
1

13 Extended OAM for Nx25G-EPON 1

13.1 Introduction 2

13.2 Requirements 3

13.3 Device discovery and capability discovery 4

13.3.1 MPCP/OAM discovery process 5

Figure 13-1 shows the relationship between the process of registration, initialization, and negotiation in 6

EPON prior to establishing the data plane connectivity. First, the MPCP discovery and registration process 7

is executed, as defined in IEEE Std 802.3ca, 144.3.7. Next, the process of OAM discovery, as defined in 8

IEEE Std 802.3, Clause 57, and eOAM discovery, as defined in the following subclauses, is executed. 9

 10

Figure 13-1—MPCP/OAM discovery process 11

13.3.2 eOAM discovery process 12

The eOAM discovery process in the EPON is used to identify determine whether the given connected ONU 13

supports the specific subtype of the Organization Specific OAM extensions (as identified by the OUI and 14

major and minor versions) and further to identifyin order to verify the capabilities of such an ONU device 15

in terms of the supported OAM functions. 16

The eOAM discovery process is executed once per ONU. The eOAM discovery process shall be executed 17

on the primary MLID. 18

13.3.2.1 Requirements 19

The ONU and OLT shall implement the eOAM discovery process by exchanging the Organization Specific 20

Information TLV, as defined in IEEE Std 802.3, 57.5.2.3, and further specified in 13.4.4.1, henceforth 21

referred to as Extended Information TLV. The Extended Information TLV is embedded in the Information 22

OAMPDU, as defined in IEEE Std 802.3, 57.4.3.1. 23

The OLT starts the eOAM discovery process immediately after the successful completion of the OAM 24

discovery process, as specified in IEEE Std 802.3, 57.3.2.1. 25

Step A See IEEE Std 802.3, 144.3.7

OLT ONU

OAM Discovery

Extended OAM Discovery

MPCP Discovery & Registration

Step B

Step C

See IEEE Std 802.3, 57.3.2.1

See 13.3.2

2

The EPON system shall implement the eOAM discovery process and the eOAM Capability Notification 1

mechanism, using the Organization Specific extensions to the Information TLV specified in 2

IEEE Std 802.3, 57.5.2.3. 3

The OLT shall disable all data services for the given ONU until the successful completion of the OAM 4

discovery process (see IEEE Std 802.3, 57.3.2.1), and the eOAM discovery process, (see 13.3) and the 5

completion of the optional authentication process (see 11.2.2), if enabled by the operator. 6

The OLT shall deregister any ONU that does notfailed to complete the eOAM discovery process, as 7

defined in 13.3, within five seconds of the time when the OLT sends the first Extended Information TLV to 8

this specific particular ONU. The OLT shall deregister any ONU that does not participate in the eOAM 9

discovery process, as defined in 13.3. 10

The ONU and OLT shall implement the eOAM discovery process by exchanging the Organization Specific 11

Information TLV, as defined in IEEE Std 802.3, 57.5.2.3, and further specified in 13.4.4.1, referred to as 12

Extended Information TLV. The Extended Infomration TLV is embedded in the Information OAMPDU, as 13

defined in IEEE Std 802.3, 57.4.3.1. The format of the Extended Information TLV is defined in 13.4.4.1. 14

An ONU shall include the Extended Information TLV in all Information OAMPDUs exchanged during the 15

eOAM discovery process. An ONU shall start the eOAM discovery process not later than five seconds after 16

the successful completion of the MPCP discovery and registration process. 17

The presence of the Extended Information TLV, indicating support for a specific version of the eOAM 18

management suite, embedded in the Information OAMPDU transmitted by the ONU during the eOAM 19

discovery process, indicates support of , Clause , and Clause . The lack of such an Extended Information 20

TLV is treated as a lack of support for the requirements set forth in , Clause , and Clause 14, and 21

consequently the OLT deregisters such an ONU as indicated above. 22

13.3.2.2 Ordering of Organization Specific Information TLVs 23

 Source OAM Client requirements 24

A single IEEE Std 802.3, Clause 57, compliant Information OAMPDU may carry more than one 25

Organization Specific Information TLV. To simplify both the reception and transmission processes, a 26

specific order of transmission of such TLVs is required. In such a case, the Local Information TLV 27

(IEEE Std 802.3, 57.5.2.1) and Remote Information TLV (IEEE Std 802.3, 57.5.2.2) shall be transmitted 28

first, followed by the series of Organization Specific Information TLVs. 29

There are no specific transmission order requirements for Organization Specific Information TLVs. The 30

