Using EAP for infrastructure authentication

Using .1X/EAP for infrastructure authentication

Mick Seaman

This note is an attempt to set down some thoughts about the use of EAP and .1X to support P802.1af
Key Agreement for MACsec protection of infrastructure links. At present it does not argue strongly
for a particular conclusion, but sets out facts and opinions based on investigation to date. In that
respect it is little more than an email, organized for easier editing and development, and is work in
progress for discussion in the September 2005 802. linterim.

1. Opportunities and problems

The issues raised here have been the subject of some prior .1
discussion, and have been briefly described in prior notes
and presentations.

A large part of the motivation for MACsec is the ability to
incrementally secure the weakest links within a network,
quite possibly an bridged network, without imposing
protocol specific end-to-end solutions. In that respect many
aspects of its use are similar to the way in which .1X is
currently used to secure point-to-point access links to a
network. Given the widespread availability of the EAP and
Radius infrastructure support for .1X, it is tempting to make
use of that same support for MACsec, whether that is
arguably the best technical solution or not. Discussion to
date of the Key Agreement protocol to support MACsec has
assumed that that protocol would begin by using a pre-
shared “master” key (referred to as the CAK in P802.1AE),
and it is easy to see that .1X EAP could be used to provide
that CAK and associated data, just as it provides a master
key for .11i derivation of temporary session keys. This is
particularly true for MACsec CAs that only have two
members, i.e. real or virtual point-to-point links. To simplify
the discussion this note restricts itself to that point-to-point
case for the presentt1.

When infrastructure links are being supported it cannot be
assumed that a connection to a back-end Authentication
Server is available from either of the two parties at the time
when the link becomes active. While it is possible to bring a
network up by “growing” it from a core that contains the
Authentication Server, such a network could be
unacceptably slow to become operational after an outage.
For this reason it is desirable to consider the distribution of
a CAKt2, whose possession can be used to prove mutual
authentication and to generate session keys (MACsec
SAKs) known only to those possessing the CAK, as
asynchronous with respect to the current operational state of
the LAN and CA connectivity. Clearly a new CAK cannot
be supplied by EAP when the two members of the CA have
no connectivity over the LAN, but equally it is desirable
that a previously distributed CAK be used by key agreement
to generate SAKSs so as to provided secure connectivity for
data over the LAN in advance of obtaining a fresh CAK.

The assumption that EAP is to run every time LAN
connectivity becomes available, that is to say every time
portEnabled (which is equivalent to the MAC_Operational
parameter for the 1SS) becomes true permeates the “Port
Access Control Protocol” specified in 802.1X-2004 Clause
8. The questions that this note poses are:

ﬂWays of using EAP to support the eventual sharing of a CAK for a group
CA have been discussed, and are not conceptually difficult, but the point-
to-point case is very significant in its own right and requires resolution of
some difficulties that apply to all cases, so there is little point in muddying
the discussion.

TzThroughout this note the term “CAK” is frequently used to refer both to a
key and to data bound to or associated with that key (it’s name for
example).

Revision 0.1 March 20, 2005

a) Can the state machines in 802.1X-2004 be readily
adapted to cover the asynchronous acquisition of CAKs?

b) If they are adapted then how should the parts that are
unwanted for MACsec (e.g. support for
ControlledDirections) be handled?

c) If the existing state machines have to be changed
considerably then is it better to do that with a fresh
description, in a new clause, so as to minimize the risk of
affecting existing .1X conformance claims?

d) If separate state machines are to be provided should there
be two (or possibly even more) distinct classes of PAE?

It is the purpose of this note to try and provided insight into
what the answers to these questions should be. It does not
attempt to answer the question as to whether infrastructure
authentication should be being provided by EAP in the first
place, but simply assumes that is the case. In any event it
would seem sensible to partition the task to be carried out
by the MACsec key agreement (MKA) protocol operated by
the SecY as starting with a CAK, that might be provided by
some means other than EAP: assuming EAP will be used
does not mean that the remainder of the .1af effort is useless
if it is not.

2. Synchronous authentication

802.1X 2004 Clause 8 specifies that authentication is
synchronized with availability of physical connectivity.
This assumption runs very deep, even to the extent that
(according to E.2.1) the Supplicant state machine expects
the higher layer to watch this signal (portEnabled) “and
begin an initialization process when the signal is asserted.
This ensures that both the PAE state machine and the higher
layer are in sync at initialization time. It is expected that the
higher layer will reset both the eapSuccess and eapFail at
this time.” This is not best state machine practice, the only
signal having the magic property of guaranteed
initialization of all state machines being BEGIN. The
current state machines all seem to be missing BEGIN, so it
is difficult to tell when portEnabled is being used to
substitute for BEGIN and when portEnabled is really meant.
In any case this functionality is duplicated by eapRestart
(E.2.2) which is used to communicate properly.

