
Rev. 1.1 12/27/99 3:24 PM LACP Simulation 1/1

LACP Simulation
Mick Seaman

This note is a guide to a simple LACP simulation. A number of
simple test cases are included, and the code can be compiled
using Visual C++ as a stand alone executable running on NT4.0.
The code may be copied, modified, and run for the purpose of
commenting on LACP or any other IEEE 802 related
development provided that it is understood that (a) no warranty
or fitness for any purpose whatsoever is implied (b) it does not
represent any ‘official’ or ‘approved’ interpretation of the protocol
(c) any modifications are clearly identified if any attribution is
made (d) I am not supporting it for product implementation – it
was created simply to check the protocol design.
The code referred to here can be found on the 802.1 ftp site,
along with this document in the directory /docs99/lacp_model.
Since this is a development testbed there are many loose ends,
this note draws attention to these, hopefully to avoid confusing
the casual reader.

Overview and Organization
The model implementation and simulation
environment is structured as follows:

1. A ‘component interface’ provided by LACP
to the rest of the environment. It creates
‘systems’ operating LACP and creates and
adds LACP capable ports to those systems.

Files: lac.h, lac.c

2. The LACP implementation proper,
comprising files that implement the state
machines and functions described in Clause
43.3 of P802.3ad D3.0

Files: lac_types.h, lac_machines.h, lac_rx.c,
lac_mux.c, lac_tx.c, lac_defaults.h,
lac_options.h.

3. A test stub for the hardware specific
aggregator functions that LACP controls.

Files: lac_hw.c

4. A test harness that provides a test
environment within which the LACP
implementation runs.

Files: lact.c, lact_lan.h, lact_lan.c

5. An ‘operating system’ or simulation
environment used by the implementation
and test harness to provide timer functions,
PDU transfer etc.

Files: sys.h, sys.c

Each of these is described in more detail below
as a commentary on the source code. For
brevity’s sake information that is readily
apparent from the source files is often omitted.
To avoid having too many forward references
the operating environment is described first.

Rev. 1.1 12/27/99 3:24 PM LACP Simulation 2/2

Operating Environment
The simulation uses a very simple operating
environment (sys.h, sys.c). This provides for
component and state machine scheduling and
the flexible interconnection of components. The
latter is achieved through instances of a ‘node’
data structure that comprises pointers to a
‘user’, a ‘provider’, and a node ‘owner’, as well
as ‘receive’ and ‘transmit’ function pointers. The
receive function handles the ‘owner’s’
processing of pdus from the underlying ‘provider’
node destined for a ‘user’ node; and the transmit
function handles the ‘owner’s’ processing of
pdus from the ‘user’ for the ‘provider’.

A ‘next’ pointer in each node allows the owner to
collect nodes together in a multi-node data
structure, and a ‘pnext’ pointer allows the
underlying provider to add the owner’s nodes to
a provider’s root node, e.g. a node representing
a LAN. Together these support an overall
system convention that any component that can
be created can be used in the system without
later failure due to the limited size of a fixed
index array or similar structure. Nodes also
contain receive and transmit status functions, as
well as separate administrative and operational
transmit and receive states.

The operating environment allows protocol
components and state machines to schedule
themselves, providing timers that call back a
supplied function with a supplied argument
pointer. No messaging functionality is provided
between components or machines; all reception
is synchronous with transmission1. To avoid
calling loops, the system wide convention is that
transmission only occurs after a component
schedules itself.

The operating environment contains built in
support for simple LAN constructs, comprising a
single node that represents the LAN. To this
further ‘mac’ nodes can be added, chained
through the ‘pnext’ pointer, and with their
‘provider’ pointers pointing to the LAN node. A
transmit call to one ‘mac’ node results in
reception at all others.

1 As currently put together this means that the simulation is not
capable of representing ‘crossing’ messages. Explicit reception
queuing prior to the LACP is what is required.

LACP Implementation
The LACP Port
The major data structure in the implementation
is the LACP port (lac_port in lac_types.h). In
addition to operational and administrative
versions of LACP information (system, key, port,
state) for partner and actor, this records the
expected variables for the LACP state
machines: port_enabled, lacp_enabled2,
selected, matched, attach (mux_request),
attached (mux_state), and ntt.