Extended Information TLV as defined in 13.4.4.1 may be transmitted as the first Organization Specific 31

Information TLV, followed by other Organization Specific Information TLVs, if present. 32

 Destination OAM Client requirements 33

The destination OAM Client shall support the processing of multiple Information TLVs in a single 34

Information OAMPDU, including Local Information TLV, Remote Information TLV, and at least one 35

Organization Specific Information TLV. 36

The destination OAM Client shall process all received Information TLVs in the order of their reception, 37

discarding any Information TLVs that are either malformed or unsupported. A malformed Information 38

TLV is considered to have an invalid length and/or unexpected type value. An unsupported Information 39

TLV follows the Information TLV format requirements, but is marked with an OUI not supported by the 40

given destination OAM Client. 41

3

13.3.2.3 Message flow during eOAM discovery process 1

Figure 13-2 illustrates the message flow during the eOAM discovery process for compliant devices. The 2

eOAM discovery process operates by exchanging the Extended Information TLV between the OLT and the 3

ONU. The OLT and the ONU may send additional Organization Specific Information TLVs if they support 4

other versions of management software identified by other OUI values. The eOAM discovery process 5

comprises two steps described below: 6

Step 1 — Discovery of OLT and ONU capabilities: 7

The OLT starts the eOAM discovery process immediately after the completion of the OAM 8

discovery process, by sending the Information OAMPDU (eOAM_Discovery) with the 9

Extended Information TLV, as defined in 13.4.4.1. This message #1 contains the list of all 10

supported versions of the management software associated with the OUI value of the given 11

Extended Information TLV. 12

The OLT may also send additional Organization Specific Information TLVs if it supports other 13

versions of management software identified by other OUI values. The order in which individual 14

Information TLVs are transmitted within the Information OAMPDU is defined in 13.3.2.2. 15

The ONU responds to the received eOAM_Discovery message #1 by sending the 16

eOAM_Discovery message #2 with the Extended Information TLV containing the list of its 17

supported versions of the management software associated with the same OUI of the given 18

Extended Information TLVin the eOAM_Discovery message #2. The ONU may also send 19

additional Organization Specific Information TLVs if it supports other versions of management 20

software identified by other OUI values. 21

Step 2 - Configuration of OLT and ONU eOAM versions: 22

Once the OLT receives the eOAM_Discovery message #2 from the ONU with the list of 23

supported software versions, the OLT decides which version of the management software is to be 24

used. The OLT then notifies the ONU about the selected version using the 25

eOAM_DiscoveryAck message #3, carrying the single eOAMversion value. 26

The ONU confirms the selected extended OAM version by sending the eOAM_DiscoveryAck 27

message #4 with the same software version. 28

This concludes the eOAM discovery process, at which time both the ONU and the OLT know what 29

software version to use for further communication across the management channel. 30

4

 1

Figure 13-2—Illustration of the eOAM discovery process 2

The step 1 above is necessary when a new ONU has been discovered in the network or the ONU underwent 3

a software/firmware update. In other situations, such as when a previously-discovered ONU is restarted, the 4

step 1 may be unnecessary. If the OLT is aware of the exact set of eOAM versions supported by the ONU, 5

it may omit the step 1 and directly proceed to step 2 to instruct the ONU to use a specific eOAM version. 6

The following subclauses specify the state diagrams for the eOAM discovery process for the ONU and 7

OLT, including the message flow for both devices, timeout conditions for the OLT, and failure indications. 8

 Constants 9

timeoutOLT 10

TYPE: 32-bit unsigned integertime interval 11

VALUE: 0x03-B9-AC-A0 (1 second) 12

This constant identifies the duration of the ONU response timeout period, during which the OLT 13

expects to receive response from the ONU as part of the extended OAM discovery process. If the 14

OLT fails to receive a response from the given ONU within this period of time, it retransmits the 15

previous Information OAMPDU carrying the Extended Information TLV. This constant is 16

expressed in units of time quanta. 17

 Variables 18

The variable type “eOAM version” is represented by a tuple {MajorVersion, MinorVersion} as 19

defined in 13.4.4.1. 20

commonList 21

TYPE: Array of 8-bit unsigned integersSequence of eOAM versions 22

OLT ONU

Step 1

Discovery of

OLT and ONU

capabilities

Step 2

Configuration

of OLT and

ONU eOAM

versions

#1: eOAM_Discovery({list of eOAM versions supported by OLT})