3. Current PAE to PAC coupling

This section (3) discusses some of the ways that 802.1X-
2004 Clause 8 is coupled directly to the implicit model of
access control as a set of switches used in .1X-2004. That
coupling is a little less clear than it might be because no
entity is been defined as implementing the switches, and
some of the controls allude to the use of underlying session
keys (e.g. those implemented by 802.11i) without being
completely explicit about the layering model assumed. Prior
notes and presentations have defined the “PAC” or Port
Access Controller to implement the required controls, and
that is destined in P802.1af-D0.2. To avoid any possible

Mick Seaman 1

Using EAP for infrastructure authentication

ambiguity the rest of this note will describe 802.1X-2004 as
if the PAC had been fully defined. In those terms it is
apparent why 802.1X-2004 is called “PACP state
machines”. They have been specified exactly to control the
PAC, not to express a more general relationship between
EAP and the range of possible entities that could secure data
traffic. In that respect it is a bit of a mystery to me how
some of the 2004 Clause 8 provisions can or are reconciled
with 802.11i.

The controls that seem to depend on the very simple PAC
include portControl. This variable is derived from
AuthControlledPortControl and SystemAuthControl. If
portControl is ForceAuthorized then the controlled Port is
“held in the Authorized state”. It is very clear what this
means for a simple PAC, but not at all clear what this could
mean for an underlying service that requires to have a
session key to function. There is no notion that there is a
default session key, well known to all, or perhaps a default
master key, similarly well known, that can be used to derive
session keys in the absence of any real authorization. |
suppose that it is just possible that such controls could be
used to set MACsec management controls that are intended
for incremental deployment, and allow the transmission of
frames from the ControlledPort without protection.
However the 2004 Clause 8 controls fall short of the
provisions needed for incremental deployment themselves,
and can only be translated in a clumsy way. Again | am not
sure what 802.11i makes of these controls, and where that is
documented.

One way of proceeding that seems very attractive is to
remove the AuthControlledPortControl and
SystemAuthControl administrative controls from the PAE
and make them part of the PAC. For .1af this means moving
them from 6.5.1 (where they are in D0.2) to a subclause of
6.4. This is consistent with our discussion of
OperControlledDirections (currently in 6.4.2) in the July
meeting. Again it is hard to reconcile the idea that
authorization is only to be applied to one direction of
communication with a underlying service that uses
encryption.

If the 2004 Clause 8 state machines are to remain PAC
specific then all the above mentioned controls could stay in
the unmodified clause, whether the variables are thought to
be part of the “PAE for the PAC” or are part of the PAC
itself. If the Clause 8 specification is to be truly generalized
they should be moved.

4. Generalized PAE state machines

This section (4) discusses what a set of PAE state machines
that were general enough to cover easily host connect with a
physically secure LAN (with a PAC), host connect using
MACsec, a point-to-point infrastructure support using
MACsec might look like. To simplify the discussion only
the Supplicant will be considered. The Port Timers transmit
machine is functionally trivial, so that leaves the following
2004 Clause 8 state machines for consideration:

a) Supplicant Key Transmit

b) Supplicant PAE

c) Supplicant Backend

d) Key Receive

| am entirely unclear why an EAPOL-Key message should
be used for the purposes described in .1X-2004, but a little
research leads me to believe that the EAPOL-Key message

is now treated as if it carried an arbitrary payload, and its
use is perhaps not dependent upon using encryption already

Revision 0.1 March 20, 2005

setup between Supplicant and Authenticator as described in
2004 clause 8.1.9. For example the first .11 EAPOL-Key
message that contains “Nonce 1” and “MAC 1” is not
protected. It seems that Figure 8-8 in 8.1.9 should be
ignored, and therefore the two supplicant key machines
amount to nothing more than “receive the contents of an
EAPOL-Key message if one is sent to you, and transmit an
EAPOL-Key message if you have the data to do that and
want to”. In that case it seems that the EAOPOL-Key
messages are nothing more than a possible protocol
identification method to carry key agreement protocol.

