Issues Underlying Supporting Multimedia Applications in IEEE 802.1

Fouad A. Tobagi
Stanford University
and
Starlight Networks

Presentation made at the IEEE 802 Meeting Maui, July 10-14, 1995

Fouad Tobagi

4

Multimedia Applications

Applications involving many types of information

Data Training, mail Stored **Audio** & Conferencing Interactive Video Live < TV Broadcast Non-interactive Interactive Browsing **Still Images** Archiving Non-interactive Fouad Tobagi

Video Applications

Stored Video Applications

- Training
 - Corporate training rooms, education, factory-floor reference
- · Point of sale
 - Information kiosks, product information, advertising
- Video database
 - Advertising agencies, video editing groups, video production companies, karaoke systems, utility companies

Fouad Tobagi

_

Video Applications

Live Video Applications

- Desktop video conferencing
- Computer-supported collaboration
- Network TV

Other Networked Applications Support

- Large storage capacity
 - Databases
 - Home pay-per-view

Fouad Tobagi

Traffic Characteristics

	Data Traffic	MM Traffic
Data rate	Low	High
Traffic pattern	Bursty	Stream-oriented Highly bursty
Reliability req.	No Loss	Some loss
Latency req.	None	May be small (e.g., 20msec)

Fouad Tobagi

Traffic Characteristics (cont.)

	Data Traffic	MM Traffic		
Mode of communication	Point-to-point	Multipoint		
Temporal relationships	None	Synchronized transmissions		
Type of service	Single traffic type	Multiple types		

Requirements of Multimedia Applications

- · High bandwidth
- · Guaranteed bandwidth
- Guaranteed end-to-end latency
- Multicasting

Fouad Tobagi

_

Digital Video Data Rates

- · Low quality or talking heads
 - 64 kb/s to 774 kb/s
 - H.261 or low-end MPEG
- Business quality
 - 1 Mb/s to 2.5 Mb/s
 - MPEG, DVI, software codecs, low-end JPEG
- High Quality
 - 3 Mb/s to 8 Mb/s
 - MPEG and JPEG (also TrueMotion)
- Studio quality
 - 10 Mb/s to 45 Mb/s
 - MPEG, JPEG, proprietary

High Bandwidth Requirement

Туре	Bandwidth per Stream	20 users
Low end	64 kbps - 384 kbps (teleconferencing)	3 Mbps
Corporate video	1 Mbps - 2 Mbps (training, video mail)	30 Mbps
High quality	3 Mbps - 8 Mbps (presentations, video editing)	100 Mbps
Advanced	8 Mbps - 20 Mbps (advanced professional, HDTV)	2 Gbps

Fouad Tobagi

_

Guaranteed Bandwidth Requirement

- Stream-oriented applications
 - Bandwidth to be available on a continuous basis
- Degree of burstiness depends on
 - encoding scheme / content
 - latency / buffering

Latency Requirement

- Interactive Applications (e.g. videoconferencing)
 - end-to-end delay < 100ms
 - Overhead for encoding/decoding:
 - CBR: 50 250 ms
 - VBR: a few ms 100 ms
- Non-interactive Applications
 - No stringent delay requirement (e.g. broadcast movies)
 - Some delay requirement (e.g. broadcast news)

Latency and buffering are related

Fouad Tobagi

11

Multicasting Requirement

- Many multimedia applications involve multiple participants
- Size of multicast depends on applications
 - Videoconferencing (3-4 participants, many-to-many)
 - group meeting (10's of participants, one-to-many)
 - video broadcasting (100's of participants, one-to-many)

Fouad Tobagi

Use of Ethernets for Multimedia Applications

- Ethernet does not
 - provide bounded delays
 - distinguish between different traffic types
- However, it is one of the most widely deployed LAN schemes today.

How well can Ethernets support multimedia communications?

Fouad Tobagi

13

Video on Ethernet

	Lmax	V=64kb/s		V=384kb/s		V=1536kb/s	
Dmax (ms)		Nmax	N.U.	Nmax	N.U.	Nmax	N.U.
20	0.001	55	35%	14	54%	4	61%
20	0.01	64	41%	17	65%	5	77%
100	0.001	89	57%	18	69%	5	77%
100	0.01	104	67%	20	77%	5	77%
Bandwidth Limit		156		26		6	

Dmax: Maximum tolerable delay

Lmax: Maximum tolerable packet loss rate

V : Video stream bandwidth

Nmax: Maximum number of streams that can be supported while meeting the delay and loss

constraints

N.U.: Network utilization

Fouad Tobagi

100Base-T Performance

Number of Streams Supportable

	10Base-T						100Base-T				
		V=64kb/s		V=384kb/s		V=1536kb/s		V=384kb/s		V=1536kb/s	
Dmax (ms)	Lmax	Nmax	N.U.	Nmax	N.U.	Nmax	N.U.	Nmax	N.U.	Nmax	N.U.
20	0.001	55	35%	14	54%	4	61%	138	53%	43	66%
20	0.01	64	41%	17	65%	5	77%	160	61%	49	75%
100	0.001	89	57%	18	69%	5	77%	180	69%	49	75%
100	0.01	104	67%	20	77%	5	77%	205	79%	52	80%
Bandwidth Limit		156		26		6		260		65	