#2: eOAM_Discovery({list of eOAM versions supported by ONU})

#3: eOAM_DiscoveryAck({single eOAM version selected by OLT})

#4: eOAM_DiscoveryAck({single eOAM version confirmed by ONU})

5

This variable represents the list of extended OAM versions supported by both the OLT and the 1

ONU. When there are no OAM versions supported by the OLT and the ONU simultaneously, this 2

variable is an empty list. No particular ordering of OAM versions in the list is assumed. 3

confirmedVersion 4

TYPE: 8-bit unsigned integereOAM version 5

This variable represents the supported extended OAM version confirmed by the ONU. 6

eOAMDiscoveryComplete 7

TYPE: Boolean 8

This variable indicates whether the extended OAM discovery process has been completed 9

successfully (when set to true) or not (when set to false). It is set to the default value of 10

false upon the discovery of the given C-ONUONU initialization. 11

retryCount 12

 TYPE: 8-bit unsigned integer 13

 This variable represents the count of retransmission attempts performed by the OLT. 14

selectedVersion 15

TYPE: 8-bit unsigned integereOAM version 16

This variable represents the extended OAM version selected by the OLT from the list of versions 17

supported by the ONU. 18

versionListOLT 19

TYPE: Sequence of eOAM versionsArray of 8-bit unsigned integers 20

This variable represents the list of extended OAM versions supported by the OLT. The value of 21

this variable is assigned by the OLT manufacturer. No particular ordering of OAM versions in the 22

list is assumed. 23

versionListONU 24

TYPE: Sequence of eOAM versionsArray of 8-bit unsigned integers 25

This variable represents the list of extended OAM versions supported by the ONU. In the ONU, 26

the value of this variable is assigned by the manufacturer. In the OLT, the value of this variable is 27

extracted from the received Extended Information TLV, as defined in 13.4.4.1. No particular 28

ordering of OAM versions in the list is assumed. 29

 Timers 30

timerTimeout 31

This timer measures the response timeout period, during which the OLT awaits the response from 32

the ONU with the specific Extended Information TLV. 33

6

 Functions 1

selectOAMVersion(versionList) 2

This function selects and returns a single version of extended OAM from the list versionList. 3

 Primitives 4

eOAMI_Discovery 5

Acronym for reception of the Information OAMPDU carrying the Extended Information TLV, as 6

defined in 13.4.4.1. This acronym is equivalent to the following logical condition: 7

OPI(source_address, flags, code, RxLocalInfoTLV | RxRemoteInfoTLV | 8
RxExtendedInfoTLV) AND 9
code == 0x00 AND 10

RxExtendedInfoTLV.Type == 0xFE AND 11
RxExtendedInfoTLV.OUI == OUI_1904_4 AND 12
RxExtendedInfoTLV.Opcode == 0x02 AND 13

RxExtendedInfoTLV.Revision == 0x01 14

eOAMI_DiscoveryAck 15

Acronym for reception of the Information OAMPDU carrying the Extended Information TLV, as 16

defined in 13.4.4.1. This acronym is equivalent to the following logical condition: 17

OPI(source_address, flags, code, RxLocalInfoTLV | RxRemoteInfoTLV | 18
RxExtendedInfoTLV) AND 19
code == 0x00 AND 20

RxExtendedInfoTLV.Type == 0xFE AND 21
RxExtendedInfoTLV.OUI == OUI_1904_4 AND 22

RxExtendedInfoTLV.Opcode == 0x03 AND 23
RxExtendedInfoTLV.Revision == 0x01 24

eOAMI_RevisionNack 25

Acronym for reception of the Information OAMPDU carrying the Extended Information TLV, as 26

defined in 13.4.4.1. This acronym replaces the following logical condition: 27

OPI(source_address, flags, code, RxLocalInfoTLV | RxRemoteInfoTLV | 28
RxExtendedInfoTLV)AND 29

code == 0x00 AND 30
RxExtendedInfoTLV.Type == 0xFE AND 31

RxExtendedInfoTLV.OUI == OUI_1904_4 AND 32
RxExtendedInfoTLV.Opcode == 0x00 AND 33
RxExtendedInfoTLV.Revision == 0x01 34

eOAMI_UnknownRevision 35

Acronym for reception of the Information OAMPDU carrying the Extended Information TLV, as 36

defined in 13.4.4.1. This acronym replaces the following logical condition: 37

OPI(source_address, flags, code, RxLocalInfoTLV | RxRemoteInfoTLV | 38
RxExtendedInfoTLV)AND 39
code == 0x00 AND 40

