Radio over Ethernet Motivation, scope, timeline

Jouni korhonen (Broadcom) 17-Oct-2014

Motivation

The NG Mobile Network: Factors of 10+

	<u>Today (LTE Rel-12)</u>	Next Generation (5G)		
Base Station Uplink	1G+	10G+		
Channel Bandwidth	20 MHz 100MHz with CA	200 MHz+		
Antennas / Sector	<10	100+		
Fibers / Base Station	<100	1,000+		

Today's platforms cannot scale to meet these requirements.

A networked solution is required to enable:

- Load balancing / resource pooling
- Cooperative-mode operation (MIMO, beam-steering)
- Dynamic power management

Data-Center Market is Driving Ethernet Speed and Capacity Growth

Ethernet & Optical-Module Roadmap

Optical Modules

 SFP Family Single fiber Single λ pai 	AT THE PLANE	1G	10G		25G 2015?	40G/50G (PAM-4) 2017?
 QSFP Family Four fibers Four λ pairs 			10G	40G	100G 2015?	200G (PAM-4) 2017?
Link Speed	S				-	
10M	100M	1G	10G	40G/100G	25G/50G/400G 1T	

Benefits in brief...

- Unified transport based on Ethernet Scalability!
- Capitalize enterprise and data-center market driven Ethernet developments for Radio over Ethernet based solutions:
 - Ethernet speed and capacity growth 25/40/100Gigs.
 - Flexibility for transport and load balancing.
 - High volumes push costs down.
- Better utilization of deployed fiber infrastructure for remote radio head connectivity.
- Allow utilizing existing copper cabling for indoors deployments of remote radio heads / small cells.

Use Case examples..

Use case - NG Base Station

Many Topologies are Possible

Many Topologies are Possible

Scope

Scope of the Intended Work

- The encapsulation of digitized radio In-phase Quadrature (IQ) payload, possible vendor specific and control data channels/flows into an encapsulating Ethernet frame payload field:
 -> define a Native RoE Format.
- 2. The header format for both structure-aware and structure-agnostic encapsulation of existing digitized radio transport formats. The structure-aware encapsulation has detailed knowledge of the encapsulated digitized radio transport format content. The structure-agnostic encapsulation is only a container for the encapsulated digitized radio transport frames:

-> allow alien format encapsulation and transport.

A structure-aware mapper for Common Public Radio Interface (CPRI) frames and payloads to/from Ethernet encapsulated frames. The structure-agnostic encapsulation is not restricted to CPRI:
 -> define a "CPRI to Native RoE Format" mapper.

RoE encapsulation overview – Ethernet packet remains unchanged

RoE Encapsulation Alternatives: Structure Agnostic Encapsulation

RoE Encapsulation Alternatives: RoE Structure Aware Encapsulation

RoE Structure Aware Encapsulation: Definition of a CPRI mapper

- Detail at least one default mapper for CPRI format.
 - For cases where legacy format is also needed in addition to the native RoE format for transport.
 - Note! Mappers for other formats than CPRI also possible depending on the contributions from proponents.
- Knowledge of Basic Frames and Hyper Frames structure, etc:
 - Allow conversion from CPRI->RoE->CPRI.
- How to decompose and transport CPRI payloads in using RoE:
 - AxC flows and/or AxC Group flows,
 - Vendor Specific data,
 - Slow C&M flows and Fast C&M flows.
- Mapper is still on the transport level, it is not interested in the details of the data or flow content -> application level issue and out of scope of the PAR.

Timeline

Rough timeline

- 2014/10/20 PAR Submission; done
- 2014/11 Approve the RoE TF in 1904.
- 2015/1Q Initiate the RoE TF (pending NesCom etc approvals)
- 2016/11 Initial Sponsor Ballot (well.. We want to complete earlier..)
- 2017/05 Submittal to RevCom (well.. We want to complete earlier..)
- 2017/05 Revisit PAR for future work (well.. We want to do that earlier..)