Fouad Tobagi

19

100Base-T Performance Integrated Video and Data Services V=1536kb/s, Dmax=20ms, Lmax=0.001 45 40 Burst size 35 1 kbyte 30 25 Number of Burst size 10 kbytes 20 Streams 15 Burst size 100 kbytes 10 5 0 25 30 45 50 15 Data Traffic (Mb/s) Fouad Tobagi

Packet Loss Causes Glitches in Video Packet Loss Packet Loss Packet Loss Packet Loss Packet Loss Glitch Glitch

- The effect of packet loss may persist multiple frames, depending on interdependency among frames
- Multiple packets may contribute to the same glitch

==> packet loss rate is not an accurate measure of network performance
Fouad Tobagi

Evaluation of Ethernets Carrying Video Traffic

- 10Base-T and 100Base-T segments simulated
- Real video sequences used
- CBR video, H.261 encoding
- End-to-end delays taken into account
- Dependence among frames taken into account; network performance measured in terms of glitches
- 2 packetization schemes considered:
 - Constant Size and Rate Packetization (CSRP)
 - Variable Size and Rate Packetization (VSRP)
- Effect of bursty and non-bursty data traffic on video examined

Fouad Tobagi

23

Video on a 10Base-T Segment

D_{max}	g_{max}	N_{max}	(susie)	N_{max} (mis	ss america)	N_{max} (table tennis)		
(ms)	(per min.)	384 kb/s	1536 kb/s	384 kb/s	1536 kb/s	384 kb/s	1536 kb/s	
20	0.1	0	0	0	0	0	0	
	1	0	0	0	0	0	0	
60	0.1	11 (42%)	4 (61%)	11 (42%)	4 (61 %)	6 (23%)	2 (30%)	
	1	13 (50%)	5 (77%)	13 (50%)	5 (77%)	10 (38%)	3 (46%)	
100	0.1	13 (50%)	5 (77%)	13 (50%)	5 (77%)	12 (46%)	4 (61%)	
	1	17 (65%)	5 (77%)	17 (65%)	5 (77%)	17 (65%)	5 (77%)	
250	0.1	18 (69%)	5 (77%)	18 (69%)	5 (77%)	17 (65%)	5 (77%)	
	1	20 (77%)	5 (77%)	20 (77%)	5 (77%)	19 (73%)	5 (77%)	
500	0.1	19 (73%)	5 (77%)	19 (73%)	5 (77%)	19 (73%)	5 (77%)	
	1	20 (77%)	5 (77%)	20 (77%)	5 (77%)	20 (73%)	5 (77%)	
Bandw	idth limit	26	6	26	6	26	6	

Maximum number of streams supportable for CSRP (B/V=50 ms)

Video on a 10Base-T Segment

D_{max}	g_{max}	N_{max}	(susie)	N_{max} (mis	ss america)	N_{max} (table tennis)	
(ms)	(per min.)	384 kb/s	1536 kb/s	384 kb/s	1536 kb/s	384 kb/s	1536 kb/s
20	0.1	9 (36%)	4 (61%)	9 (36%)	4 (61 %)	8 (31%)	4 (61%)
	1	12~(46%)	4 (61%)	12 (46%)	4 (61%)	12 (46%)	4 (61%)
60	0.1	14 (54%)	4 (61%)	14 (54%)	4 (61 %)	14 (54%)	4 (61%)
	1	16 (61%)	5 (77%)	16 (61%)	5 (77%)	16 (61%)	5 (77%)
100	0.1	15 (58%)	5 (77%)	15 (58%)	5 (77%)	15 (58%)	5 (77%)
	1	18 (69%)	5 (77%)	18 (69%)	5 (77%)	18 (69%)	5 (77%)
250	0.1	19 (73%)	5 (77%)	19 (73%)	5 (77%)	19 (73%)	5 (77%)
	1	20 (77%)	5 (77%)	20 (77%)	5 (77%)	20 (77%)	5 (77%)
500	0.1	19 (73%)	5 (77%)	19 (73%)	5 (77%)	19 (73%)	5 (77%)
	1	20 (77%)	5 (77%)	20 (77%)	5 (77%)	20 (77%)	5 (77%)
Bandw	idth limit	26	6	26	6	26	6

Maximum number of streams supportable for VSRP (B/V=50 ms)