7

RxExtendedInfoTLV.Type == 0xFE AND 1
RxExtendedInfoTLV.OUI == OUI_1904_4 AND 2

(RxExtendedInfoTLV.Opcode == 0x02 OR 3
RxExtendedInfoTLV.Opcode == 0x03) AND 4

RxExtendedInfoTLV.Revision != 0x01 5

eOAMR_Discovery(versionList) 6

Acronym for transmission of the Information OAMPDU carrying the Extended Information TLV, 7

as defined in 13.4.4.1. This acronym replaces the following sequence of operations: 8

code = 0x00 9
TxExtendedInfoTLV.Type = 0xFE 10

TxExtendedInfoTLV.Length = 7+sizeof(versionList) 11
TxExtendedInfoTLV.OUI = OUI_1904_4 12

TxExtendedInfoTLV.Opcode = 0x02 13
TxExtendedInfoTLV.Revision = 0x01 14
TxExtendedInfoTLV.versionList = versionList 15

OPR(source_address, flags, code, TxLocalInfoTLV | TxRemoteInfoTLV | 16
TxExtendedInfoTLV) 17

The argument versionList represents an array (sequence) of one or more 8-bit unsigned 18

integers tuples {MajorVersion, MinorVersion}, representing individual eOAM versions 19

supported by the given device. 20

eOAMR_DiscoveryAck(eOAMver) 21

Acronym for transmission of the Information OAMPDU carrying the Extended Information TLV, 22

as defined in 13.4.4.1. The argument eOAMver is the 8-bit unsigned integer a tuple 23

{MajorVersion, MinorVersion} representing eOAM version being assigned by the OLT 24

or being confirmed by the ONU. This acronym replaces the following sequence of operations: 25

code = 0x00 26

TxExtendedInfoTLV.Type = 0xFE 27
TxExtendedInfoTLV.Length = 8 28
TxExtendedInfoTLV.OUI = OUI_1904_4 29

TxExtendedInfoTLV.Opcode = 0x03 30
TxExtendedInfoTLV.Revision = 0x01 31

TxExtendedInfoTLV.eOAMversion[0] = eOAMver 32

OPR(source_address, flags, code, TxLocalInfoTLV | TxRemoteInfoTLV | 33
TxExtendedInfoTLV) 34

If the ONU failed to select (activate) the eOAM version requested by the OLT, it generates the 35

eOAMR_DiscoveryAck message with the eOAMver parameter value equal to 0x00, i.e., 36

{MajorVersion = 0x0, MinorVersion = 0x0}. 37

eOAMR_RevisionNack 38

Acronym for transmission of the Information OAMPDU carrying the Extended Information TLV, 39

as defined in 13.4.4.1. The argument eOAMver represents the {OUI, Version} tuple. This 40

acronym replaces the following sequence of operations: 41

code = 0x00 42
TxExtendedInfoTLV.Type = 0xFE 43
TxExtendedInfoTLV.Length = 7 44

8

TxExtendedInfoTLV.OUI = OUI_1904_4 1
TxExtendedInfoTLV.Opcode = 0x00 2

TxExtendedInfoTLV.Revision = 0x01 3

OPR(source_address, flags, code, TxLocalInfoTLV | TxRemoteInfoTLV | 4
TxExtendedInfoTLV) 5

NMSI(message, value) 6

This primitive is used to notify the NMS about the result of the extended OAM discovery process. 7

The argument message indicates to the NMS whether the eOAM discovery succeeded, and if not, 8

it indicates the type of failure. This parameter could be any of the following: 9

— MSG1: Extended OAM discovery is successful. The argument value indicates the 10

eOAM version selected by the OLT and confirmed by the ONU. 11

— MSG2: OLT timed out after three attempts to initiate extended OAM discovery. 12

— MSG3: ONU informed the OLT that it received an unrecognized revision of the Extended 13

Information TLV. 14

— MSG4: OLT received an unrecognized revision of the Extended Information TLV. There 15

are no common extended OAM versions supported by both OLT and ONU. 16

— MSG5: There are no common extended OAM versions supported by both OLT and ONU. 17

— MSG6: OLT timed out after three attempts requesting the ONU to select a specific 18

extended OAM version. 19

— MSG7: ONU informed the OLT that it rejected the selected extended OAM version or it 20

confirmed the extended OAM version is different from the version assigned to it by the 21

