, prior to ONU deployment, as explained in 11.2.3.2.1.2. 12

Query ONU
properties

ONU
properties

OK?

 Passphrase
valid?

Query
passphrase

Record account
as verified

Step 5: ONU Authorization

Operator s action
(out of scope)

ONU suspended

No

ONU
verified?

Account
verified?

Yes

Yes

No

No

No

Yes

Yes

To Step 6:
Secure ONU
Provisioning

Oper.
parameters

OK?

From Step 4:
Establishment of Session Encryption

Yes

No

Record ONU
as verified

Repeat?

No

Yes

15

 Verification of user account / service eligibility. 1

This step associates the identity of the ONU device with a user account and verifies the eligibility of the 2

ONU to be provisioned to service user data. The association between the ONU with the user account needs 3

to be established only once, in the process of onboarding of a new ONU (see 11.2.3.2). There could be 4

various operator-specific methods of establishing such association, for example: 5

 The ONU’s serial number / MAC address can be scanned/retrieved from the ONU and 6

associated with a known customer account at the time of installation by either a technician or 7

customer, facilitated by the use of an external device with Internet access. 8

 A unique activation/association passphrase can be generated by the NMS and conveyed to the 9

customer prior to ONU installation. During the ONU onboarding phase, the user is prompted 10

to enter the passphrase via the CPE device connected to the ONU. The passphrase together 11

with the ONU identity is delivered via the eOAM channel to NMS, allowing the association 12

to be established (see 11.2.3.2.2). This method may be particularly necessary in situations 13

where no Internet connectivity is available, except through the ONU being deployed. 14

It is also possible to associate ONU identity with a user account offline, prior to ONU deployment, as 15

explained in 11.2.3.2.1.3. 16

 Verification of ONU’s operational parameters. 17

Optionally, operators may desire to analyze various operational characteristics of the ONU to determine its 18

eligibility to access the PON and connected resources. For example, OLT may verify that given ONU is 19

authorized for the particular OLT PON port on which it is discovered (i.e., a port-based access control). 20

Alternatively, or in addition to the PON port verification, the OLT may compare the ONU’s round-trip time 21

to the previous measurement and deny access to the ONU that has unexpectedly relocated. 22

The verification of ONU’s operational parameters is performed every time the ONU is restarted, not just 23

during the initial onboarding. 24

 ONU authorization requirements 25

The OLT shall be able to support port-based access control and should be able to support RTT-based access 26

control. 27

If port-based access control is enabled, the OLT shall verify that given ONU is authorized for the particular 28

OLT PON port on which it is discovered. 29

If RTT-based access control is supported and enabled, the OLT shall keep track of ONU’s RTT value 30

measured during previous ONU registration and it shall compare the newly-measured RTT to the previous 31

RTT value. 32

The OLT shall restrict network access to the following categories of ONUs: 33

 The ONU whose properties and capabilities were found unacceptable for the given network; 34

 An ONU that could not be associated with a valid user account; 35

 The ONU that has been re-discovered on a PON port different from the one on which it is 36

authorized (only if PON port-based authorization is enabled); 37

16

 The ONU that has unexpectedly relocated, i.e., whose measured round-trip time is 1

significantly different from the previous measurement (only if RTT-based authorization is 2

supported and is enabled). 3

Several possible methods to restrict ONU’s access to the network are described in 11.2.4. 4

The OLT may consult NMS/AAA servers to determine the ONU’s authorization to access the network 5

resources. The mechanism of communication with the NMS/AAA servers or the nature of information 6

passed between the OLT and the servers is outside the scope of this standard. 7

11.2.3.2 Onboarding of a new ONU 8

Within the context of this standard, the term onboarding refers to the process of integrating a newly-9

installed ONU into the established operator’s network. A number of steps related to ONU authorization to 10

operate on a given network are performed only once, during the ONU onboarding. However, an operator 11

has the ability to repeat the onboarding procedure for any ONU, even after the ONU has already been 12

onboarded. 13

 ONU deployment scenarios 14

The steps required during the ONU onboarding are determined by the ONU deployment scenario adopted 15

by the network operator. Several typical ONU deployment scenarios are described in sub-clauses 16

11.2.5.2.1.1 through 11.2.5.2.1.4, although other scenarios are also possible. 17

11.2.3.2.1.1 Unknown/generic ONU 18

The unknown/generic ONU deployment scenario refers to deployment of an ONU that has not been in the 19

possession of the network operator prior to deployment, as is the case of a customer-procured ONU. In 20

other words, this is a scenario where the operator has no apriori information about the ONU properties and 21

capabilities or about which user account the ONU is associated with. 22

In this scenario, the ONU authorization includes all of the following steps: the verification of ONU 23

properties and capabilities (see 11.2.3.1.1), the verification of user account / service eligibility (see 24

11.2.3.1.2), and the verification of ONU’s operational parameters (see 11.2.3.1.3). 25

11.2.3.2.1.2 Pre-validated ONU 26

The pre-validated ONU deployment scenario refers to deployment of ONUs whose properties and 27

capabilities have been verified by the operator prior to deployment. An individual ONU is selected for the 28

installation from a pool of verified ONUs, although it is not known which exact ONU will be deployed to a 29

specific customer until the installation time. 30

In this scenario, the AAA server maintains a list of identities of the pre-verified ONUs. During the ONU 31

authorization, the AAA server recognizes the ONU identity as pre-verified. Therefore, the ONU 32

authorization includes only the following steps: the verification of user account / service eligibility (see 33

11.2.3.1.2) and the verification of ONU’s operational parameters (see 11.2.3.1.3). 34

11.2.3.2.1.3 Pre-validated user account 35

The pre-validated user account refers to a deployment scenario where the customer is required to register 36

its customer-procured ONU before the ONU’s installation. The registration would typically involve a 37

submission of the ONU’s serial number (or some other form of ONU identity) along with the customer 38

account number (or some other form of customer identity, such as a unique activation code or a passphrase 39

provided by the operator). The information submitted by the customer is used to associate the ONU identity 40

17

with customer identity and this association is recorded in the AAA server. However, no information is 1

available to the operator regarding the ONU’s properties and capabilities. 2

During the ONU authorization procedure, the AAA server finds the record of a verified user account 3

associated with the identity of the ONU being authorized. Therefore, the ONU authorization includes only 4

these steps: the verification of ONU properties and capabilities (see 11.2.3.1.1 and the verification of 5

ONU’s operational parameters (see 11.2.3.1.3). 6

11.2.3.2.1.4 Pre-authorized ONU 7

The pre-authorized ONU refers to a deployment scenario whereby an operator selects a specific ONU to be 8

deployed to a specific customer. Before the ONU shipment / deployment, a record is made and stored in the 9

AAA server reflecting the fact that the ONU is pre-validated (see 11.2.3.2.1.2) and the associated user 10

account is also pre-validated (see 11.2.3.2.1.3). 11

During the ONU authorization procedure, the AAA server finds the record matching the identity of the new 12

ONU, and confirming the verification status of the ONU as well as the verification status of the user 13

account associated that ONU. Therefore, the ONU authorization procedure includes only the verification of 14

ONU’s operational parameters (see 11.2.3.1.3). 15

 Passphrase-based user account verification 16

As explained in 11.2.3.1.2, operator may rely on a customer-unique passphrase as a method to associate 17

ONU identity with a customer account or service profile. In this method, during the ONU onboarding phase, 18

the user is prompted to enter the passphrase via the CPE device connected to the ONU. The passphrase 19

together with the ONU identity is delivered via the eOAM channel to NMS, allowing the association to be 20

established (see 11.2.3.2.2). 21

The passphrase-based account verification method relies on the extended action acPassphrasePrompt (see 22

14.6.5.3) and the extended read-only attribute aPassphrase (see 14.4.5.2), and is performed over an 23

encrypted MLID logical link. 24

The acPassphrasePrompt action displays an NMS-specified prompt to the user and also resets the value of 25

any stored passphrase to a zero-length string. The aPassphrase action allows the retrieval of the user-26

entered string. As the time required for a user to manually enter the passphrase is expected to be much 27

longer than the OAMPDU response timeout (see 13.2.3), it is expected that aPassphrase attribute is 28

queried multiple times before the input is received, as illustrated in Figure 11-7. 29

18

 1

Figure 11-7 — Passphrase query protocol 2

11.2.4 ONU access restriction 3

The ONU that failed the authentication is unable to derive the initial encryption key, and as a result, is 4

unable to establish the symmetric encryption with the OLT. Correspondingly, the NMS does not initiate the 5

authorization procedure for such ONU. The ONU that has successfully authenticated may fail the 6

subsequent authorization. 7

An operator may resort to different actions in response to ONU’s failure to get authenticated or authorized. 8

OLT ONU

 Passphrase
valid?

Repeat?
No

Associate

ONU_ID with

user account

Yes

Yes

No

Authorization

failed - Restrict

ONU access

 Passphrase
valid?

Repeat?
No

Associate

ONU_ID with

user account

Yes

Yes

No

Authorization

failed - Restrict

ONU access

Display
prompt

User input
complete

Display new
prompt

User input
complete

Clear previous
passphrase

19

One possible action is to withhold service configuration/provisioning to the ONU. Such ONU remains 1

registered with two active LLIDs: primary PLID and primary MLID. The ONU is able to process GATE 2

MPCPDUs and generate REPORT MPCPDUs, and it is able to exchange OAMPDUs with the OLT, but is 3

unable to service any user data. Such ONU does consume a small amount of PON transmission capacity. 4

Alternatively, the operator may suspend the ONU. The suspended ONU is deregistered and does not 5

attempt to register again, until instructed to do so. The ONU suspension method is described in 11.2.4.1. 6

11.2.4.1 Suspension and resumption of ONU operation 7

The ONU registration status is controlled via the REGISTER MPCPDU (see IEEE 802.3, 144.3.6.4). The 8
specific ONU behavior is determined by the value of the Flag field. Per IEEE 802.3, 144.3.7: 9

If the Flag field in the REGISTER MPCPDU has the value of ACK, the ONU performs a fast 10

registration sequence where it simply responds with the REGISTER_ACK MPCPDU, while 11

remaining registered at all times. 12

If the Flag field in the REGISTER MPCPDU has the value of NACK, the ONU deregisters and 13

goes through a complete discovery sequence, as outlined above. 14

This standard extends the definition of the Flag field by adding an additional value SUSPEND (2) as 15

defined in Table 11-xx. The Table 11-xx replaces the table 144-5 in IEEE 802.3: 16

Table 11-xx—REGISTER MPCPDU Flag field 17

Value Indication Notes

0
ACK The ONU's requested registration is successful or a registered ONU is

asked to re-register

1
NACK The registration request is denied or a registered ONU is asked to

deregister and register again.

