

Status Report April 2010

Erik Jan Marinissen

IMEC Leuven, Belgium

SSG on 3D-Test

Charter

- Inventorize need for and timeliness of standards in 3D test and DfT
- If appropriate, formulate Project Authorization Requests (PARs) for starting up an IEEE Standard Development Working Group (SDWG)

Organization & Participation

- 52+2 participants from companies/institutes around the globe
- Chair: Erik Jan Marinissen (IMEC)

Activities to date

- Active per January 2010
- Public web site: http://grouper.ieee.org/groups/3Dtest/
- Private web site and e-mail reflector for internal communication
- Weekly WebEx conference calls (provided by Cisco Systems)

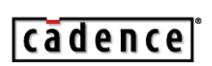
Members

Saman Adham Neetu Agrawal Lorena Anghel Patrick Y Au Paolo Bernardi Sandeep Bhatia Craig Bullock Krishnendu Chakrabarty Ji-Jan Chen Vivek Chickermane CJ Clark Eric Cormack Adam Cron Al Crouch Shinichi Domae Ted Eaton Bill Fklow Klaus Förster

Jan Olaf Gaudestad Michelangelo Grosso Said Hamdioui Klaus Helmreich Michael Higgins Gert Jervan Hongshin Jun Rohit Kapur Ajay Khoche Santosh J Kulkarni Michael Laisne Philippe Lebourg Stephane Lecomte Hans Manhaeve Frik Jan Marinissen Teresa McLaurin Brandon Noia Jay Orbon

Ken Parker John Potter Herb Reiter Mike Ricchetti Andrew Richardson Daniel Rishavy Jochen Rivoir Volker Schöber Eric Strid Thomas Thaerigen Jouke Verbree Ioannis Voyiatzis Michael Wahl Min-Jer Wang Lee Whetsel Yervant Zorian + Frans de Jong + Frank Pöhl

Participating Companies


Agilent Technologies

Accelerating Silicon Success

Institutes, Universities, and Consultants

Identified Standardization Needs

During the SSG discussions, the following standardization needs were identified:

Die and Stack Test

- 1. DfT test access architecture
- 2. Wafer probe interface

Access for Board-Level Users

- 3. Board-level interconnect test
- 4. Access to embedded instruments

Test Data Formats

- 5. Wafer map and device tracking
- Standard Test Data Format (STDF)

1. DfT Architecture for Manufacturing Test

Motivation

- Die makers need to provide DfT, also for stack- and board makers
- Interoperability between various dies required

Requirements

- Support (1) pre-bond die test and (2) post-bond stack test
- Support modular test approach
- Generic and scalable
- Low cost
 - Few extra product pins
 - Leverage of existing DfT and DfT standards

Status

One proposal by IMEC,
 based 3D extension of (2D) IEEE Std 1500

2. Wafer Probe Interface

Wafer Probing on TSVs / Micro-Bumps is Challenging

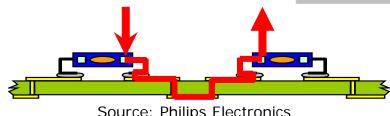
- Small pitch; small probe area
- Probe damage might impair downstream bonding

Wafer Probe Industry Would be Helped by Standardization

- Standard pad pitches
- Standard pad footprints
- Standard pad materials and designs

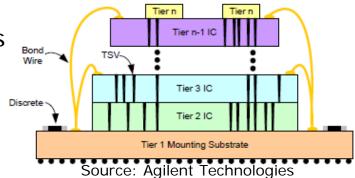
Benefits also for design, assembly, second sourcing, ...

Status


Idea only, no proposals yet

3. Board-Level Interconnect Test

Board-Level Interconnect Test


Via on-chip DfT, a.k.a. "JTAG": IEEE Std 1149.1 Test Access Port (TAP)

Source: Philips Electronics

Worry: Stacks with TSVs + Wire-Bonds

- External I/Os distributed over multiple dies
- JTAG distributed over multiple dies
- Board-level test needs to know this in a standardized view

Status

- Idea only, no proposals yet
- Discussion in SSG how likely this would happen in products

4. Access to Embedded Instruments

For Today's 2D Chips and Boards

- JTAG TAP reused for alternative purposes
 - BIST, diagnosis, silicon debug, FPGA progr., SW debug, etc.
 - Access to 'embedded instruments': monitors, sensors, etc.
 (IEEE P1687, a.k.a. "Internal-JTAG")

Extension to 3D-SICs

- Purpose: enable this type of usage also for 3D-SICs
- Stack might contain multiple TAP Controllers
- Status: three proposals so far
 - Mix of Existing Standards:1149.7 (stack), 1149.1/6 (die), 1500 (core) (Asset-Intertech)
 - TAP Linking Module (Texas Instruments)
 - iMajik (Intellitech)

IJTAG - IEEE P1687

5+6. Test Data Formats

Wafer Maps

Pass/fail information per die

Inkless Assembly and Single-Device Tracking

- Die to wafer location and wafer processing
- Die to assembly, packaging, and test processes
- All dies in multi-chip package

Standard Test Data Format (STDF)

- File format for (diagnostic) IC test data collection
- Currently at STDF-v4 (2007), developing JTDF

Standards

SEMI G81/G85

obsolete

SEMI E142

Already handles 3D?

SEMI STDF-v4

Requires extension to 3D