OLT. 22

Format of the NMSI primitives is outside of scope of this standard. 23

NMSR(extDiscovery) 24

This primitive is used by the NMS to request the OLT to repeat the extended OAM discovery 25

process. 26

 State diagrams 27

The C-OLT shall instantiate the extended OAM discovery process as shown in Figure 13-3 for each newly 28

discovered L-ONU. The C-ONU shall implement the extended OAM discovery process as shown in Figure 29

13-4. 30

9

 1

Figure 13-3—OLT eOAM discovery process state diagram 2

BEGIN

eOAMI_Discovery

commonList != {Æ}

RECEIVE_VERSION_LIST

[stop timerTimeout]

versionListONU = RxExtendedInfoTLV.versionList

commonList = versionListOLT Ç versionListONU

CONFIRM_VERSION

[stop timerTimeout]

confirmedVersion = RxExtendedInfoTLV.eOAMversion[0]

eOAMI_DiscoveryAck

else

confirmedVersion == selectedVersion

FAILURE

NMSI(MSG7, confirmedVersion)

else

UCT
e

O
A

M
I_

R
e

v
is

io
n

N
a

c
k ti
m

e
rT

im
e

o
u

t_
d

o
n

e

A
N

D
 r

e
tr

y
C

o
u

n
t
<

 3

INCOMPATIBLE_VERSIONS

NMSI(MSG5, versionListONU)

ONU_UNKNOWN_REVISION

NMSI(MSG3, RxExtendedInfoTLV)

NMSR(extDiscovery)

OLT_UNKNOWN_REVISION

NMSI(MSG4, RxExtendedInfoTLV)

e
O

A
M

I_
U

n
k
n

o
w

n
R

e
v
is

io
n

SUCCESS

NMSI(MSG1, confirmedVersion)

eOAMDiscoveryComplete = true

INIT

retryCount = 0

UCT

SELECT_VERSION

selectedVersion = selectOAMVersion(commonList)

retryCount = 0

LIST_TIMEOUT

NMSI(MSG2, versionListOLT)

timerTimeout_done

AND retryCount == 3

ti
m

e
rT

im
e

o
u

t_
d

o
n

e

A
N

D
 r

e
tr

y
C

o
u

n
t
<

 3

SEND_SELECTED_VERSION

eOAMR_DiscoveryAck(selectedVersion)

retryCount++

[start timerTimeout, timeoutOLT]

VERSION_TIMEOUT

NMSI(MSG6, selectedVersion)

timerTimeout_done AND retryCount == 3

SEND_VERSION_LIST

eOAMDiscoveryComplete = false

eOAMR_Discovery(versionListOLT)

retryCount++

[start timerTimeout, timeoutOLT]

NMSR(extDiscovery)

NMSR(extDiscovery)

NMSR(extDiscovery)

NMSR(extDiscovery)

NMSR(extDiscovery)

10

 1

Figure 13-4—ONU eOAM discovery process state diagram 2

13.4 eOAMPDU structure 3

13.4.1 Extended OAM organizationally-unique identifier (OUI) 4

13.4.2 eOAMPDU frame format 5

13.4.3 TLV-oriented structure 6

13.4.4 TLVs for 802.3 OAMPDUs 7

13.4.4.1 Extended Information TLV 8

The Information OAMPDU may carry an Organization Specific Information TLV (see IEEE Std 802.3, 9

57.5.2.3). The OUI-dependent Value field of the Organization Specific Information TLV is further defined 10

in this standard under the OUI OUI_1904_4 (see Table 13-1). This TLV is refered to as the Extended 11

Information TLV. The Extended Information TLV carries information used by the eOAM discovery 12

process 13

The format of the Extended Information TLV shall be as specified in Table 13-5, depicted in Figure 13-5, 14

and described in the following text. 15

BEGIN

eOAMI_DiscoveryAck

selectedVersion Î versionListONU else

WAIT_FOR_EXT_INFO_TLV

INIT

eOAMDiscoveryComplete = false

UCT

CHECK_SELECTED_VERSION

selectedVersion = RxExtendedInfoTLV.eOAMversion[0]

eOAMI_UnknownRevisioneOAMI_Discovery

UCT

SEND_VERSION_LIST

eOAMR_Discovery(versionListONU)

UNKNOWN_REVISION

eOAMR_RevisionNack

CONFIRM_VERSION

eOAMR_DiscoveryAck(selectedVersion)

eOAMDiscoveryComplete = true

REPORT_FAILURE

eOAMR_DiscoveryAck(0x00)

eOAMDiscoveryComplete = false

UCT

UCTUCT

11

Table 13-5—Structure of the Extended Information TLV 1

Size

(octets)
Field

(name)
Value

1 Type 0xFE (Organization Specific Information TLV)

1 Length
7 + N, where N indicates the number of supported extended

OAM versions

3 OUI OUI_1904_4

1 Opcode

0x00: Unknown revision.