2 SUSPEND The ONU is requested to deregister and to not attempt to register again.

3 to 255 Reserved Ignored on reception

 18

The REGISTER MPCPDU with the Flag field value equal to SUSPEND shall be transmitted to the 19

destination ONU in an envelope with unicast PLID assigned to this ONU. 20

The ONU that receives REGISTER MPCPDU with the Flag field value equal to SUSPEND shall 21

deregister (i.e., release its assigned PLID and MLID values). The suspended ONU shall begin to receive 22

and process the envelopes sent to the DISC_PLID logical link, but it shall not attempt to register until either 23

of the following events has occurred: 24

 The ONU was factory-reset. (The factory-reset procedure is outside the scope of this 25

standard.) 26

 The ONU received a unicast DISCOVERY MPCPDU (see IEEE 802.3, 144.3.6.6), i.e., a 27

DISCOVERY MPCPDU sent to DISC_PLID with a unicast MAC DA matching the identity 28

of the given ONU (11.2.1). 29

The ONU shall maintain its suspension state across the restart or reboot. The ONU may remain in the 30

suspended state for an unlimited period of time. 31

20

11.3 Encryption 1

11.3.1 Overview of encryption architecture 2

11.3.1.1 Encryption entity 3

An encryption entity is a distinct logical element within a communication system that is responsible for 4

maintaining the confidentiality of data exchanged within the communication system. It achieves this by 5

applying encryption algorithms to prevent unauthorized access and eavesdropping of sensitive information. 6

Each encryption entity operates independently from other encryption entities within the system and utilizes 7

its distinct set of cryptographic parameters, including encryption keys, initialization vectors (IVs), and 8

cryptographic configurations. 9

 Mapping between the encryption entities and logical links 10

As explained in 4.5.1, all logical links of an ONU (whether provisioned or assigned during registration) are 11

categorized as either bidirectional or unidirectional. The ONU is capable of receiving data from all 12

provisioned logical links, while it can only transmit data through bidirectional links. 13

All bidirectional links terminated at a specific ONU are mapped to a single encryption entity. 14

Correspondingly, the traffic on all bidirectional links terminated at a specific ONU is encrypted using a 15

single ONU-wide encryption key. When a key switch event occurs, it affects all bidirectional links, 16

although for 50G-EPON ONUs, this event may happen at different times on different channels. 17

The unidirectional logical links are typically provisioned as point-to-multipoint (P2MP) links and carry 18

downstream multicast traffic. Each envelope transmitted by the OLT is delivered to multiple ONUs. 19

Therefore, the encryption key used to encrypt the multicast traffic needs to be shared among all ONUs that 20

are part of the multicast group. Consequently, each unidirectional LLID is mapped to a separate encryption 21

entity. 22

Overall, a SIEPON.4 system that includes U ONUs and is provisioned to use M multicast LLIDs 23

instantiates U + M encryption entities. 24

11.3.1.2 Location of encryption/decryption functions 25

The Multi-channel Reconciliation Sublayer (MCRS) reconciles L logical links (i.e., MAC instances) above 26

the sublayer with C physical layer channels below it. The MCRS is defined in IEEE Std 802.3, Clause 143. 27

When security mechanisms are implemented within the MCRS sublayer, such enhanced sublayer is 28

referred to as Secure MCRS (MCRSSEC) sublayer. The encryption function is located in the transmit path of 29

the MCRSSEC sublayer, as illustrated in Figure 11-1(a), and the decryption function is located in the receive 30

path of the MCRSSEC sublayer, as illustrated in Figure 11-1(b). 31

21

 1

Figure 11-1–Location of encryption/decryption function within MCRSSEC 2

In the MCRSSEC transmit data path, a separate instance of the encryption function is located within every 3

channel between the MCRS Input Process and the EnvTx buffer. In the MCRSSEC receive data path, a 4

separate instance of the decryption function is located within every channel between the EnvRx buffer and 5

the MCRS Output Process. 6

11.3.1.3 Encryption function block diagram 7

Each instance of the encryption function includes the Encryption Key Activation process (see 11.6.2.4 and 8

11.6.2.6) and the Encryption process (see 11.7.2). The block diagram of the encryption function is 9

illustrated in Figure 11-2. 10

MCRS Input Process

EnvTx

MCRS
Transmit

Process #1

MCRS
Transmit

Process #C

MCRS
Transmit

Process #2

MAC
#L

MAC
#1

MAC
#2

MAC
#3

Encryption
function #1

Encryption
function #C

Encryption
function #2

a) Transmit Path

MCRS Output Process

EnvRx

Decryption
function #1

MCRS
Receive

Process #1

Decryption
function #2

MCRS
Receive

Process #2

Decryption
function #C

MCRS
Receive

Process #C

MAC
#L

MAC
#1

MAC
#2

MAC
#3

b) Receive Path

M
C

R
S

 S
E

C

L logical links (MAC instances) L logical links (MAC instances)

C transmit channels C receive channels

22

 1

Figure 11-2–Encryption function block diagram. 2

The Encryption Key Activation process detects the transmission of either the envelope start header (ESH) 3

or the envelope continuation header (ECH) and uses the data inside the header to generate an initialization 4

vector IV and the encryption key. These two parameters are passed to the Encryption process, which 5

encrypts the given envelope as one cryptographic message. 6

The encryption function encrypts the envelope payload, which consists of data EQs, idle EQs, and 7

termination EQs. The envelope header itself bypasses the Encryption process and is transmitted 8

unencrypted (see 11.7.5.2). 9

The inter-envelope control EQs include rate adjustment (RATE_ADJ_EQ), inter-envelope idle (IEI_EQ), 10

and inter-burst idle (IBI_EQ) (see 11.7.5.1). These control EQs bypass the Encryption process and are 11

transmitted unencrypted. 12

11.3.1.4 Decryption function block diagram 13

Each instance of the decryption function includes the Decryption Key Activation process (see 11.6.2.5) and 14

the Decryption process (see 11.7.3). The block diagram of the decryption function is illustrated in Figure 15

11-3. 16

EQ type demux

Encryption
key activation

process #n
(11.6.2.4,
11.6.2.6)

Encryption
process #n

(11.7.2)

IV

MCRS Input Process

RATE_ADJ_EQ

IEI_EQ

IBI_EQ

Data EQ

Idle EQ

Termination EQ

ESH

ECH

EnvTx

Encryption function

Key

Input (plaintext)

Output (ciphertext)

23

 1

Figure 11-3–Decryption function block diagram. 2

The Decryption Key Activation process detects the reception of either the envelope start header (ESH) or 3

the envelope continuation header (ECH) and uses the data inside the header to generate an initialization 4

vector IV and the decryption key. These two parameters are passed to the Decryption process, which 5

decrypts the given envelope as one cryptographic message. 6

The decryption function decrypts only the envelope payload, which consists of data EQs, idle EQs, and 7

termination EQs. The envelope header itself is received unencrypted and bypasses the Decryption process 8

(see 11.7.5.2). 9

The inter-envelope control EQs include rate adjustment (RATE_ADJ_EQ), inter-envelope idle (IEI_EQ), 10

and inter-burst idle (IBI_EQ) (see 11.7.5.1). These control EQs are received unencrypted and bypass the 11

Decryption process. 12

11.3.1.5 Latency requirements 13

The latency introduced into the MCRS transmit path by the encryption function (see Figure 11-1(a)) shall 14

remain constant (to within 1 EQT), regardless of whether the encryption is enabled or disabled. 15

The latency introduced into the MCRS receive path by the decryption function (see Figure 11-1(b)) shall 16

remain constant (to within 1 EQT), regardless of whether the decryption is enabled or disabled. 17

11.3.2 Initial key establishment 18

The initial key is used by the OLT to encrypt the MLID channel for subsequent distribution of the first 19

session key to the ONU (see step 4 in Figure 11-4). The establishment of the initial key involves the 20

derivation of the initial key value (see 11.3.2.1) and the activation of the initial key (see 11.3.2.2). 21

EQ type demux

Decryption
key activation

process #n
(11.6.2.5)

Decryption
process #n

(11.7.3)

IV

MCRS Output Process

RATE_ADJ_EQ

IEI_EQ

IBI_EQ

Data EQ

Idle EQ

Termination EQ

ESH

ECH

Decryption function

Key

Input (ciphertext)

Output (plaintext)

EnvRx

24

11.3.2.1 Initial key derivation 1

Once the ONU and OLT have completed the authentication exchange, the initial AES-128 encryption key 2

shall be established by both parties from the least-significant 128 bits (16 octets) of the MSK, which is 3

derived from the TLS 1.3 ephemeral session key as described in RFC-9190, section 2.3. 4

The initial key is used by the OLT to encrypt the MLID channel for distribution of a new session key to the 5

ONU. See for details on the session key distribution protocol 6

11.3.2.2 Initial key activation 7

The initial key is activated using the same procedure as defined for the session key activation (see 11.3.4). 8

The ONU stores the derived value of the initial key in the key memory The OLT stores the derived value of 9

the initial key in their local key memories, in the location keys[ee][0] (see 11.6.2.1), where [ee] is 10

an index of the encryption entity associated with the bidirectional logical link(s) between the OLT and the 11

ONU. 12

For the ONU to be able to decrypt the encrypted envelopes, its cipher clocks need to be synchronized with 13

that in the OLT, as detailed in 11.3.5.4.1. The cipher clock synchronization relies on an OAMPDU 14
containing the Sync Cipher Clock TLV sent form the OLT to the ONU. Before activating the encryption in 15

the downstream direction, the OLT shall receive a positive acknowledgement form the ONU, indicating 16

that the cipher clocks have been synchronized. 17

After the initial key is written into the key memory and a positive acknowledgement of cipher clock 18

synchronization is received, the OLT sets the initialKeyReady[ee] variable to true. The initial 19

key is activated in the downstream direction first, when the OLT transmits an envelope encrypted with this 20

key (see 11.3.4.1). 21

11.2.311.3.3 Session key distribution protocol 22

11.2.3.111.3.3.1 Protocol overview 23

The session key distribution protocol is a function of the OAM client at the OLT (see 4.7.2) and the ONU 24

