
RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.142
November 16, 2005

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 55

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

6. Frame formats

6.1 ClassA frames

6.1.1 ClassA frame fields

A classA frame differs from other frames in the format of its multicast da (destination address), as illustrated
in Figure 6.1.

6.1.1.1 da: A 6-byte (destination address) field that specifies a multicast address associated with the stream.

6.1.1.2 sa: A 48-bit (source address) field that specifies the local station sending the frame. The sa field
contains an individual 48-bit MAC address (see 3.11) as specified in 9.2 of IEEE Std 802-2001.

6.1.1.3 protocolType: A 16-bit field contained within the payload. When the value of protocolType is greater
than or equal to 1536 (60016) the protocolType field indicates the nature of the MAC client protocol (type
interpretation), selecting from values designated by the IEEE Type Field Register. When less than 1536
(016–5FF16), the protocolType is interpreted as the length of the frame (length interpretation). The length
and type interpretations of this field are mutually exclusive.

6.1.1.4 serviceDataUnit: An m-byte field the contains the service data unit provided by the client.

6.1.1.5 pad: If the sum of the other field lengths is less than 64 bytes, then the number of zero-valued pad
bytes are sufficient to make a 64-byte frame. Otherwise, the pad field is not present.

6.1.1.6 fcs: A 4-byte (frame check sequence) field whose 32-bit CRC covers the frame’s content.

Figure 6.1—ClassA frame formats

6 da

6 sa

2 protocolType

m serviceDataUnit

4 fcs

— Identifies data[n] format and function

— Transmitted information

— Frame check sequence

— Destination MAC address

— Source MAC address

n pad — Pad to the avoid overly small frames

JggDvj2005Apr16/D0.142 WHITE PAPER CONTRIBUTION TO
November 16, 2005

Contribution from: dvj@alum.mit.edu.
56 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

6.2 timeSync frame format

6.2.1 timeSync fields

Clock synchronization (timeSync) frames facilitate the synchronization of neighboring clock span-master
and clock span-slave stations. The frame, which is normally sent once each isochronous cycle, includes
time-snapshot information and the identity of the network’s clock master, as illustrated in 6.2. The gray
boxes represent physical layer encapsulation fields that are common across all Ethernet frames.

6.2.1.1 da: A 48-bit (destination address) field that specifies the station(s) for which the frame is intended.
The da field contains either an individual or a group 48-bit MAC address (see 3.11), as specified in 9.2 of
IEEE Std 802-2001.

6.2.1.2 sa: A 48-bit (source address) field that specifies the local station sending the frame. The sa field
contains an individual 48-bit MAC address (see 3.11), as specified in 9.2 of IEEE Std 802-2001.

6.2.1.3 protocolType: A 16-bit field contained within the payload that identifies the format and function of
the following fields (see 6.5.1).

6.2.1.4 subType: A 16-bit field that identifies the format and function of the following fields (see 6.5.2).

6.2.1.5 syncCount: An 8-bit field that is incremented on each timeSync frame transmission.

6.2.1.6 hopsCount: An 8-bit field that identifies the maximum number of hops between the talker and
associated listeners.

6.2.1.7 systemTag: A 16-bit field that has highest precedence in the grand-master selection protocols.

6.2.1.8 uniqueID: A 64-bit field that specifies the precedence of the grand clock master, specified in 6.2.3.

Figure 6.2—timeSync frame format

6 da

6 sa

2 protocolType

4 fcs

8 uniqueID — Less-significant grand-master election precedence

8 offsetTime — Cumulative offset times from the grand-master

8 lastFlexTime — Incoming link’s frame transmssion time (1 cycle delayed)

8 deltaTime — Outgoing link’s frame propagation time

— Frame check sequence

— More-significant grand-master election precedence

— Destination MAC address

— Source MAC address

2 subType

— Distinguishes RE frames from others (see 6.5.1)

— Distinguishes timeSync from other RE frames (see 6.5.2)

— Incoming link’s frame transmssion time (1 cycle delayed)4 lastBaseTime

— Cumulative rate differences from the grand-master4 diffRate

2 systemTag

1 syncCount — Sequence number for timeSync frames

1 hopsCount — Hop count from the grand master

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.142
November 16, 2005

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 57

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

6.2.1.9 lastFlexTime: A 64-bit field that specifies the time within the source station when the previous
timeSync frame was transmitted. The format of this field is specified in 6.2.4.