0x02: eOAM version discovery: the message contains a list

of eOAM versions supported by the transmitting device.

0x03: eOAM version assignment/confirmation.

1 Revision Revision of the given Extended Information TLV

N

1

v
er

si
o

n
L

is
t eOAMversion[0] Version of the 1st supported eOAM extension

1 eOAMversion[1] Version of the 2nd supported eOAM extension

… …

1 eOAMversion[N-1] Version of the Nth supported eOAM extension

 2

Figure 13-5—Structure of the Information OAMPDU 3

with the Extended Information TLV 4

The following fields comprise the Extended Information TLV: 5

a) Type: this field represents the type of the given TLV. The Extended Information TLV is a specific 6

version of the Organization Specific Information TLVs, as indicated by the Type value of 0xFE 7

(see IEEE Std 802.3, Table 57–6). 8

b) Length: this field is used to indicate the length of the TLV, expressed in units of octets. 9

c) OUI: this field represents the organizationally unique identifier of the organization-specific TLV. 10

Compliant OLTs and ONUs shall set this value to OUI_1904_4. 11

d) Opcode: this field identifies the type of the message being conveyed by the given Extended 12

Information TLV. 13

e) Revision: this field identifies the revision of the Extended Information TLV. Compliant OLTs 14

and ONUs shall set this value to 0x01. 15

f) versionList: this field is an array of N eOAMversion[i] elements representing the eOAM 16

versions supported by the given device. Each array element eOAMversion[i] is a tuple 17

Destination Address

Source Address

Length/Type

Subtype

Flags

Code = 0x00

Data/Pad

FCS

6

6

2

1

2

1

42-1496

4

Octets

Organization Specific
Information TLV

Remote
Information TLV

Local
Information TLV

Pad

>6

16

16

Info Type = 0xFE

Length = 7 + N

OUI

Data

1

1

3

2 + N

Opcode

Revision

eOAMversion[0]

eOAMversion[1]

eOAMversion[N-1]

...

1

1

1

1

1

...

Octets

Octets
Octets

12

{MajorVersion, MinorVersion}, where the MajorVersion and the MinorVersion 1

are 4-bit integers denoting the major and minor version of the extended OAM respectively. The 2

MajorVersion value is mapped into the an 8-bit integer with 4 most-significant bits of 3

eOAMversion[i] field, and the MinorVersion value is mapped into the representing the 4

major version number and 4 least-significant bits representing the minor version numberof the 5

field. For example, an eOAMversion[i] field carrying the value of 0b0010.0000 represents a 6

major version 2 and a minor version 0 (version 2.0). The versionList field of the compliant 7

OLT and ONUs shall include the eOAMversion values as listed in Table 13-6 and may also 8

include other values. 9

Table 13-6—Supported values for versionList eOAMversion field 10

MajorVersion_

(bits 7:4)
MinorVersion

(bits 3:0)
Description

0b0011 (3) 0b0000 (0)
eOAM version defined in

IEEE Std 1904.4-202x5

 11

	13 Extended OAM for Nx25G-EPON
	13.1 Introduction
	13.2 Requirements
	13.3 Device discovery and capability discovery
	13.3.1 MPCP/OAM discovery process
	13.3.2 eOAM discovery process
	13.3.2.1 Requirements
	13.3.2.2 Ordering of Organization Specific Information TLVs
	13.3.2.2.1 Source OAM Client requirements
	13.3.2.2.2 Destination OAM Client requirements

	13.3.2.3 Message flow during eOAM discovery process
	13.3.2.3.1 Constants
	13.3.2.3.2 Variables
	13.3.2.3.3 Timers
	13.3.2.3.4 Functions
	13.3.2.3.5 Primitives
	13.3.2.3.6 State diagrams

	13.4 eOAMPDU structure
	13.4.1 Extended OAM organizationally-unique identifier (OUI)
	13.4.2 eOAMPDU frame format
	13.4.3 TLV-oriented structure
	13.4.4 TLVs for 802.3 OAMPDUs
	13.4.4.1 Extended Information TLV