(see 4.8.2). 25

After the initial key exchange (defined in 11.3), all the subsequent keys are generated by the OLT and are 26

distributed using the acConfigEncrKey action (see 14.6.5.1). The OAMPDU carrying the next key is 27

transmitted within the MLID envelope encrypted using the current key. The OLT shall not transmit the 28

OAMPDU carrying the acConfigEncrKey action over an unencrypted MLID channel. 29

Figure 11-6 illustrates the process of updating the session key (hereinafter referred as “key”) and the 30

subsequent activation of that key, first by the OLT and then by the ONU. 31

25

 1

Figure 11-6–Key update and subsequent key activation time diagram 2

The next key may be distributed at any time within the lifetime of the currently-active key. In case multiple 3

keys were distributed for the same encryption entity (i.e., under the same context object, which can be 4

either the ONU or a multicast LLID), the last-distributed value is saved. 5

For each encryption entity, the OLT maintains the key lifetime timer and activates the next key upon the 6

timer’s expiry. The OLT shall distribute the next key to an ONU sufficiently in advance of the expiration 7

time of the current key in order to allow possible retransmission attempts in case of OAMPDU delivery 8

failure (either the OAM request or the OAM response). 9

The OLT may issue different key sizes to different ONUs. Different multicast LLIDs may also use different 10

key sizes, even if these multicast LLIDs are received by the same ONU. 11

11.2.3.211.3.3.2 Distribution of keys for unicast LLIDs 12

All unicast LLIDs provisioned at a given ONU are encrypted using the same key value in both upstream 13

and the downstream directions. Therefore, only a single OAMPDU containing the acConfigEncrKey action 14

is used to distribute the next key for all unicast LLIDs at the ONU. 15

A unique unicast key value is distributed to each ONU via an encrypted downstream unicast MLID channel 16

and each ONU generates an individual response OAMPDU, also transmitted using the encrypted upstream 17

unicast MLID channel. 18

If the ONU’s unicast key distribution acknowledgement is not received by the OLT within the OAM 19

message timeout (see timeoutOLT definition in 13.3.2.3.1), the OLT shall repeat the key distribution 20

attempt. The maximum number of key distribution attempts is an implementation design choice, but it shall 21

be not less than 3. 22

ONU’s failure to update the key before the expiration of the current key is a critical link condition. It 23

causes the ONU to lose downstream connectivity and leads to OAM and MPCP timeouts and a consequent 24

ONU deregistration. 25

0 1

0 1

0 1

0 1

Tx

Rx

OLT

ONU

Tx

Rx

D
S

 k
e
y
1

a
c
tiv

a
te

d

U
S

 k
e
y
1

a
c
ti
v
a
te

d

U
p
d
a
te

 k
e
y
1

O
A

M
P

D
U

A
C

K
 k

e
y
1

O
A

M
P

D
U

U
p
d
a
te

 k
e
y
0

O
A

M
P

D
U

A
C

K
 k

e
y
0

O
A

M
P

D
U

D
S

 k
e
y
0

a
c
tiv

a
te

d

U
S

 k
e
y
0

a
c
ti
v
a
te

d

£ Tmax_key_lifetime

£ Tmax_key_lifetime

- OAMPDU carrying key0 (request or response) in an envelope encrypted with key1

- OAMPDU carrying key1 (request or response) in an envelope encrypted with key0- Envelope encrypted with key0

- Envelope encrypted with key1 0

1

26

11.2.3.311.3.3.3 Distribution of keys for multicast LLIDs 1

The term multicast LLID represents an LLID value provisioned into multiple ONUs (see 7.4.2.1). This term 2

collectively refers to multicast PLID, multicast MLID, or the multicast ULID. 3

A key for a multicast LLID is used by all ONUs that are members of the given multicast group to decrypt 4

the traffic associated with this LLID. ONUs use the multicast keys only for decrypting the multicast data. 5

A multicast key is distributed to each member of the multicast group via an encrypted unicast MLID 6

channel. The OLT generates a separate OAMPDU carrying acConfigEncrKey to each member ONU and 7

each member ONU generates an individual response OAMPDU (i.e., ACK or NACK). The sequence of the 8

key distribution and key activation events is as shown in Figure 11-6, however the OLT distributes the 9

multicast key to every group member before activating this key. 10

As is the case with the unicast key distribution, the OLT shall distribute the next multicast key to all 11

member ONUs sufficiently in advance of the expiration time of the current key in order to allow possible 12

retransmission attempts in case of OAMPDU delivery failures. 13

In case the multicast key distribution acknowledgement from any ONU in the multicast group is not 14

received by the OLT within the OAM message timeout (see timeoutOLT definition in 13.3.2.3.1), the 15

OLT shall repeat the key distribution attempt. The maximum number of multicast key distribution attempts 16

to each ONU in the multicast group is an implementation design choice, but it shall be not less than 3. Each 17

subsequent key distribution attempt may distribute the key to all group members or only to the ONUs that 18

failed to acknowledge the key reception in the previous attempt(s). 19

Note however that the failure of some ONUs to receive or acknowledge the new multicast encryption key is 20

not a sufficient reason for the OLT to deregister the said ONU or to delete the multicast group. The ONUs 21

that failed to update the key will be unable to decrypt the multicast traffic subsequent to the OLT switching 22

to the new key. 23

 Distribution of keys for multicast MLIDs 24

The distribution of encryption keys for the multicast MLIDs allows for a somewhat more optimized 25

approach. The distribution of the initial multicast key require an individual OAMPDU with 26

acConfigEncrKey action to be sent to each member ONU via an encrypted unicast MLID channel, as 27

described in 11.5.3. 28

However, once the encrypted multicast MLID channel is established, the subsequent multicast keys may be 29

distributed sending a single OAMPDU carrying acConfigEncrKey action over this multicast channel. This 30

method only requires a single OAMPDU to distribute the next key to the entire multicast group, no matter 31

the group size. It must be noted however that the OLT expects an individual response OAMPDU (over a 32

unicast MLID) from every member ONU. 33

 Multicast distribution of multicast keys 34

The multicast distribution of a multicast MLID keys described in 11.5.3.1 can also be extended to multicast 35

non-MLID channels, such as multicast PLID or multicast ULID. 36

This approach involves provisioning of a multicast LLID (PLID or ULID) together with a multicast MLID 37

into each member ONU (i.e., creating an MLID multicast group that mirrors the membership of the 38

intended PLID or ULID multicast group). The initial key for the MLID multicast group is distributed by 39

individual OAMPDUs, as described in 11.5.3. 40

Once the initial key is established, the subsequent keys may be distributed by transmitting a single 41

OAMPDU carrying acConfigEncrKey action over the encrypted multicast MLID channel. 42

27

This approach requires distribution of two keys each time: a key for the multicast MLID and a key for the 1

multicast PLID/ULID. Both acConfigEncrKey actions carrying these keys typically can be placed into the 2

same OAMPDU. Therefore, this method only requires a single OAMPDU to distribute the next MLID key 3

and PLID/ULID key to the entire multicast group, no matter the group size. 4

As mentioned above, the OLT expects an individual acknowledgement message (over a unicast MLID) 5

from every member ONU. The acknowledgement of the multicast MLID key and the acknowledgement of 6

the multicast PLID/ULID key may be packed into the same OAMPDU, requiring only a single OAM 7

response message transmitted upstream by each ONU. 8

The benefits of multicast distribution of keys for multicast non-MLID flows are mostly realized with long-9

lived multicast groups (i.e., groups with expected lifetimes much longer that the lifetime of a single session 10

key). 11

11.2.411.3.4 Session key activation protocol 12

11.2.4.111.3.4.1 Protocol overview 13

The key activation protocol defines a procedure of switching from the current encryption key to a new 14

encryption key that has been previously distributed by the OLT to one or more ONUs using the session key 15

distribution protocol (see 11.5). 16

The key activation protocol relies on encryption signaling fields embedded in envelope headers. These 17

fields include the encryption enabled flag (EncEnabled field) and encryption key index (EncKey field). The 18

EncEnabled and EncKey fields are described in IEEE Std 802.3, 143.3.2 and 143.3.3.4. The EncKey field 19

takes on values of only 0 and 1. 20

 Activation of a unicast (bidirectional) key 21

The unicast (bidirectional) key activation procedure consists of four sequential steps, as illustrated in Figure 22

11-7. 23

28

 1

Figure 11-7–Four steps comprising the key activation procedure 2

Each of the above four steps is represented by an independent process that runs continuously within the 3

secure Multi-Channel Reconciliation Sublayer (MCRS SEC). 4

Step 1 — Encryption key activation at the OLT: 5

The process of encryption key activation at the OLT is defined in 11.6.2.4. The OLT activates the 6

new encryption key upon the expiration of the key activation timer. 7

Generally, every encryption entity (i.e., ONUs and multicast LLIDs) maintains its own key 8

activation timer and these timers may have different intervals and/or be set to expire at different 9

times. However, for practical considerations, it is allowed for all encryption entities to share the 10

same key activation timer. 11

Once the key activation timer expired, the OLT waits for the next envelope header destined to the 12

given encryption entity. The OLT indicates switching to the new key by toggling the value of the 13

EncKey field in the envelope header. The envelope payload following this envelope header is 14

encrypted using the new key. 15

Step 2 — Decryption key activation at the ONU: 16

The process of decryption key activation at the ONU is defined in 11.6.2.5. For every received 17

envelope, the ONU retrieves a key associated with the given encryption entity, identified by the 18

LLID field in the envelope header, and the key index, identified by the EncKey field. Thus, 19

toggling of the EncKey value by the OLT in Step 1 above caused the ONU to also retrieve the new 20

key after it parsed and processed this envelope header. 21

Step 3 — Encryption key activation at the ONU: 22

The process of encryption key activation at the ONU is defined in 11.6.2.6. ONU’s activation of a 23

new decryption key in Step 2 also serves as a trigger for activating the same key for the encryption 24