The selected variable simply takes the values
TRUE or FALSE. The STANDBY state is
represented by a separate standby boolean
variable, relevant only when selected is TRUE3.

 Separate (re)initialize and port_moved variables
are not included. The former is treated as an
event (a call to the component interface), and
the latter is handled as part of receive
processing (albeit as part of receive processing
for a port other than the port receiving the
port_moved signal). Similarly a ‘ready’ signal is
not required, but is supplied by the timing down
counter attach_when. This corresponds to the
wait_while_timer. In the main timing counters
function as multiples of the tick_timer, notionally
one second, and the indicated conditions
become true once the count reaches zero. The
current_while counter indicates CURRENT while
it is non-zero, and the periodic_after counter
counts up prompting a periodic transmission
when it reaches a fast or a slow periodic time
count as appropriate.

This implementation has exactly one aggregate
port per physical port and the necessary data is
held within the LACP port data structure: ‘aport’
points to the selected aggregate port, and ‘alink’
allows ports selecting the same aggregate port
to be link into a ring. This one to one
correspondence between (physical) ports and
aggregate ports means that a port can always
select an aggregate port - itself. It removes the
need for holding actor and partner parameters
separately for the aggregate port, and simplifies
key management.

2 In line with the discussion at the interim meeting, the model only
provides for the setting of ‘lacp_enabled’ to be changed when the
port is reinitialized. It is anticipated that a real implementation
would decide to do this on the basis of auto-negotiation
parameters including whether the link is half-duplex or full-duplex.
The draft standard does not permit the operation of LACP on half-
duplex links.
3 This differs from, but is functionally equivalent to, the
ennumerated variable UNSELECTED, SELECTED, STANDBY
deined in the standard.

Rev. 1.1 12/27/99 3:24 PM LACP Simulation 3/3

However attaching to an aggregator may always
be subject to delay. LAG information for a port
can change while other ports continue to attach
to the aggregator on the basis of the previous
LAG. These other ports may take time to detach
from the aggregator before it can be used again
by its ‘own’ port. Accordingly attachment to (as
opposed to selection of) an aggregator is
modeled not by the variables ‘aport’ and ‘alink’,
but by a separate mux ‘node’ within the LACP
port data structure.

System Identifier
For ease of coding and comprehension, this
model represents System Identifiers by simple
integers, rather than MAC addresses.

Signaling Considerations
In P802.3ad, signaling between state machines
is represented purely by shared variables. By
802.3 convention each independent state
machine operates simultaneously and infinitely
fast. The present model operates strictly by
serial execution, and a set of events is caused
against each machine by function call. These
events and calls are summarized in
lac_machines.h.

Receive Machine
The enumerated states of the machine do not
include an INITIALIZE state. BEGIN = TRUE is
treated as an event as it is subject to an
unconditional transition (UCT).

Periodic and Transmit Machines
The actual implementation of the periodic
transmission machine does not record
NO_PERIODIC, FAST_PERIODIC,
SLOW_PERIODIC and PERIODIC_TX states
but simply performs the appropriate check on
the value of the periodic_after up counter at
each timer tick event. The corresponding state
nmachine, which is not materially different from
that in P802.3ad is given below.

The transmit machine (lac_tx.c) adopts just one
of a number of potential approaches to rate
limiting the number of LACPDUs transmitted in a
given interval. This one enforces a quiet period
after some maximum number (3) of LACPDUs
have been transmitted. The machine does not
transmit immediately after being notified of a
‘need to transmit’, but schedules transmission
after a short interval. This allows a brief period
for asynchronous completion of desired changes
to the aggregation hardware states, cutting the
number of total messages transmitted.
Additionally the machine will reschedule itself
following a short interval if transmission cannot
take place, due to buffer shortages for example.

Churn Machines
These have not been implemented. This is not
to deny their utility, simply that their operation
does not impact the operation of the basic
protocol.

Component Interface
The component interface (lac.h, lac.c) creates
‘systems’ operating LACP, and creates and
adds LACP capable ports to those systems.

A system is represented by a LACP port,
number 0, together with a System Identifier and
System Priority. Port 0 acts as the anchor point
for the ring of ports added to the system.