6.2.1.10 deltaTime: A 64-bit field that specifies the differences between timeSync receive and transmit
times, as measured on the opposing link. The format of this field is specified in 6.2.4.

6.2.1.11 offsetTime: A 64-bit field that specifies the offset time within the source station. The format of this
field is specified in 6.2.4.

6.2.1.12 diffRate: A 32-bit field that specifies the diffRate value within the source station.

6.2.1.13 lastBaseTime: A 32-bit field that specifies the timer1 value within the source station when the
previous timeSync frame was transmitted.

6.2.1.14 fcs: A 32-bit (frame check sequence) field that is a cyclic redundancy check (CRC) of the frame.

6.2.2 systemTag subfields

The format of the 16-bit systemTag field is based on the format of the spanning tree protocol precedence
value, as illustrated in Figure 6.3.

6.2.2.1 systemLevel: A 4-bit field that comprise a settable priority component that permits the relative
priority of bridges to be managed.

6.2.2.2 systemNumber: A 12-bit field that comprise a locally assigned system identifier extension.
(The term systemID is equivalent to ‘system ID’, as specified within IEEE Std 802.1D-2004.)

Figure 6.3—systemTag subfields

MSB LSB
systemLevel systemNumber

JggDvj2005Apr16/D0.142 WHITE PAPER CONTRIBUTION TO
November 16, 2005

Contribution from: dvj@alum.mit.edu.
58 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

6.2.3 uniqueID fields

The format of the 64-bit uniqueID field is a unique identifier. For stations that have a uniquely assigned
48-bit macAddress, the 64-bit uniqueID field is derived from the 48-bit MAC address, as illustrated in
Figure 6.4.

6.2.3.1 oui: A 24-bit field assigned by the IEEE/RAC (see xx).

6.2.3.2 extension: A 16-bit field assigned to encapsulated EUI-48 values.

6.2.3.3 ouiDependent: A 24-bit field assigned by the owner of the oui field (see xx).

6.2.4 Time field formats

Time-of-day values within a frame are specified by 64-bit values, consistent with IETF specified NTP[B8]
and SNTP[B9] protocols. These 64-bit values consist of two components: a 32-bit seconds and 32-bit
fraction fields, as illustrated in Figure 6.5.

6.2.4.1 seconds: A 32-bit field that specifies time in seconds.

6.2.4.2 fraction: A 32-bit field that specified time offset within the second, in units of 2-32 second.

The concatenation of 32-bit seconds and 32-bit fraction field specifies a 64-bit time value, as specified by
Equation 6.1.

time = seconds + (fraction / 232) (6.1)
Where:

seconds is the most significant component of the time value (see Figure 6.5).
fraction is the less significant component of the time value (see Figure 6.5).

Figure 6.4—uniqueID format

Figure 6.5—Complete seconds timer format

MSB LSBmacAddress

FFFE16

oui ouiDependent

oui ouiDependentextension

seconds fraction

32 bits32 bits

MSB LSB

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.142
November 16, 2005

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 59

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

6.3 Subscription frame

6.3.1 Subscription frame fields

Subscription frames contain channel-acquisition information, as illustrated in Figure 6.6.

6.3.1.1 da: A 6-byte (destination address) field that normally specifies the destination address for the frame
transmission, with unicast and multicast forms.

6.3.1.2 sa: A 6-byte (source address) field that normally specifies the source address for the frame
transmission. If a bridge is present between the frame and its associated listener, the sa value identifies the
bridge.