OLT
Step 1

Encryption key

activation

Step 4

Decryption key

activation

ONU
Step 2

Decryption key

activation

Step 3

Encryption key

activation

Downstream

propagation

delay

Upstream

propagation

delay

Wait for upstream

envelope header

29

of its upstream transmission. The ONU waits for the next envelope header from to the given 1

encryption entity. The ONU indicates switching to the new key by toggling the value of the 2
EncKey field in the envelope header. The payload following this envelope header is encrypted 3

using the new key. 4

Step 4 — Decryption key activation at the OLT: 5

The process of the decryption key activation at the OLT is identical to that process at the ONU, 6

and is, in fact, described by the same state diagram (see 11.6.2.5). For every received envelope, 7

the OLT retrieves a key associated with the given encryption entity, identified by the LLID field, 8
and the key index, identified by the EncKey field. Thus, toggling of the EncKey value by the ONU 9

in Step 3 above caused the OLT to also retrieve the new key after it parsed and processed this 10

envelope header. 11

Optionally, the OLT may implement additional safety check of comparing that the retrieved 12

decryption key matches the previously used encryption key. If implemented, such check shall be 13

performed not earlier than a round-trip time after the activation of the new encryption key in step 1. 14

 Activation of a multicast (unidirectional) key 15

The activation of a multicast (unidirectional) key, i.e., a key associated with a multicast LLIDs, involves 16

only step 1 and step 2 (see 0) because the multicast LLIDs carry traffic only in the downstream direction. 17

The activation of the encryption key by the OLT, as signaled by toggling of the EncKey field in the 18

downstream envelope header, is detected by all ONUs that are members of the given multicast group. This 19

causes all member ONUs to activate the new key for the decryption. 20

 Location of key activation processes 21

The encryption and decryption key activation processes are located within the secure MCRS (MCRS SEC) 22

sublayer, as detailed in 11.3.1.2. 23

11.2.4.211.3.4.2 Definition of processes comprising the key activation protocol 24

 Variables 25

activeKeyIndex[ee] 26

TYPE: 1-bit integer 27

This variable represents the index of the currently active encryption/decryption key for the 28

encryption entity ee. Incrementing this variable by 1 causes its value to toggle between 0 and 1. 29

decryptionCounter[ch] 30

TYPE: 128-bit sequence 31

The initial value of the counter (initialization vector) used as an input block to the AES forward 32

cipher in the AES-CTR mode for decryption (see NIST SP 800-38A, 6.5). The 33

decryptionCounter is calculated independently for every received envelope header on every 34

channel ch and is passed to the decryption function (see Figure 11-1(b)). 35

decryptionKey[ch] 36

TYPE: sequence of 128 or 256 bits 37

30

The value of the key currently used for decryption on channel ch. The decryptionKey value 1

is fetched for every received envelope header and is passed to the decryption function (see Figure 2

11-1(b)). 3

encryptionCounter[ch] 4

TYPE: 128-bit sequence 5

The initial value of the counter (initialization vector) used as an input block to the AES forward 6

cipher in the AES-CTR mode for encryption (see NIST SP 800-38A, 6.5). The 7

encryptionCounter is calculated independently for every transmitted envelope header on 8

every channel ch and is passed to the encryption function (see Figure 11-1(a)). 9

encryptionEnabled[ee] 10

TYPE: boolean 11

This variable indicates whether the encryption is enabled or disabled for the given encryption 12

entity ee. 13

It the OLT, this variable is set to true when the initial encryption key becomes available 14

(calculated or provisioned) to the encryption entity ee in both the OLT and an ONU (refer to the 15

definition of variable initialKeyReady[ee]). Note that for testing and troubleshooting 16

purposes, the NMS may temporarily disable the encryption for an encryption entity ee by 17

overwriting the encryptionEnabled[ee] with the value of false (see 11.9). 18

In the ONU, under normal operation, this variable is equal to receivedEncrypted[ee], i.e., 19

an encryption entity ee encrypts the outgoing envelopes only if the envelopes this entity receives 20

from the OLT are also encrypted. For testing and troubleshooting purposes, the NMS may force 21

the ONU’s encryption to be on or off (via the attribute aEncryptionMode, see 14.4.5.1) 22

encryptionKey[ch] 23

TYPE: sequence of 128 or 256 bits 24

The value of the key currently used for encryption on channel ch. The encryptionKey value 25

is fetched for every transmitted envelope header and is passed to the encryption function (see 26

Figure 11-1(a)). 27

encryptionMode[ee] 28

TYPE: boolean 29

This variable is an alias of the extended attribute aEncryptionMode (0xDB/0x04-04) defined in 30

14.4.5.1. 31

initialKeyDone[ee] 32

TYPE: boolean 33

This variable is used only by the OLT encryption key activation process (see 11.6.2.4), where it 34

causes the replacement of the initial (ephemeral) key by the session key as soon as the first session 35

key is distributed to the ONU (i.e., without waiting for the key lifetime interval to expire). 36

If the encryption entity ee is associated with an ONU object, this variable is set to true by the 37

OLT OAM client after the first session key was distributed to the ONU and its reception and 38

processing was acknowledged by the ONU (see step 4 in 11.2.3). This variable is reset to false 39

on read. 40

If the encryption entity ee is associated with a multicast LLID object, this variable is equal to 41

false at all times. 42

31

initialKeyReady[ee] 1

TYPE: boolean 2

This variable is used only by the OLT encryption key activation process (see 11.6.2.4), where it 3

causes the encryption entity ee to start encrypting traffic in the downstream direction. 4

If the encryption entity ee is associated with an ONU object, this variable is set to true by the 5

OLT OAM client after the initial (ephemeral) key was calculated and stored in the array keys as 6

element keys[ee][0]. The derivation of the initial key is described in 11.3. This variable is 7

reset to false on read. 8

In If the encryption entity ee is associated with a multicast LLID, this variable is set to true by 9

the OLT OAM client after the first session key was distributed to all ONUs in a multicast group 10

and its reception and processing was acknowledged by every ONU. This variable is reset to 11

false on read. 12

keys[E][2] 13

TYPE: array of encryption keys 14

keys[E][2] is a two-dimensional array representing the stored encryption keys. The array size 15

is E2, where E represents the total number encryption entities, with two values stored for each 16

entity - the currently-active key and the key to be activated next. The value of E for the OLT 17

(EOLT) is defined in 11.8.1 and its value for the ONU (EONU) is defined in 11.8.2. 18

The key values are written into the keys[E][2] array by the Security function of the OAM 19

Client as the end result of the Session Key Distribution Protocol (see 11.5). The Session Key 20

Activation protocol stat diagrams have a read-only access to this array. 21

keyInterval[ee] 22

TYPE: integer 23

This variable represents an interval of time between updating the encryption keys (i.e., a key 24

lifetime) for encryption entity ee. The value of this variable is provisioned to the OLT by the 25

NMS, subject to constraints listed in 11.8.3. 26

receivedEncrypted[ee] 27

TYPE: boolean 28

This variable indicates whether the received envelope, whose LLID value maps to the encryption 29

entity ee, is encrypted or not. In the OLT and in the ONU, the value of this variable is derived 30

from the EncEnabled field of the received envelope headers. 31

RxEQ[ch] 32

TYPE: EQ 33

This variable represents an envelope quantum (EQ) received and stored in the EnvRx buffer of the 34

MCRS on channel ch (see IEEE Std 802.3, 143.3.4). 35

TxEQ[ch] 36

TYPE: EQ 37

This variable represents an envelope quantum (EQ) being transmitted from the EnvTx buffer of 38

the MCRS on channel ch (see IEEE Std 802.3, 143.3.3). 39

32

 Functions 1

calculateIV(ch, eq) 2

This function calculates the value of the initialization vector (IV) used as an input block to the 3

AES forward cipher in the AES-CTR (see NIST SP 800-38A, 6.5). The argument ch is an index 4

of the channel on which the IV is to be used. The argument eq is an EQ that represents an 5

envelope header. The IV construction method is defined in 11.7.4.2. 6

isHeader(eq) 7

The IsHeader(eq) function returns true if the parameter eq represents an envelope header. 8

This function is defined in IEEE Std 802.3, 143.3.4.4. 9

mapEncrEntity(llid) 10

The mapEncrEntity(llid) function maps an LLID value to an index of an encryption entity 11

(see 11.2.1.1). Each multicast LLID maps to an encryption entity associated with that multicast 12

LLID. All unicast (bidirectional) LLIDs provisioned on an ONU map to a single encryption entity 13

associated with the given ONU. 14

 Timers 15

keyTimer[ee] 16

This timer is used to count down the time remaining until the next key update. There exists a 17

separate instance of this counter for every encryption entity ee. A key for encryption entity ee 18

may not be used past the expiration of the keyTimer[ee]. 19

Each timer instance keyTimer[ee] is associated with an instance of boolean variable 20

keyTimer_done[ee]. Upon expiration of the timer, the value of keyTimer_done[ee] 21

becomes true (see 3.6.6). 22

 OLT encryption key activation process state diagram 23

The OLT shall implement the encryption key activation process as depicted in state diagram in Figure 11-8. 24

There shall be a separate instance of the encryption key activation process for each transmit channel ch in 25

the OLT. 26

33

 1

Figure 11-8—OLT encryption key activation process state diagram 2

 OLT and ONU decryption key activation process state diagram 3

The OLT and the ONU shall implement the decryption key activation process as depicted in state diagram 4

in Figure 11-9. There shall be a separate instance of the decryption key activation process for each receive 5

channel ch in the OLT and in the ONU. 6

WAIT_FOR_ENV_HEADER_TX

UCT

IsHeader(TxEQ[ch])

encryptionEnabled[ee]

FETCH_ENCRYPTION_KEY

encryptionKey[ch] = keys[ee][activeKeyIndex[ee]]
encryptionCounter[ch] = CalculateIV(ch, TxEQ[ch])

UPDATE_ENV_HEADER

TxEQ[ch].EncEnable = encryptionEnabled[ee]
TxEQ[ch].EncKey = activeKeyIndex[ee]

PARSE_ENV_HEADER

ee = mapEncrEntity(TxEQ[ch].LLID)

RESTART_KEY_TIMER

[start keyTimer[ee], keyInterval[ee]]

else

BEGIN

else

initialKeyReady[ee]initialKeyDone[ee] OR
keyActivateTimer_done[ee]