Rev. 1.1 12/27/99 3:24 PM LACP Simulation 4/4

Test Scenarios
The following test scenarios have been
simulated.

1. Single system, single port, initialization
scenarios. A LACP actor is connected to a
full duplex point-to-point link. The partner
port4 does not implement LACP.

a) Standard default parameters are used.

b) The partner administrative setting is
Aggregation rather than Individual.
Other parameters are standard defaults.

c) Both the Actor and the Partner are
assumed to be Passive (by default only
the partner’s administrative default is
Passive).

d) LACP is Disabled for the port.

2. Single system, single port scenarios where
the full duplex link is connected to a tester
that injects ‘rogue’ LACP PDUs to illustrate
LACP’s response to such events.

a) The tester sends a single PDU that does
not match the port’s own parameters.
The port is seen to time out this packet
before reverting to administrative
defaults and enabling collection and
distribution.

b) A similar scenario, except the rogue
PDU’s actor is using Long timeouts.

c) The rogue PDU’s Actor claims to have
an Individual port and to be in sync and
collecting.

3. Two systems, each with a single port, are
connected.

a) Standard default parameters are used.

b) One actor’s administrative setting is
Individual rather than Aggregation.
Standard default parameters are used
for other settings.

c) Both actor’s are administratively set
Passive.

d) Initially one actor only is set Passive,
after a while the other is also made
Passive.

e) The two systems are initialized at
slightly different times.

4 The port attached to the other end of the point to point link.

f) One of the connected ports is
reinitialized after the simulation has
been running for some time.

4. Two systems are connected by two links
(two pairs of connected ports).

a) Standard default parameters are used
(each pair of ports on a single systems
has the same key value, 1).

b) One of the ports has the Actor’s
administrative setting Individual.

c) The second links is connected after a
delay, during which the first link is
established.

d) The second link is connected after a
delay and the highest priority port is
attached to the second link, this will
cause a change in aggregate port .

5. Loopback test between ports on a single
system.

a) One port is connected to another,
standard default parameters are used
and the keys for the two ports are the
same.

b) Two ports, each with the same key, are
connected to two others, whose keys re
the same as each other, but differ from
the keys of the ports to which they are
attached.

c) Two ports are connected to two others,
all retaining the same key.

6. Link failure and replacement tests between
two systems, connected by two links. After
the two links have been aggregated, one or
both of the links are removed and then are
reconnected after some time.

a) The lower priority link is broken, and
restored without the attached ports
being notified by the MAC via a port
disable/enable signal.

b) The higher priority link is broken and
restored, again without explicit MAC
notification to LACP.

c) The lower priority link is broken and
restored, LACP is notified by port
disable/enable signals.

d) The higher priority link is broken and
restored, LACP is notified by port
disable/enable signals

Rev. 1.1 12/27/99 3:24 PM LACP Simulation 5/5

7. Link failure, addition, and replacement tests.
Two systems are connected by one or more
links, some of these fail, new links are added,
and some or all of the initial links are restored.

a) One initial link. After it fails another link,
of lower priority, is added, then the initial
link is restored in addition to the added
link.

Rev. 1.1 12/27/99 3:24 PM LACP Simulation 6/6

Periodic Transmission State Machine

The model implementation actually uses the following state machine:

UCT

(periodic_tick_timer expired)*
(((Partner_Oper_Port_State.LACP_Timeout = Short_Timeout)*

(periodic_after >= Fast_Periodic_TIme))
+

(periodic_after >= Slow_Periodic_TIme))

periodic_after = periodic_after + 1
start periodic_tick_timer

PERIODIC

Ntt = True;
periodic_after = 0

PERIODIC_TX

(periodic_tick_timer expired)*
(((Partner_Oper_Port_State.LACP_Timeout = Long_Timeout)*

(periodic_after < Slow_Periodic_TIme))
+

(periodic_after < Fast_Periodic_TIme)*)

periodic_after = 0

NO_PERIODIC

(Reinitialize = TRUE) +
(LACP_Enabled = FALSE) +

(port_enabled = FALSE)
(Actor_Oper_Port_State.LACP_Activity = PASSIVE)*

(Partner_Oper_Port_State.LACP_Activity = PASSIVE)

UCT