Fouad Tobagi

25

Video on a 100Base-T Segment

D_{max}	g_{max}	N_{max}	(susie)	N_{max} (mis	N_{max} (miss america)		N_{max} (table tennis)		
(ms)	(per min.)	384 kb/s	1536 kb/s	384 kb/s	1536 kb/s	384 kb/s	1536 kb/s		
20	0.1	0	0	0	0	0	0		
	1	0	0	0	0	0	0		
60	0.1	140 (54%)	40 (61%)	141 (54%)	40 (6 1%)	136 (52%)	38 (58%)		
	1	151 (58%)	42 (65%)	151 (58%)	42 (65%)	145 (56%)	41 (67%)		
100	0.1	168 (65%)	42 (65%)	168 (65%)	42 (65%)	168 (65%)	42 (65%)		
	1	185 (71%)	47 (72%)	185 (71%)	47 (72%)	185 (71%)	47 (72%)		
250	0.1	168 (65%)	42 (65%)	168 (65%)	42 (65%)	168 (65%)	42 (65%)		
	1	185 (71%)	47 (72%)	185 (71%)	47 (72%)	185 (71%)	47 (72%)		
Bandw	idth limit	260	65	260	65	260	65		

Maximum number of streams supportable for CSRP (B/V=50 ms)

Video on a 100Base-T Segment

D_{max}	g_{max}	N_{max} (susie)		N_{max} (mis	s america)	N_{max} (table tennis)		
(ms)	(per min.)	384 kb/s	1536 kb/s	384 kb/s	1536 kb/s	384 kb/s	1536 kb/s	
20	0.1	118 (45%)	31 (47%)	118 (45%)	31 (4 7%)	115 (44%)	30 (46%)	
	1	135 (52%)	35 (54%)	135 (52%)	35 (54%)	134 (51%)	35 (54%)	
60	0.1	167 (64%)	42 (65%)	167 (64%)	42 (65%)	167 (64%)	42 (65%)	
	1	186 (71%)	46 (71%)	186 (71%)	46 (71%)	186 (71%)	46 (71%)	
100	0.1	172 (66%)	43 (66%)	172 (66%)	43 (66%)	172 (66%)	43 (66%)	
	1	190 (73%)	48 (74%)	190 (73%)	48 (74%)	190 (73%)	48 (74%)	
250	0.1	172 (66%)	43 (66%)	172 (66%)	43 (66%)	172 (66%)	43 (66%)	
	1	190 (73%)	48 (74%)	190 (73%)	48 (74%)	190 (73%)	48 (74%)	
Bandw	idth limit	260	65	260	65	260	65	

Maximum number of streams supportable for VSRP (B/V=50 ms)

Fouad Tobagi

27

Today's IEEE 802.1

- Single Spanning Tree
 - Avoids broadcast / multicast loops
 - Multiple copies with unicast
- Transparent Bridging
 - Stations relocation without registration: "Learning bridges"
- Multicast via Broadcast
 - Multicast traffic assumed to be low
 - Simplicity & transparency

handled via broadcast

Limited efficiency

• MIB

Media Access Control Protocols

- Guaranteeing bandwidth on a continuous basis
- Meeting latency constraints (100 ms or less)
- Integrated services
 - IEEE 802.3 (Ethernet)
 - · Contention-based, no priority function
 - IEEE 802.5 (Token-Ring)
 - Priority function available
 - FDDI (ANSI X3T9.5)
 - · Support for synchronous traffic
 - Iso-Ethernet (IBM/National)
 - Support for isochronous traffic

Fouad Tobagi

33

Implications of High Bandwidth Requirement

Interconnected Switching Hubs

Large-sized subnet

Implications of Large-Sized Subnets

- Large number of addresses stored in bridge tables
- Deployment of stations on the ports: avoidance of bottlenecks

Fouad Tobagi

37

Implications of Guaranteed Bandwidth and Latency

Guaranteed BW & Latency

Admission Control

Admission Control: No more sessions are permitted on a given resource (e.g. an Ethernet segment) than it can accommodate

- Requires knowledge in users' locations, current sessions, and aggregate bandwidth
- · Needs to work with multicast

Implications of Guaranteed Bandwidth and Latency (cont.)

- Reservation needs to be done end-to-end for overall effectiveness
- Switches mostly do not have the capacity to support the management necessary to guarantee bandwidth due to wire-speed requirement
- Admission control by itself cannot guarantee bandwidth

==> A simpler mechanism to provide more predictable behavior as traffic increases?

Fouad Tobagi

39

Implications of Guaranteed Bandwidth and Latency (cont.)

Guaranteed BW & Latency

Traffic Types Differentiation

- Data traffic cannot have admission control
 - must be prevented from affecting video traffic (prioritization?)

Multicasting of Video / Audio Streams Must Be Done Efficiently

Example:

- An Ethernet switch
 - 128 ports
 - 1.28 Gb/s aggregate throughput (hence non-blocking)
- 4 mulitcast video streams
 - 2 Mb/s each → 8 Mb/s total

If broadcasting is used, the whole network bandwidth is taken

Fouad Tobagi

41

Example of Required Backbone Bandwidth

Fouad Tobagi

Implications of Multicasting Requirement

Efficient multicasting of video traffic

Registration over multiple hops

Traffic-type differentiation (data traffic must be handled using existing scheme)

Fouad Tobagi

43

Conclusions

- Admission Control
 - MIBs must be defined to identify network resources, keep track of sessions, etc.
- Filtering
 - Explicit requests
 - Propagation of information in a multi-switch environment
- Traffic Types Differentiation
 - Based on ? (addresses?)
- Single Spanning Tree
 - Multiple spanning trees?