UCT

ACTIVATE_NEXT_KEY

activeKeyIndex[ee] ++

UCT

UCT

INITIAL_KEY_SETUP

activeKeyIndex[ee] = 0
encryptionEnabled[ee] = true

34

 1

Figure 11-9—OLT and ONU decryption key activation process state diagram 2

 ONU encryption key activation process state diagram 3

The ONU shall implement the encryption key activation process as depicted in state diagram in Figure 4

11-10. There shall be a separate instance of the encryption key activation process for each transmit channel 5

ch in the ONU. 6

BEGIN

WAIT_FOR_ENV_HEADER_RX

IsHeader(RxEQ[ch])

UCT

receivedEncrypted[ee]

FETCH_DECRYPTION_KEY

decryptionKey[ch] = keys[ee][activeKeyIndex[ee]]
decryptionCounter[ch] = CalculateIV(ch, RxEQ[ch])

else

PARSE_ENV_HEADER

ee = mapEncrEntity(RxEQ[ch].LLID)
receivedEncrypted[ee] = RxEQ[ch].EncEnable
activeKeyIndex[ee] = RxEQ[ch].EncKey

35

 1

Figure 11-10—ONU encryption key activation process state diagram 2

11.2.511.3.5 Cryptographic method 3

11.2.5.111.3.5.1 Introduction 4

In SIEPON.4 systems, the OLT and ONUs encrypt data using the AES Counter mode (AES-CTR). The 5

AES-CTR is a confidentiality mode that applies the forward cipher to a set of input blocks, called counters, 6

to produce a sequence of output blocks that are XOR-ed with the plaintext to produce the ciphertext, and 7

vice versa. The AES-CTR mode requires that all counter values be distinct across all of the messages that 8

are encrypted under the given key. For the detailed specification of the AES-CTR refer to NIST SP 800-9

38A, 6.5. 10

 Envelope-based encryption 11

The concept of transmission envelope is defined in IEEE Std 802.3, 143.2.4.2. An envelope encapsulates 12

continuous transmission by a specific MAC instance (LLID) on one MCRS channel. 13

In SIEPON.4 cryptographic method, the encryption is based on an envelope structure, i.e., an envelope 14

payload constitutes the plaintext message to be encrypted. The envelope headers themselves are not 15

encrypted. An entire envelope payload is encrypted using the same session key. A new session key may 16

only activate during the reception or transmission of an envelope header (refer to Session Key Activation 17

protocol in 11.6). 18

BEGIN

WAIT_FOR_ENV_HEADER_TX

IsHeader(TxEQ[ch])

UCT

encryptionEnabled[ee]

else

UPDATE_ENV_HEADER

TxEQ[ch].EncEnable = encryptionEnabled[ee]
TxEQ[ch].EncKey = activeKeyIndex[ee]

UCT

PARSE_ENV_HEADER

ee = mapEncrEntity(TxEQ[ch].LLID)

UCT

FETCH_ENCRYPTION_KEY

encryptionKey[ch] = keys[ee][activeKeyIndex[ee]]
encryptionCounter[ch] = CalculateIV(ch, TxEQ[ch])

UPDATE_ENCRYPTION_STATUS

encryptionEnabled[ee] =
 encryptionMode[ee] == force_on OR
 (encryptionMode[ee] == normal AND receivedEncrypted[ee])

36

The cipher block size is 128 bits. Each block of plaintext includes exactly two EQs. Some plaintext blocks 1

are only partially-encrypted, i.e., the above-mentioned XOR operation is applied to only a portion of the 2

plaintext block. The reason for this is explained in 11.7.2. 3

 Location of the encryption/decryption functional blocks 4

The encryption and decryption functional blocks are located within the secure MCRS (MCRS SEC) sublayer, 5

as detailed in 11.2.2. 6

11.2.5.211.3.5.2 Encryption process 7

The encryption process applies the forward cipher function to each counter block, and the resulting output 8

blocks are XOR-ed with the corresponding plaintext blocks to produce the ciphertext blocks (see Figure 9

11-11). 10

The first counter block in a message (Counter 1) is initialized to the value called Initialization Vector (IV). 11

The IV value used for the encryption is calculated by the OLT encryption key activation process (see 12

Figure 11-8) and by the ONU encryption key activation process (see Figure 11-10). Every subsequent 13

counter block associated with the given message is constructed by incrementing the value of the previous 14

counter block by 1. 15

If the envelope payload length is odd, the last block will only contain one EQ. In such case, the most 16

significant 64 bits of the last output block are used for the XOR operation and the remaining 64 least 17

significant bits of the last output block are discarded. 18

 19

Figure 11-11—Block diagram of the encryption process 20

For every block of plaintext, a mask is constructed to block-out the control characters (see 11.7.5.2). This 21

mask is AND-ed with the output of the AES block cipher, resulting in the unencrypted control characters 22

being placed in the ciphertext blocks. 23

Input

Counter 1

AES

block cipher

Plaintext 1

Ciphertext 1

Mask 1 AND

XOR

+1

Last block size

can be 64 bits

Counter 2

AES

block cipher

Plaintext 2

Ciphertext 2

Mask 2 AND

XOR

Counter N

AES

block cipher

Mask N AND

XOR

Plaintext N

Ciphertext N

Key

Output

IV
+1

37

In the encryption process, the forward cipher block operations can be performed in parallel. Moreover, the 1

forward cipher functions can be applied to the counters prior to the availability of the plaintext data, if the 2

corresponding counter block values can be determined. 3

11.2.5.311.3.5.3 Decryption process 4

The decryption process applies the forward cipher function to each counter block, and the resulting output 5

blocks are XOR-ed with the corresponding ciphertext blocks to recover the plaintext blocks (see Figure 6

11-12). 7

Similarly to that in the encryption process, the first counter block in a message (Counter 1) is initialized to 8

the value called Initialization Vector (IV). The IV value used for the decryption is calculated by the OLT 9

and ONU decryption key activation process (see Figure 11-9). Every subsequent counter block associated 10

with the given message is constructed by incrementing the value of the previous counter block by 1. 11

For a given encrypted message (i.e., an envelope), the IV and the subsequent counter block values applied 12

by the decryption process match the IV and the counter values that were previously applied by the 13

encryption process to encrypt the same message. 14

If the envelope payload length is odd, the last block will only contain one EQ. In such case, the most 15

significant 64 bits of the last output block are used for the XOR operation and the remaining 64 least 16

significant bits of the last output block are discarded. 17

 18

Figure 11-12—Block diagram of the decryption process 19

For every block of ciphertext, a mask is constructed to block-out the control characters (see 11.7.5.2). This 20

mask is AND-ed with the output of the AES block cipher, resulting in the unencrypted control characters 21

being transferred from the ciphertext blocks into the plaintext blocks. 22

In the decryption process, the forward cipher block operations can be performed in parallel. Moreover, the 23

forward cipher functions can be applied to the counters prior to the availability of the ciphertext data, if the 24

corresponding counter block values can be determined. 25

Input

Counter 1

AES

block cipher

Mask 1 AND

XOR

+1

Last block size

can be 64 bits

Counter 2

AES

block cipher

Mask 2 AND

XOR

Counter N

AES

block cipher

Mask N AND

XOR

Key

Output

IV
+1

Plaintext 1 Plaintext 2 Plaintext N

Ciphertext 1 Ciphertext 2 Ciphertext N

38

11.2.5.411.3.5.4 Initialization Vector (IV) construction 1

The sequence of counters must have the property that each block in the sequence is different from every 2

other block. This condition is not restricted to a single message; across all of the messages that are 3

encrypted under the given key, all of the counters must be distinct. This condition is satisfied by ensuring 4

that IV values calculated for every message are distinct for any message (envelope) encrypted with the 5

same key. 6

To encrypt a message, the IV is calculated by the encryption key activation processes at the OLT (see 7

Figure 11-8) and at the ONU (see Figure 11-10) when an envelope header (ESH or ECH) is observed in the 8

transmit path of the MCRSSEC sublayer. 9

To decrypt a message, the IV is calculated by the decryption key activation processes at the OLT and the 10

ONU (see Figure 11-9) when an envelope header (ESH or ECH) is observed in the receive path of the 11

MCRSSEC sublayer. 12

The data within the envelope header together with the index of the channel on which this envelope header 13

was transmitted or received comprise the input parameters to the CalculateIV(…) function that derives 14

the IV values in the above mentioned processes (see 11.6.2.2). It is critical that for any given encrypted 15

message (envelope), the IV calculated by the decryption key activation process matched the IV calculated 16

by the encryption key activation process. 17

 18

Figure 11-13—Structure of the Initialization Vector 19

The structure of the IV is illustrated in Figure 11-13. The IV consists of the following four fields: 20

ChannelIndex – Index of the channel on which the encrypted message is being transmitted or received. 21

The most significant bit (bit 127) represents the direction (0 – downstream; 1- 22

upstream), and bits [126:120] represent the channel number. For example, the value 23

0x01 represents the downstream channel 1 (DC1) and the value 0x80 represents the 24

upstream channel 0 (UC0). The MCRS channels are explained in IEEE Std 802.3, 25

143.4.1.1. 26

The inclusion of this field ensures that in a situation when multiple ESHs to/from the 27

same ONU are transmitted at the same time (i.e., the IVs have the same MessageTime 28

filed value) on different channels, their associated IV values would still be distinct. 29

MacAddress – This is the MAC address of the device that encrypted the given envelope. In the 30

downstream direction, this is the MAC address associated with the PON port of the 31

OLT. In the upstream direction, this is the MAC address associated with the PON port 32

of the transmitting ONU. 33

To calculate the IV for the decryption, the ONU uses the OLT’s MAC address known 34

to it from the MPCP registration step. The OLT also has a prior knowledge of MAC 35

addresses of all connected ONUs, but it needs to determine which specific ONU 36

sourced the given envelope. It does that by first extracting the LLID value from the 37

ESH and then looking up the MAC address associated with this LLID. 38

MessageTime – This field represents a timestamp of cipher clock captured at the moment when the 39

encryption key activation process observes the ESH in the MCRSSEC transmit path or 40

MessageTimeMacAddress BlockIndex

127 024 2372 71120 119

ChannelIndex

39

the decryption key activation process observes the ESH in the MCRSSEC receive path. 1

The cipher clock runs synchronously with the MPCP clock, but otherwise is a distinct 2

clock, as explained in 11.7.4.1. 3

This field ensures that all the counter block values used on the same channel (i.e., the 4