6.3.1.3 protocolType: A 2-byte field that normally specifies the frame length, or the format and function of
the following fields (excluding the 4-byte fcs field). This RE assigned value distinguishes its frame formats
from others (see 6.5.1).

6.3.1.4 subType: A 1-byte field that distinguishes the ResponseError frame from other frames defined
within this working paper.

6.3.1.5 count: A 1-byte field that specifies the number of elements within the following info-block array.

6.3.1.6 info: A 24-byte array element that provides listener subscription information (see 6.4).

6.3.1.7 pad: If the sum of the other field lengths is less than 64 bytes, then the number of zero-valued pad
bytes are sufficient to make a 64-byte frame. Otherwise, the pad field is not present.

6.3.1.8 fcs: The 4-byte (frame check sequence) field whose 32-bit CRC covers the frame’s content. For RE
content frames, the standard definition applies.

Figure 6.6—Subscription frame format

6

6

da

sa

— The station(s) receiving the frame (48-bit destination address)

— The station sending the frame (48-bit source station address)

protocolType2

fcs4

subType1

— The 32-bit CRC for preceding fields

n pad — Pad to the avoid overly small frames

24 info[0]

24 info[1]

24 info[count–1]

24 (…)

count1

– Stream information blocks (see 6.4)

— Distinguishes RE frames from others (see 6.5.1)

— Distinguishes RequestRefresh from other RE frames (see 6.5.2)

JggDvj2005Apr16/D0.142 WHITE PAPER CONTRIBUTION TO
November 16, 2005

Contribution from: dvj@alum.mit.edu.
60 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

6.4 Common info field format

Many frame transports an array of one or more info[] fields, whose content is illustrated in Figure 6.7.

6.4.1 command: A 2-byte field that differentiates between database-update actions.

6.4.2 talkerID: A 6-byte field that identifies the stream’s talker.

6.4.3 plugID: A 16-bit field that specifies the plug identifier within the talker.

The concatenation of the 48-bit talkerID and 16-bit plugID fields forms a 64-bit streamID that uniquely
identifies the classA multicast stream.

6.4.4 mcastID: A 6-byte (multicast identifier) field that routes frames betwee the talker and audience.

6.4.5 maxCycles: A 2-byte field that is updated by bridges, as the RequestRefresh flows from the talker to
the listener, allowing the maximum number of delay cycles between the talker and listener stations to be
known to the talker.

6.4.6 maxBw: A 4-byte field that specifies the level of negotiated classA bandwidth, measured in bytes of
per-cycle content.

6.4.7 reserved: A 2-byte zero-valued field that is ignored.

Figure 6.7—Common info field format

maxCycles2 — Delay from the talker

maxBw4 — Maximum required bandwidth

reserved2 — Reserved

6 mcastID — Multicast destination label

6 talkerID — Multicast talker identifier

plugID2 — Resource within the talker

command2 — Database action command

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.142
November 16, 2005

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 61

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

6.5 Unique identifier values

6.5.1 protocolType identifier

The timeSync (see 6.2) and subscription (see 6.3) frames are distinguished from other frames by their 16-bit
distinct protocolType value, as illustrated in Figure 6.8. The following 1-byte subType field further distin-
guishes between these uses (see 6.5.2).

6.5.2 subType identifier

Distinct subType identifiers distinguish between RE frame types, as specified by Table 6.1.

NOTE—The following protocolType-assignment text will ultimately be updated with assigned values.

Figure 6.8—protocolType field value

Table 6.1—Assigned subType identifiers

Value Name

R
ow See Description

TBD CLOCK_SYNC 1 6.2 Demarcates boundaries between isochronous cycles.