The relationship between the Supplicant PAE and
Supplicant Backend state machine is not explained in .1X-
2004 (as far as | can see), other than as a consequence of the
detailed description of variables, so a short description is
provided here. The whole of the Supplicant Backend
machine is, with the minor exception of resource
initialization which could be carried out anywhere, an
expansion of the first part of the AUTHENTICATING state
of the Supplicant PAE state machine. If the authentication
within the backend machine succeeds the keyRun variable
is set to prompt installation of the transmit key. The
AUTHENTICATING state is only left after the key has
been installed and portValid is set. The AUTHENTICATED
state is then entered until receipt of another EAP messages
restarts the authentication dialogue, or until portValid
becomes false.

Taken literally the backend machine imposes restrictions on
the EAP dialogue conducted by the Supplicant: it can
transmit only in response to received EAP messages, and at
most one message can be sent in response to each message
received. Note that there is one exception to this rule, the
procedure txStart() transmits an EAPOL-Start frame in the
Supplicant PAE CONNECTING state. However this
provision doesn’t allow the Supplicant to initiate the
communication necessary to acquire a fresh key if it is
already AUTHENTICATED.

In the usual application of EAP it is assumed that there is
connectivity between the Authenticator and a backend
Authentication Server, and that there is not necessarily
connectivity between Supplicant and that server, except
through the Authenticator. This assumption is probably best
retained in the infrastructure application, so swapping roles
from Supplicant to Authenticator is not a good way to
overcome the restriction of a Supplicant not being able to
acquire a fresh master key while authenticated. Indeed a
more sweeping revision of the assumption that the
underlying security can only make use of one key at a time
is required if MACsec is to provide continuous connectivity
with overlapping SAs. The next subclause (4.1) considers a
repartitioning of the .1X machines to achieve this and other
goals.

4.1 Repartitioned supplicant state machines

A slightly more general approach to supplicant state
machines might proceed along the following lines.

At any time, when connectivity is available, a Supplicant
might want to acquire a fresh or an additional master key.
When the Supplicant has no master key that is of course an
imperative, a necessary precondition to subsequent
communication. However there are other reasons why a
fresh master key may be wanted. A local policy rule might
dictate that the existing master key is nearing the end of a
lifetime set by policy, for example. The current state
machine behavior can be seen as an example of a policy rule

Mick Seaman 2

Using EAP for infrastructure authentication

that discards the current master key(s) whenever the
physical connection is lost, forcing the acquisition of a new
master key when the port is enabled once more.

Let’s look at the heart of a machine or set of machines that
acquire a new master key. For simplicity it is probably the
case that only one master key should be being acquired at
any one time, or at least only one so far as the role of
Supplicant is being concerned. Assume the following to get
started:

a) sAcquireMasterKey is a variable that signals to these
machines to get them to run

b) the acquisition attempt is aborted if portEnabled
transitions false while it is in progress (if portEnabled
becomes true and a master key is still wanted then the
acquisition attempt will naturally be restarted)

c) a quite separate machine is responsible for attempting to
use the master key, to see if it is useful, has been installed
successfully by the authenticator, etc.

BEGIN || !portEnabled

v

Figure 1-1 is a state machine designed using .1X 2004
figures 8-17 (Supplicant PAE state machine) and 8-19
(Supplicant Backend state machine) as a starting point. It
attempts to preserve some aspects of those machines that |
don’t fully understand, as well as fixing some apparent
errors (these are described below in 4.2) while doing the
basic job of those two machines. There are some differences
in the expectations of the two machines. Basically Figure 1-
1 is expected to run until eapSuccess becomes true, and then
another machine is expected to collect the data (including a
master Kkey) associated with that data and then set
eapSuccess false to indicate the data has been collected at
the machine can proceed. Just as with the .1X 2004
originals the machine will support and authentication
exchange initiated by the Authenticator, but has been
modified to only stimulate authentication if a master key is
wanted (the variable sAcquireMasterKey should be cleared
before resetting eapSuccess, so that the machine doesn’t
initiate acquisition of a further key).