IVs have the same ChannelIndex values) and with the same session key are distinct. 5

BlockIndex – The block index field is set to zero when an envelope header is detected. This field is 6

incremented by 1 for every subsequent counter block in the same envelope. 7

 Cipher clock 8

The cipher clock is a 48-bit counter that runs synchronously with the MPCP clock (LocalTime), but is a 9

distinct clock. The OLT and the ONUs contain versions of this clock that is used as a timestamp source for 10

the IV field MessageTime. At the OLT, a single clock, referred to as CipherClock is used for IV 11

construction in both the encryption and the decryption functions. At the ONU, there are two instances of 12

the cipher clock: the TxCipherClock that is used to construct the IV for the encryption function, and the 13

RxCipherClock that is used to construct the IV for the decryption function. The relationship between the 14

OLT’s CipherClock and the ONU’s RxCipherClock and TxCipherClock is illustrated in Figure 11-14. 15

 16

Figure 11-14—Relationship of OLT’s CipherClock and 17

ONU’s TxCipherClock and RxCipherClock 18

The MPCP clock is a 32-bit counter that increments by one every EQT. The initial synchronization of the 19

MPCP clock takes place during ONU’s MPCP discovery and registration and is described in 20

IEEE Std 802.3, 144.3.1.1. 21

The origin point of the MPCP clock (counter) at the ONU is advanced relative to the origin point of the 22

MPCP clock at the OLT by the upstream propagation time. The desired effect of such shift is that an 23

envelope header transmitted by the ONU at its local MPCP time Ti is received by the OLT also at its local 24

MPCP time Ti. 25

MPCP clock

CipherClock

Upstream
propagation

delay *

CipherClock cycle =

 2
48

 EQT » 200.16hrs

MPCP clock

TxCipherClock

RxCipherClock

O

N

U

O

L

T

Round-trip time *

Downstream
propagation

delay *

* Propagation delays
 are not to scale

MPCP Clock cycle =

 2
32

 EQT » 11s

40

The CipherClock in the OLT is an extension of the OLT MPCP clock constructed by prepending 16 most-1

significant bits to the MPCP clock, i.e., LocalTime counter (see IEEE Std 802.3, 144.2.1.1). The carry-2

over bit from the LocalTime counter increments the first bit of the 16-bit extension portion (i.e., the bit 3

32 of the 48-bit CipherClock counter). 4

The TxCipherClock in the ONU is an extension of the ONU MPCP clock and is constructed in a manner 5

similar to the OLT CipherClock construction. Because the OLT CipherClock and the ONU TxCipherClock 6

extend their respective MPCP clocks, they preserve their relative shift, ensuring that the MessageTime 7

value used to construct the IV for the encryption at the ONU matches the MessageTime value used to 8

construct the IV for the decryption at the OLT. 9

The RxCipherClock at the ONU is a separate 48-bit clock increments synchronously with the ONU MPCP 10

clock, but is not an extension of the MPCP clock (i.e., the low 32 bits of the RxCipherClock are not equal to 11

ONU’s MPCP LocalTime value). The origin point of the RxCipherClock at the ONU is delayed relative 12

to the origin point of the CipherClock at the OLT by the downstream propagation time. The desired effect 13

of such shift is that an envelope header transmitted by the OLT when its CipherClock value is Ti is received 14

by the ONU at its RxCipherClock value is also Ti. 15

11.2.5.4.1.111.3.5.4.1.1 Cipher clock alignment in the upstream 16

The MCRS defined in IEEE Std 802.3, Clause 143 ensures that an envelope header (EH) transmitted by the 17

ONU at a specific local time value is received at that exact local time at the OLT. To achieve that, the ONU 18

sets the EPAM field in the EH to equal 6 least significant bits of its MPCP time (EH.EPAM = 19

LocalTime[5:0]). 20

At the OLT, this EH is received (i.e., is written) into the EnvRx buffer into row with index equal to 21

EH.EPAM. This EH is then read from the EnvRx buffer at the exact time when the OLT’s 22

LocalTime[5:0] are equal to the row index (i.e., when LocalTime[5:0] = EH.EPAM). As the 6 23

LSB are aligned, so are the entire extended MPCP clock values at the ONU and OLT are equal. 24

Since the CipherClock at the OLT and the TxCipherClock at the ONU are the extensions of their respective 25

MPCP clocks, it follows that the value of ONU’s TxCipherClock latched at the moment when the EH is 26

written into EnvTx buffer at the ONU matches the value of OLT’s CipherClock latched at the moment 27

when the EH is read from the EnvRx buffer at the OLT. 28

11.2.5.4.1.211.3.5.4.1.2 Cipher clock alignment in the downstream 29

In the downstream direction, the OLT sets the EPAM field in the EH to equal 6 least significant bits of its 30

MPCP time (EH.EPAM = LocalTime[5:0]). 31

At the ONU, this EH is received (i.e., is written) into the EnvRx buffer into row with index equal to 32

EH.EPAM. This EH is then read from the EnvRx buffer at the exact time when the 6 LSB of the ONU’s 33

RxCipherClock are equal to the row index. (Note however, that ONU’s LocalTime[5:0]  EH.EPAM 34

because the ONU’s MPCP clock is advanced by the upstream propagation time, see Figure 11-14.) 35

As the 6 LSB are aligned, it follows that the value of OLT’s CipherClock latched at the moment when the 36

EH was written into EnvTx buffer at the OLT matches the value of ONU’s RxCipherClock latched at the 37

moment when the EH was read from the EnvRx buffer at the ONU. 38

11.2.5.4.1.311.3.5.4.1.3 Initial cipher clock synchronization 39

While the OLT and ONU MPCP clocks are synchronized as part of the MPCP Discovery and Registration 40

process (see IEEE Std 802.3, 144.3.1.1), the RxCipherClock and the TxCipherClock require an additional 41

synchronization procedure to synchronize the 16 most-significant bits. 42

41

To initiate the cipher clock synchronization at the ONU, the OLT issues a Set_Request OAMPDU 1

containing the Sync Cipher Clock TLV (see 14.6.5.2). The OLT shall not activate the initial encryption key 2

for an ONU until it receives a positive acknowledgement from that ONU that the Sync Cipher Clock TLV 3

was processed successfully. 4

The OLT shall form the Sync Cipher Clock TLV by setting its RxCipherTimestamp and 5

TxCipherTimestamp fields as follows: 6

RxCipherTimestamp = CipherClock; 7

TxCipherTimestamp = RxCipherTimestamp + RTT[PLID]; 8

The RTT[PLID] is the round-trip time value measured for the given ONU (PLID) at the time of its MPCP 9

discovery. Note that adding RTT[PLID] may cause the value TxCipherTimestamp to wrap around. 10

It may not be possible to tightly control the transmission time of OAMPDUs, unlike that of MPCPDUs. It 11

is acceptable for the OAMPDU containing the Sync Cipher Clock TLV to be transmitted after the time 12

epoch corresponding to the captured value of the OLT’s CipherClock, but the transmit time (referenced to 13

the ESH of the envelope containing this OAMPDU) shall not lag behind the said time epoch by more than 14

1 second. 15

When the ONU receives the Sync Cipher Clock TLV, it increments both the TxCipherTimestamp and 16

the RxCipherTimestamp until the bottom 32 bits of the TxCipherTimestamp match the current 17

value of its local MPCP clock (i.e., LocalTime variable). The amount of such increment depends on how 18

much the transmission time of Sync Cipher Clock TLV lagged behind the captured value of OLT’s 19

CipherClock. Note that incrementing the TxCipherTimestamp or the RxCipherTimestamp may 20

cause the values to wrap around. 21

while(TxCipherTimestamp[31:0] != LocalTime) 22

{ 23

TxCipherTimestamp ++; 24

RxCipherTimestamp ++; 25

} 26

Once the bottom 32 bits of TxCipherTimestamp match the LocalTime, the values of TxCipherClock 27

and RxCipherClock are set by writing the corresponding adjusted timestamps into the acSyncCipherClock 28

attribute (see 14.6.5.2): 29

acSyncCipherClock.sTxCipherClock = TxCipherTimestamp; 30

acSyncCipherClock.sRxCipherClock = RxCipherTimestamp; 31

From this moment on, the TxCipherClock and the RxCipherClock increment synchronously with the 32

ONU’s MPCP clock. 33

If the TxCipherClock and the RxCipherClock are synchronized properly, the following holds true: 34

 The bottom 32 bits of TxCipherClock match the local MPCP time at all times 35

(TxCipherClock[31:0] == LocalTime). 36

 The bottom 6 bits of RxCipherClock match the value of the EPAM field in any received 37

envelope header. 38

Implementations may choose to verify the above conditions in order to ensure proper RxCipherClock and 39

TxCipherClock alignment. 40

42

11.2.5.4.1.411.3.5.4.1.4 Implementation options (informative) 1

At the OLT, the CipherClock and MPCP clock can share the same 48-bit variable (register), with the 2

MPCP clock occupying the 32 least-significant bits (i.e., LocalTime[31:0] = 3

CipherClock[31:0]). 4

At the ONU, an observation can be made that the time frame reference of RxCipherClock lags behind the 5

time frame reference of the TxCipherClock by a fixed interval equal to ONU’s round trip time. Thus, it is 6

possible to represent the MPCP clock, the TxCipherClock and the RxCipherClock by the same 48-bit 7

variable (register). The TxCipherClock is represented by the full register value, while the ONU MPCP 8

clock is represented by the 32 least-significant bits (i.e., LocalTime[31:0] = 9

TxCipherClock[31:0]). The RxCipherClock can be derived by subtracting the round-trip time (a 10

fixed constant) from the value of the TxCipherClock: RxCipherClock[47:0] = 11
TxCipherClock[47:0] – RTT. 12

 CalculateIV(…) function 13

The function CalculateIV(ch, eh) is used by the encryption and decryption key activation 14

processes in the OLT and ONUs. In each of these processes, the behavior of this function is similar at the 15

high level, but differs in specific minor details, as explained below. This function executes within one 16

MPCP clock cycle (in under one EQT), therefore the 6 least-significant bits of the relevant cipher clock 17

counter match the value of the EPAM field of the EH (see IEEE Std 802.3, 143.3.2). 18