192-255 E1394 2 C.2.2 Encapsulated IEEE 1394 packet (or portion of 1394 packet)

6 da

6 sa

2 protocolType

4 fcs

— Identifies content format

n serviceDataUnit — protocolType dependent

— Frame check sequence

— Destination MAC address

— Source MAC address

Assigned protocolType value:
QR-ST

subType

JggDvj2005Apr16/D0.142 WHITE PAPER CONTRIBUTION TO
November 16, 2005

Contribution from: dvj@alum.mit.edu.
62 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

7. Timer synchronization

7.1 Synchronized time-of-day timers

7.1.1 Assumptions

This working paper specifies a protocol to synchronize independent timers running on separate stations of a
distributed networked system, based on concepts specified within IEEE Std 1588-2002. Although a high
degree of accuracy and precision is specified, the technology is applicable to low-cost consumer devices.
The protocols are based on the following design assumptions:

a) Each end station and intermediate bridges provide independent clocks.

b) All clocks are accurate, typically to within ±100PPM.

c) Point-to-point transmit/receive duplex connections are provided.

d) Transmit/receive propagation delays within duplex cables are well matched.

7.1.2 Objectives

With these assumptions in mind, the time synchronization objectives include the following:

a) Precise. Multiple timers can be synchronized to within 10’s of nanoseconds.

b) Inexpensive. For consumer A/V devices, the costs of synchronized timers are minimal.
(GPS, atomic clocks, or 1PPM clock accuracies would be inconsistent with this criteria.)

c) Scalable. The protocol is independent of the networking technology. In particular:

1) Cyclical physical topologies are supported.
2) Long distance links (up to 2 kM) are allowed.

d) Plug-and-play. The system topology is self-configuring; no system administrator is required.

7.1.3 Strategies

Strategies used to meet these objectives include the following:

a) Precision is achieved by calibrating and adjusting timeOfDay clocks.

1) Offsets. Offset value adjustments eliminate immediate clock-value errors.
2) Rates. Rate value adjustments reduce long-term clock-drift errors.

b) Simplicity is achieved by the following:

1) Concurrence. Most configuration and adjustment operations are performed concurrently.
2) Feed-forward. PLLs are unnecessary within bridges, but possible within applications.
3) Symmetric. Clock-master/clock-slave computations are similar (only slave results are saved).
4) Periodic. Messages are sent periodically, rather than in timely response to other requests.
5) Frequent. Frequent (every 10 ms) interchanges reduces needs for precise clocks.

c) Balanced functionality.

1) Low-rate. Complex computations are infrequent and can be readily implemented in firmware.
2) High-rate. Frequent computations are simple and can be readily implemented in hardware.

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.142
November 16, 2005

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 63

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

7.1.4 Timer synchronization services

Clock synchronization involves the transmission and reception of timeSync frames interchanged between
adjacent-span stations, using the state machines defined within this clause. When considered as a whole,
these provide the following services:

a) Election. The grand clock master is elected from among the grand-clock-master capable stations.

b) Isolation. Timeouts identify the boundaries, beyond which RE services are not supported.

c) Clock-sync. Clock-slave stations are synchronized to the grand master station’s time reference.

7.1.5 Grand-master selection

7.1.5.1 Grand-master selection

Clock synchronization involves streaming of clock-synchronization information from a grand-master timer
to one or more slave timers. Although primarily intended for non-cyclical physical topologies
(see Figure 7.1a), the synchronization protocols also function correctly on cyclical physical topologies
(see Figure 7.1b), by activating only a non-cyclical subset of the physical topology.

In concept, the clock-synchronization protocol starts with the selection of the reference-timer station, called
a grand-master station (oftentimes abbreviated as grand-master). Every RE-capable station is grand-master
capable, but only one is selected to become the grand-master station within each network. To assist in the
grand-master selection, each station is associated with a distinct preference value; the grand-master is the
station with the “best” preference values.

As part of the grand-master selection process, stations forward the best of their observed preference values
to neighbor stations, allowing the overall best-preference value to be ultimately selected and known by all.
The station whose preference value matches the overall best-preference value ultimately becomes the
grand-master.

