

China Mobile's View on Next Generation Fronthaul Interface

Challenges for future 5G networks

Agility, openness, scalability, efficiency

Trillions Connections

- So many issues for current "hard" mobile networks
 - ✓ Time-to-market
 - ✓ Service innovation
 - Energy efficiency
 - ✓ TCO
 - ✓ Interoperability

Special Challenge for CMCC

How to coordinate our four networks to satisfy user needs? 81x from 2008 to 2012

C-RAN: the revolutionary evolution towards 5G, proposed by CMCC in 2009

"Soft BS" in C-RAN virtualization/cloudization

Centralized Control and/or Processing

 Centralized processing resource pool that can support 10~1000 cells

Collaborative Radio

Multi-cell Joint scheduling and processing

Real-Time Cloud

- Target to Open IT platform
- Consolidate the processing resource into a Cloud
- Flexible multi-standard operation and migration

Clean System Target

- Less power consuming
- Lower OPEX
- > Fast system roll-out

Fronthaul is a major challenge for C-RAN deployment

Challenge by fronthaul b/w BBU and RRU

 Data rate b/w BBU and RRU using CPRI is as high as 9.83Gbps for 8-antenna TD-LTE, requiring 4 fibers for each carrier with 6G SFP

	Typical configuration	# of carriers	CPRI data rate per carrier	Total CPRI data rate before compression
GSM	3 RRU, S6/6/6	36	40Mbps	1.44Gbps
TD-S	3 RRU, S3/3/3	9	300Mbps	2.7Gbps
Current TD-LTE	3 RRU, S1/1/1	3	10Gbps	30Gbps
Medium term TD-LTE	S2/2/2	6	10Gbps	60Gbps

In addition, CPRI has critical requirements on synchronization and latency.

Efficient fronthaul solution is required to enable C-RAN large-scale deployment

Time to rethink FH for the sake of 5G evolution

CPRI for 5G? Probably NOT

- Too high data bandwidth
- Scalability issue to support 5G evolution
- Lower efficiency due to TDM mode

Initial work in SDOs

- NGMN conducted initial function split solutions for LTE
- Newly founded project in CCSA to study the requirements, scenarios and the key technologies
- Discussion in ITU-T and IEEE TSN recently

Rethink FH

- Traffic dependent to enjoy and enable statistical multiplexing for FH transport networks
- Decoupling cell processing and UE processing
- Decoupling UL and DL
- Support key 5G technologies, e.g. LSAS,
 CoMP etc.
- A new FH requires joint design from both wireless and transport perspectives
 - Function split b/w BBU and RRU
 - Careful transport network design to address the latency, jitter and in particular, synchronization requirements
- More radically, could we relax the critical CPRI requirements (e.g. 0.002ppm sync. requirement)?

Expected benefits

Reduced FH bandwidth and therefore the cost

Disaster-tolerant backup thanks to flexible mapping b/w BBU pool and RRU

Better support for live migration

Better support for 5G technologies due to the flexible routing capability

Some initial work in this front

- Initial study on BBU-RRU function split for LTE
- Design principle:
 - Traffic-dependent BW adaptation
 - Statistical multiplexing
 - Multiple mapping relationship b/w BBU and RRU
 - Independent of antenna number
- Initial verification of the feasibility of CPRI over Ethernet
 - Simple point to point connection
 - CPRI I/Q sampling -> Ethernet packet of 512 Bytes
 - 1588v2 for RRU phase sync.

- WP on Next-generation Fronthaul Interface (NGFI) ongoing, to be published by March
- NGFI forum planned for Q2 2015 (contact: <u>huangjinri@chinamobile.com</u>)

Initial study on BBU-RRU function split

Filter PΑ A/D D/A

Packet transmission b/w accelerator and converter

Packet Switching

CPRI data is

RRU

Converter

Converter: to reduce bandwidth b/w **BBU** and RRU

- **CPRI** termination
- Pre-processing
- Switching interface
- BW proportional to traffic load
- Reduce maximum data rate to 1/5, e.g. 9.8Gbps to 2.1Gbps
- Make it possible for packetized CPRI and CPRI over ethernet
- Still, other issues are under discussion

Major challenges

- NGRI requires joint re-design from both wireless and transport perspectives
- From wireless perspective:
 - BBU and RRU function split is required
 - A big impact on existing product form
 - Maintenance and future update are also concerns
- From transport perspective
 - Latency, jitter and synchronization issues on Ethernet

Thank you!