INIT

startCount = 0;

eapFail = eapSuccess = eapRestart = FALSE; startWhen = heldWhile = 0;

ucTt

;V

IDLE

sAcquireMasterKey && eapFail
leapSuccess && (startWhen == 0)
‘&& (heldWhile == 0)

START_EAPOL

txStart();
startWhen = startPeriod,;
startCount = startCount + 1,

eapolEap && !eapFail && !leapSuccess

START_EAP

eapRestart = TRUE;
authWhile = authPeriod,;

leapRestart && leapReq

startCount < maxStart ‘
startCount >= maxStart AUTHENTICATING
HOLD
eapFail = FALSE; startCount = 0;
heldWhile = heldPeriod; eapolEap && eapRsp
|
ucT Y eapRsp
RECEIVE RESPOND
eapReq = TRUE;)
eapolEap = FALSE; el t;zusppfaipA(l)_’SE_
authWhile = authPeriod; pResp = ;
leapReq UCT

eapSuccess || eapFail || (authWhile == 0)

Figure 1-1—Supplicant state machine

4.2 Commentary on the Supplicant machines

In the course of examining the suitability of the existing .1X
2004 machines for use in the MACsec infrastructure
application, and in developing Figure 1-1 | removed the
following:

a) S_FORCE_AUTH, S_FORCE_UNAUTH states and all
references to suppPortStatus, sPortMode, Force
Authorized etc. All these are tied to the particular PAC
(physically secure LAN application).

b) All references to Logoff, the point being that Logoff is
just one way/policy of deciding that a key is no longer to
be used. In the infrastructure application it would belong
in a different state machine. There is some discussion

Revision 0.1 March 20, 2005

necessary if logoff is not itself a protected message, and
what the security exposure is of relying on it too heavily,
as of course it may be intercepted.

I changed the following:

c) Since a prior master key may be still be in use,
generating SAKs, and there is no wish to introduce a
window of vulnerability as a new master key is acquired,
Figure 1-1 does not attempt to install and check out the
key before pronouncing success. That is left to another
machine. If the key doesn’t work then
sAcquireMasterKey will be set once more to prompt
acquisition of a further key. Hence there are no
references to portValid.

Mick Seaman 3

Using EAP for infrastructure authentication

I noticed a number of things, some of which I think are bugs
in .1X-2004, or at least flapping loose ends:

d) The philosophy of using the eapRestart, eapReq,
eapResp, eapNoResp, eapFail, eapSuccess variables is
not consistently followed. It would seem that in some
cases the variable is to be set by the machine sending the
signal and the other machine clears it to accept the
signal. However that means that there is no need for
eapNoResp. To pace the delivery of EAP frames to the
upper layer all that needs to do is delay setting eapReq.

e) Likewise | don’t see why the procedure getSuppRsp() is
defined, the upper layer will see eapReq and process it,
and set eapResp to respond, so there is no need for the
procedure call. The delay before the upper layer resets
the eapReq is under its control, so doesn’t need covering
by a note about the procedure.

f) authWhile is inconsistently set in the backend machine.
g) eapFail is never reset.

h) eapolEap is inconsistently cleared in the backend
machine.

i) There appear to be some state machine hazards as
variables are assumed unchanged between states.

While the partitioning between the supplicant and its
backend machine is a nice idea it doesn’t seem to have
worked out well. There are a number of controls whose
purpose seems to be to limit the operation of the backend
machine to inside the PAE machine AUTHENTICATING
state. Some of the transitions into the AUTHENTICATING
state (like eapFail) just rush through that machine with a
change of variable name and fall straight out again. Putting
the two machines together removed the need for the
following:

J) suppAbort, suppStart, abortSupp().
K) suppFail, suppTimeout, suppSuccess.

There are some curiosities about the existing machines:

1) there is no mention of how eapSuccess or eapFail could
be set in the CONNECTING state even before any EAP
packet has been received. | hope this was not a “patch
based on experience” that indicates that poor choices for
timeout values have been deployed, but rather that it is
possible for EAP to be configured with keys out of band
or otherwise authorized.

5. Conclusions

It is still rather early to draw conclusions from the study so
far. My preliminary thoughts are as follows.

a) The existing state (.1X-2004) machines are very tied to
the PAC and its particular operation. A new set of
machines are desirable for the infrastructure application.

b) The existing machines should be retained for the PAC
application, unless there is overwhelming evidence that a
new set of machines is easier to handle in that
application.

c) On the other hand the communications philosophy and
the variables and procedures already defined, though a
little ragged in parts, would seem to be very useful
without redefinition even with a new set of machines.
Some variables may not be wanted, and a small number
of additional variables may be needed but the existing set
looks good.

These conclusions clearly need testing with other machines.

Revision 0.1 March 20, 2005 Mick Seaman

	Using .1X/EAP for infrastructure authentication
	1. Opportunities and problems
	2. Synchronous authentication
	3. Current PAE to PAC coupling
	4. Generalized PAE state machines
	4.1 Repartitioned supplicant state machines
	Figure 1-1- Supplicant state machine

	4.2 Commentary on the Supplicant machines

	5. Conclusions