In the OLT encryption key activation process, the function CalculateIV(ch, eh) is called at the 19

moment when an envelope header (EH) eh is observed in the MCRS transmit path on channel ch (see 20

Figure 11-8). The following is the definition of the function CalculateIV(ch, eh) for the OLT 21

encryption key activation process: 22

int128 CalculateIV(ch, eh) 23

{ 24

iv.ChannelIndex = ch; // Channel index 25

iv.MacAddress = OLT_MAC_ADDRESS; // Known constant 26

iv.MessageTime = CipherClock; // Latch OLT’s cipher clock 27

iv.BlockIndex = 0; // Reset block index 28

return iv; 29

} 30

In the OLT decryption key activation process, the function CalculateIV(ch, eh) is called at the 31

moment when an envelope header (EH) eh is observed in the MCRS receive path on channel ch (see 32

Figure 11-9). The following is the definition of the function CalculateIV(ch, eh) for the OLT 33

decryption key activation process: 34

int128 CalculateIV(ch, eh) 35

{ 36

iv.ChannelIndex = ch; // Channel index 37

iv.MacAddress = MacAddr[eh.llid]; // MAC address table lookup 38

iv.MessageTime = CipherClock; // Latch OLT’s cipher clock 39

iv.BlockIndex = 0; // Reset block index 40

return iv; 41

} 42

Note that, in this function, the OLT needs to perform a table lookup to retrieve the MAC address associated 43

with a given LLID value. 44

43

In the ONU encryption key activation process, the function CalculateIV(ch, eh) is called at the 1

moment when an envelope header (EH) eh is observed in the MCRS transmit path on channel ch (see 2

Figure 11-10). The following is the definition of the function CalculateIV(ch, eh) for the ONU 3

encryption key activation process: 4

int128 CalculateIV(ch, eh) 5

{ 6

iv.ChannelIndex = ch; // Channel index 7

iv.MacAddress = ONU_MAC_ADDRESS; // Known constant 8

iv.MessageTime = TxCipherClock; // Latch ONU’s tx. cipher clock 9

iv.BlockIndex = 0; // Reset block counter 10

return iv; 11

} 12

In the ONU decryption key activation process, the function CalculateIV(ch, eh) is called at the 13

moment when an envelope header (EH) eh is observed in the MCRS receive path on channel ch (see 14

Figure 11-9). The following is the definition of the function CalculateIV(ch, eh) for the ONU 15

decryption key activation process: 16

int128 CalculateIV(ch, eh) 17

{ 18

iv.ChannelIndex = ch; // Channel index 19

iv.MacAddress = OLT_MAC_ADDRESS; // Learned at registration 20

iv.MessageTime = RxCipherClock; // Latch ONU’s rx. cipher clock 21

iv.BlockIndex = 0; // Reset block index 22

return iv; 23

} 24

11.2.5.511.3.5.5 Encrypted envelope format 25

To encrypt a message, an envelope payload is divided in 128-bit blocks of plaintext and the encryption 26

operation is performed as described in 11.7.2. To decrypt a message, an envelope payload is divided in 27

128-bit blocks of ciphertext and the decryption operation is performed as described in 11.7.3. 28

Exactly two EQs form a plaintext or ciphertext block, except in the case of odd payload length, the last 29

block contains a single EQ (see Figure 11-15). In every envelope, the first payload block is aligned to the 30

end of envelope header. The envelope header itself is not encrypted. 31

44

 1

Figure 11-15—EQ-to-block conversion 2

 EQ types that bypass the encryption and decryption processes 3

As was shown in 11.2.3 and 11.2.4, there are several types of EQs that can appear in the MCRS data path. 4

Some of the EQ types represent control sequences used to signal frame, envelope, or burst delineation (see 5

IEEE Std 802.3, 143.3.3.6.2). These EQs require special treatment by the encryption and the decryption 6

functions, as illustrated in Figure 11-16 and detailed below: 7

Rate Adjustment (RATE_ADJUST_EQ): 8

The MCRS (MCRSSEC) periodically inserts a series of 33 RATE_ADJUST_EQs to pace the MAC 9

data rate in order to allow the FEC parity data insertion by the PCS. The position of 10

RATE_ADJUST_EQ insertion is determined by the Input process of the MCRS Transmit function 11

and by the Output process of the MCRS Receive function. The RATE_ADJUST_EQ insertion by 12

the Input and the Output processes may happen at different positions within an envelope. 13

The RATE_ADJUST_EQs are not considered part of envelope (i.e., they are not accounted in 14

envelope length value). As described in 11.2.3 and 11.2.4, these EQs bypass the 15

Encryption/Decryption processes, i.e., they are not encrypted and they do not affect the plaintext 16

Block 1

EH D D D D D D D D EH D

Block 2 Block 3 Block 4

D D D

Block 1 Block 2

Block 1

EH D D D D D D D D EH D

Block 2 Block 3 Block 4

D D D D

Block 1 Block 2

Partial block

a) Block alignment in an envelope with the payload of even length

b) Block alignment in an envelope with the payload of odd length

EHEH

EH B. 5 EH

Envelope payload

Envelope payload

New IV is calculated and

block alignment is reset

New IV is calculated and

block alignment is reset

New IV is calculated and

block alignment is reset

New IV is calculated and

block alignment is reset

EH - Envelope Header EQ

D - Data EQ

- Encrypted

- Unencrypted

45

or the ciphertext block alignment. The sequence of RATE_ADJUST_EQs may be inserted in the 1

middle of single plaintext or ciphertext block, as illustrated in Figure 11-16. 2

Inter-Envelope Idle (IEI_EQ): 3

The IEI_EQs are inserted when there is no envelope available for transmission, while the 4

transmission channel itself is active. The IEI_EQs are not part of an envelope. However, unlike the 5

RATE_ADJUST_EQs, they cannot appear in the middle of an envelope. Within the encryption 6

and decryption functions, the IEI_EQs bypass the Encryption/Decryption processes, i.e., they are 7

not encrypted and they do not affect the plaintext or the ciphertext block alignment. 8

Inter-Burst Idle (IBI_EQ): 9

The IBI_EQs are inserted when the transmission channel is not active, such as between 10

transmission bursts. The IBI_EQs can only appear in the upstream and are not considered part of 11

an envelope. Within the encryption and decryption functions, the /IBI/ characters bypass the 12

Encryption/Decryption processes, i.e., they are not encrypted and they do not affect the plaintext 13

or the ciphertext block alignment. 14

 15

Block 1

EH D D D D D D D

Block 2 B. 3 Block 4EH

Beginning of

envelope payload

RA RA RA RA D

B. 3RA RA RA RA

FEC Parity placeholders

are not part of an envelope

Continuation of

envelope

payload

RATE_ADJUST_EQs are

not encrypted and do not

form cipher blocks

T EH D D D D

Block 1 Block 2EH

I I IEI IEI IBID IBI

IEI IEI IBI IBIBlock 5 Block 6 B.7

I

Idle EQs form

cipher blocks, but

are not encrypted

Only data

portion of a

Terminate EQ

is encrypted

IEI_EQs and IBI_EQs

are not part of an envelope

IEI_EQs and IBI_EQs

are not encrypted and do

not form cipher blocks

End of

envelope payload

Beginning of

next envelope

D - Data EQ - Encrypted

- UnencryptedI - Idle EQ

- Partially-encryptedT - Termination EQ

Block 3

continues after the

RATE_ADJUST_EQs

EH - Envelope Header EQ

IEI - IEI_EQ

IBI - IBI_EQ

RA - RATE_ADJUST_EQ

46

Figure 11-16—Handling of special EQ types by 1

encryption/decryption function 2

 Handling of the control characters in envelope payloads 3

There are several EQ types that can appear in the payload portion of an envelope: data EQ, Termination EQ, 4

and (regular) Idle EQ. Some of these EQ types may include control characters /T/ and /I/. In order to 5

support 64b/66b encoding in the PCS, these control characters are passed from the input to the output of the 6

encryption or the decryption process unmodified. 7

As explained in 11.7.2 and 11.7.3, the control characters are left unencrypted by applying a mask to the 8

output of the AES block cipher, before that output is XOR-ed with the plaintext or the ciphertext blocks. 9

Within the MCRS, an EQ is represented by a 72-bit structure, consisting of 8 control bits Ctrl[0:7] and 10

8 data octets Data [0:7] (see IEEE Std 802.3, 143.2.4.1). If the Ctrl[i] bit is 1, then the 11

corresponding Data[i] octet represents a control character, which shall be left unencrypted. Otherwise, 12

the Data[i] is a data octet, which shall be encrypted. Table 11-1 shows all EQ types that may be 13

encountered in the envelope payload and the associated EQ mask. The masks associated with two EQs that 14

form a plaintext or a ciphertext block are combined to form a 128-bit mask that is to be applied to the 15

output of the AES block cipher. 16

Table 11-1—EQ types and the associated encryption EQ masks 17

EQ type
Ctrl[0:7]

(bin)
Data[0:7]

(hex) a
Mask
(hex)

Data 00000000 xx-xx-xx-xx-xx-xx-xx-xx FF-FF-FF-FF-FF-FF-FF-FF

Terminate

00000001 xx-xx-xx-xx-xx-xx-xx-FD FF-FF-FF-FF-FF-FF-FF-00

00000011 xx-xx-xx-xx-xx-xx-FD-07 FF-FF-FF-FF-FF-FF-00-00

00000111 xx-xx-xx-xx-xx-FD-07-07 FF-FF-FF-FF-FF-00-00-00

00001111 xx-xx-xx-xx-FD-07-07-07 FF-FF-FF-FF-00-00-00-00

00011111 xx-xx-xx-FD-07-07-07-07 FF-FF-FF-00-00-00-00-00

00111111 xx-xx-FD-07-07-07-07-07 FF-FF-00-00-00-00-00-00

01111111 xx-FD-07-07-07-07-07-07 FF-00-00-00-00-00-00-00

11111111 FD-07-07-07-07-07-07-07 00-00-00-00-00-00-00-00

Idle 11111111 07-07-07-07-07-07-07-07 00-00-00-00-00-00-00-00

a xx indicates ‘any value’ 18

11.2.611.3.6 Encryption key management 19

11.2.6.111.3.6.1 Key storage in the OLT 20

The OLT encrypts the unicast traffic to each ONUs using a unique key. Every multicast LLID is encrypted 21

using a unique key as well. 22

Given a PON configuration that includes U ONUs and M multicast LLIDs, the OLT shall be able to support 23