Figure 7.1—Timer synchronization flows

a) Non-cyclical grand-master topologies

Legend:
grand master other slave

established synchronization flow

SS

SG

G
S

a) Cyclical grand-master topologies

Legend:
grand master other slave

established synchronization flow

SS

SG

G
S

JggDvj2005Apr16/D0.142 WHITE PAPER CONTRIBUTION TO
November 16, 2005

Contribution from: dvj@alum.mit.edu.
64 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

7.1.5.2 Communicated preference values

The grand-master station observes that its precedence is better than values received from its neighbors, as
illustrated in Figure 7.2a. A slave stations observes its precedence to be worse than one of its neighbors and
forwards the best-neighbor precedence value to adjacent stations, as illustrated in Figure 7.2b. To avoid
cyclical behaviors, a hopsCount value is associated with preference values and is incremented before the
best-precedence value is communicated to others.

The grand-master selection precedence includes multiple components, listed and described below
(see 7.1.8). The portTag value is only needed within a bridge and is therefore not transmitted between
stations.

a) systemTag. A changeable value that is associated with each grand-master capable station.
This value can specify grand-master preferences (e.g., a home gateway may be preferred).

b) uniqueID. A unique value associated with each station, typically based on its MAC address.
This value is used as a tie breaker, when two contenders have identical systemTag values.

c) hopsCount. A value that is incremented when passing through stations.
This is the tie breaker, when two ports receive identical systemTag:uniqueID values.

d) portTag. A changeable value that is associated with each port on a grand-master capable station.
This is the tie breaker, when two ports receive identical systemTag:uniqueID:hopsCount values.

Figure 7.2—Grand-master precedence flows

a) Grand-master station flows

MinimumValue

thisPrecedence hopsCount +=1

b) Clock-slave station flows

MinimumValue

thisPrecedence hopsCount +=1

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.142
November 16, 2005

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 65

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

7.1.6 Clock-synchronization agents

Clock-synchronization information conceptually flows from a grand-master station to clock-slave stations,
as illustrated in Figure 7.3a. A more detailed illustration shows pairs of synchronized clock-master and
clock-slave components, as illustrated in Figure 7.3b.

7.1.7 Clock-synchronized pairs

Each bridge port provides clock-master and clock-slave agents, although both are never simultaneously
active. External communications (see 7.3b) synchronize clock-slaves to clock-masters, as listed in Table 7.1.

Figure 7.3—Hierarchical flows

Table 7.1—External clock-synchronization pairs

Grand master Clock master
agent

Clock slave
agent Clock slave Type of

synchronization

d1 – c1 – Station-to-bridge

– c0 b1 – Bridge-to-bridge

– c3 e1 –

– b0 – a0 Bridge-to-station

– b2 – a2

– b3 – a3

– c2 – d2

– e0 – f0

– e2 – f2

– e3 – f3

b0

b1

c0 c1 c2 c3

e0

e1

e2

S

S
e3

S

a) Clock synchronization flow

Legend:
grand-master clock slave
streaming data

G

G S

b2

b3

SS

S

S

b) Agents along the synchronization path

c0 c1 c2 c3

d1 d2

f0

f3

f2a2

a3

a0
b0

b1

b3 e3

e0

e1

e2

Legend:
grand master slave station
master agent slave agent
internal coupling clock-synch flow

b2

JggDvj2005Apr16/D0.142 WHITE PAPER CONTRIBUTION TO
November 16, 2005

Contribution from: dvj@alum.mit.edu.
66 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Internal communications distribute synchronized time from clock-slave agents b1, c1, and e1 to the other
clock-master agents on bridgeB, bridgeC, and bridgeE respectively. However, bridge-internal port-to-port
synchronization protocols are implementation-dependent and beyond the scope of this working paper.

Within a clock-slave, precise time synchronization involves adjustments of timer offset and rate values. The
adjustments of the timer’s offset is called offset synchronization (see 7.1.12); the adjustments of the timer’s
rate is called rate synchronization (see 7.1.13). Both involve calibration of local clock-master/clock-slave
differences and the propagation of cumulative differences in the clock-slave direction, as described by the C
code of Annex J.