EOLT encryption entities, where EOLT = U + M (refer to use of constant EOLT in the definition of 24

keys[E][2] in 11.6.2.1). The OLT shall contain enough storage space for 2EOLT keys, with each key 25

being 128 or 256 bits long. 26

At any time, in the OLT, at most U keys are active for decryption and U + M keys are active for encryption. 27

47

11.2.6.211.3.6.2 Key storage in the ONU 1

The ONU encrypts all unicast LLIDs with the same key in both upstream and the downstream directions. 2

Each multicast LLID provisioned into the given ONU is encrypted using its independent key. 3

For each encryption key, the ONU stores two key values: the currently-active key value and the key value 4

that will become active on the next key switch event. 5

Given an ONU configuration that includes any number of unicast LLIDs and m multicast LLIDs, the ONU 6

shall be able to support EONU encryption entities, where EONU = m + 1 (refer to use of constant EONU in the 7

definition of keys[E][2] in 11.6.2.1). The ONU shall contain enough storage space for 2EONU keys, 8

with each key being 128 or 256 bits long. 9

At any time, in the ONU, at most m + 1 keys are active for decryption and only one key is active for 10

encryption. 11

11.2.6.311.3.6.3 Key lifetime 12

One of the requirements of AES CTR mode is that the counter values do not repeat for the duration 13

(lifetime) of a single encryption key (see NIST SP 800-38A, 6.5). Therefore, the construction method of the 14

Initialization Vector (IV) imposes the upper limit on the encryption key lifetime. 15

The IV construction is defined in 11.7.4. It relies on the extended 48-bit MPCP clock counter. This counter 16

increments every envelope quantum time (EQT), which equals 2.56 ns (see IEEE Std 802.3, 1.4.245c). 17

Thus, the MPCP counter rolls-over every 200.16 hours. The OLT shall maintain the key lifetime of less 18

than or equal to 200 hours (Tmax_key_lifetime). Different encryption entities may optionally have different key 19

lifetimes not exceeding the Tmax_key_lifetime. 20

11.2.711.3.7 Encryption testing and troubleshooting modes of operation 21

Under the normal operation conditions, for all encryption entities associated with ONU objects, the 22

encryption is enabled in both downstream and upstream directions, and for all encryption entities associated 23

with multicast LLID objects, the encryption is enabled the downstream direction. 24

For testing and troubleshooting purposes, the NMS may temporarily disable the encryption for any 25

encryption entity ee in the downstream direction and/or in the upstream direction, if applicable. 26

11.2.7.111.3.7.1 Encryption entities associated with multicast LLID objects 27

For an encryption entity ee associated with a multicast LLID object, the encryption is disabled by setting 28

the variable encryptionEnabled[ee] at the OLT to false (see 11.6.2.1). Disabling encryption for a 29

multicast ULID or a multicast PLID does not affect the security of traffic or the key updates for other 30

encryption entities. There are special considerations for disabling encryption for an entity ee associated 31

with a multicast MLID, as explained in 11.9.3. 32

Note that disabling the encryption of multicast ULID/PLID does not stop the periodic key updates for these 33

multicast LLIDs. The key updates continue over the unicast or multicast MLID channels, which remain 34

encrypted and secure. 35

Upon completion of the testing or troubleshooting analysis, the encryption of multicast ULID or a multicast 36

PLID traffic is re-enabled by simply setting the variable encryptionEnabled[ee] at the OLT to 37

true. 38

48

11.2.7.211.3.7.2 Encryption entities associated with ONU objects 1

An encryption entity ee associated with an ONU object carries all the unicast traffic to and from that ONU 2

(i.e., it aggregates all the unicast LLIDs at a given ONU, including the unicast MLID). 3

Setting the variable encryptionEnabled[ee] to false at the OLT disables the encryption of 4

downstream traffic associated with encryption entity ee. This, in turn, causes the ONU encryption key 5

activation process to disable the encryption of the upstream unicast traffic associated with this encryption 6

entity ee (see 11.6.2.6). 7

NOTE -- The action of disabling the downstream encryption for an encryption entity ee associated with an 8

ONU object may expose the encryption keys distributed via the MLID channel. Such action shall never be 9

performed on ONUs carrying live user traffic. 10

Once this value encryptionEnabled[ee] is set to false at the OLT, it cannot be changed back to 11

true via NMS anymore. To re-enable the encryption, the OLT shall initiate the ONU authentication process 12

(see 11.3) and the initial key exchange (see 11.4). 13

At the ONU, the upstream encryption is controlled via the attribute aEncryptionMode (see 14.4.5.1). Under 14

the normal operation, the upstream encryption is enabled if the downstream unicast traffic to this ONU is 15

encrypted. For testing and troubleshooting purposes, the aEncryptionMode allows forcing the upstream 16

encryption on or off, regardless of the status of the downstream encryption. 17

Disabling the upstream encryption is a less disruptive operation than disabling the downstream encryption, 18

since the encryption keys are never transmitted in the upstream direction. Upon conclusion of the 19
troubleshooting analysis, the upstream encryption can be re-enabled by setting the aEncryptionMode 20

attribute to normal. 21

11.2.7.311.3.7.3 Encryption entities associated with multicast MLID objects 22

Special care is required when disabling the encryption for multicast MLIDs, as such MLIDs may be used to 23

distribute the multicast encryption keys (see 11.5.3.1 and 11.5.3.2). The multicast MLID encryption shall 24

never be disabled in systems carrying live user multicast traffic. 25

 26

	11 Security-oriented mechanisms
	11.1 IntroductionOverview of threats and mitigation measures
	11.1.1 Threat model
	11.1.2 Physical protection of security data in the ONU
	11.1.2.1 Secure non-volatile storage
	11.1.2.2 Protection against unauthorized access
	11.1.2.3 Use of One-Time-Programmable (OTP) Memory
	11.1.2.4 Compliance with FIPS-140-2 Security Requirements
	11.1.2.5 Compliance with FIPS-140-2 Security Level 1

	11.1.3 Security mechanisms
	11.1.3.1 Establishment of security mechanisms

	11.2 Authentication of the ONU identity and access management
	11.2.1 ONU identity
	11.2.2 Network Access ControlONU authentication
	11.2.2.1 ONU Authentication authentication Credentialscredentials
	11.2.2.1.1 The Device Authentication Keypair (DAK) Rrequirements
	11.2.2.1.2 Credential Identification and Selection
	11.2.2.1.3 The Device Authentication Credential (DAC) Requirements
	11.2.2.1.4 The Network Authentication Credential (NAC) Requirements
	11.2.2.1.5 Network Authentication Credential (NAC) Intermediate Certificates

	11.2.2.2 The ONU Aauthentication Procedureprocedure

	11.2.3 ONU authorization
	11.2.3.1 Authorization procedure
	11.2.3.1.1 Verification of ONU properties and capabilities.
	11.2.3.1.2 Verification of user account / service eligibility.
	11.2.3.1.3 Verification of ONU’s operational parameters.
	11.2.3.1.4 ONU authorization requirements

	11.2.3.2 Onboarding of a new ONU
	11.2.3.2.1 ONU deployment scenarios
	11.2.3.2.1.1 Unknown/generic ONU
	11.2.3.2.1.2 Pre-validated ONU
	11.2.3.2.1.3 Pre-validated user account
	11.2.3.2.1.4 Pre-authorized ONU

	11.2.3.2.2 Passphrase-based user account verification

	11.2.4 ONU access restriction
	11.2.4.1 Suspension and resumption of ONU operation

	11.3 Encryption
	11.3.1 Overview of encryption architecture
	11.3.1.1 Encryption entity
	11.3.1.1.1 Mapping between the encryption entities and logical links

	11.3.1.2 Location of encryption/decryption functions
	11.3.1.3 Encryption function block diagram
	11.3.1.4 Decryption function block diagram
	11.3.1.5 Latency requirements

	11.3.2 Initial key establishment
	11.3.2.1 Initial key derivation
	11.3.2.2 Initial key activation

	11.3.3 Session key distribution protocol
	11.3.3.1 Protocol overview
	11.3.3.2 Distribution of keys for unicast LLIDs
	11.3.3.3 Distribution of keys for multicast LLIDs
	11.3.3.3.1 Distribution of keys for multicast MLIDs
	11.3.3.3.2 Multicast distribution of multicast keys

	11.3.4 Session key activation protocol
	11.3.4.1 Protocol overview
	11.3.4.1.1 Activation of a unicast (bidirectional) key
	11.3.4.1.2 Activation of a multicast (unidirectional) key
	11.3.4.1.3 Location of key activation processes

	11.3.4.2 Definition of processes comprising the key activation protocol
	11.3.4.2.1 Variables
	11.3.4.2.2 Functions
	11.3.4.2.3 Timers
	11.3.4.2.4 OLT encryption key activation process state diagram
	11.3.4.2.5 OLT and ONU decryption key activation process state diagram
	11.3.4.2.6 ONU encryption key activation process state diagram

	11.3.5 Cryptographic method
	11.3.5.1 Introduction
	11.3.5.1.1 Envelope-based encryption
	11.3.5.1.2 Location of the encryption/decryption functional blocks

	11.3.5.2 Encryption process
	11.3.5.3 Decryption process
	11.3.5.4 Initialization Vector (IV) construction
	11.3.5.4.1 Cipher clock
	11.3.5.4.1.1 Cipher clock alignment in the upstream
	11.3.5.4.1.2 Cipher clock alignment in the downstream
	11.3.5.4.1.3 Initial cipher clock synchronization
	11.3.5.4.1.4 Implementation options (informative)

	11.3.5.4.2 CalculateIV(…) function

	11.3.5.5 Encrypted envelope format
	11.3.5.5.1 EQ types that bypass the encryption and decryption processes
	11.3.5.5.2 Handling of the control characters in envelope payloads

	11.3.6 Encryption key management
	11.3.6.1 Key storage in the OLT
	11.3.6.2 Key storage in the ONU
	11.3.6.3 Key lifetime

	11.3.7 Encryption testing and troubleshooting modes of operation
	11.3.7.1 Encryption entities associated with multicast LLID objects
	11.3.7.2 Encryption entities associated with ONU objects
	11.3.7.3 Encryption entities associated with multicast MLID objects