Time synchronization yields distributed but closely-matched timeOfDay values within stations and bridges.
No attempt is made to eliminate intermediate jitter with bridge-resident jitter-reducing phase-lock loops
(PLLs,) but application-level phase locked loops (not illustrated) are expected to filter high-frequency jitter
from the supplied timeOfDay values

7.1.8 Grand-master precedence

Grand-master precedence is based on the concatenation of multiple fields, as illustrated in Figure 7.4. The
portTag value is used within bridges, but is not transmitted between stations.

This format is similar to the format of the spanning-tree precedence value, except that a larger uniqueID is
provided for compatibility with interconnects based on 64-bit station identifiers.

Figure 7.4—Grand-master precedence

MSB
systemTag uniqueID hops portTag

LSB

sLevel systemNumber pLevel portNumber

Legend:
sLevel: systemLevel hops: hopsCount pLevel: portLevel

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.142
November 16, 2005

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 67

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

7.1.9 Synchronization principles

Timer synchronization is based on the concept of free-running local times (localD, localE, and localF) with
compensating offset values (offsetD, offsetE, and offsetF), as illustrated in Figure 7.5. Updates involve
changes to the offset values, not the free-running local timer values. In this example, we assume that:
StationE is synchronized to its adjacent StationD; StationF is synchronized to its adjacent StationE. As a
result, StationF is indirectly synchronized to StationD (through StationE).

The formulation of the offsetE value begins the assumption that the globalE and globalD times are identical.
Addition of (localE– localE) and regrouping of terms leads to the formulation of the desired offsetE value,
based on offsetD and (localE– localD) time difference values, as illustrated in Figure 7.5-a. Synchronization
is thus possible using periodic transfers of offsetD values and computations of the (localE– localD)
difference.

The formulation of the offsetF value begins the assumption that the globalF and globalE times are the
identical. Addition of (localF–localF) and regrouping of terms leads to the formulation of the desired
offsetF value, based on offsetE and (localF–localE) time difference values, as illustrated in Figure 7.5-b.
Synchronization is thus possible using periodic transfers of offsetE values and computations of the
(localF– localE) difference.

In concept, the offsetE value is adjusted first; its adjusted value is then used to compute the desired offsetF
value. In actuality, the periodic computations of offsetE and offsetF values are performed concurrently.

Figure 7.5—Time synchronization principles

StationE

localE offsetE

add
globalE

StationF

localF offsetF

add
globalF

a) StationE synchronizes to StationD

StationD

localD offsetD

add
globalD

globalE = globalD
= localD + offsetD
= localD − (localE − localE) + offsetD
= (localD − localE) + localE + offsetD
= localE + offsetE

Where:
offsetE = offsetD − (localE − localD)

StationE

localE offsetE

add
globalE

StationF

localF offsetF

add
globalF

b) StationF synchronizes to StationE

StationD

localD offsetD

add
globalD

globalF = globalE
= localE + offsetE
= localE − (localF− localF) + offsetE
= (localE − localF) + localF + offsetE
= localF + offsetF

Where:
offsetF = offsetE – (localF – localE)

JggDvj2005Apr16/D0.142 WHITE PAPER CONTRIBUTION TO
November 16, 2005

Contribution from: dvj@alum.mit.edu.
68 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

7.1.10 Timer snapshot locations

Mandatory jitter-error accuracies are sufficiently loose to allow transmit/receive snapshot circuits to be
located with the MAC, as illustrated in Figure 7.6a. Vendors may elect to further reduce timing jitter by
latching the receive/transmit times within the PHY, where the uncertain FIFO latencies can be best avoided,
as illustrated in Figure 7.6b.

7.1.11 Clock-synchronization updates

7.1.11.1 Clock-synchronization intervals

Clock synchronization involves the processing of periodic events. Three distinct time periods are involved,
as listed in Table 7.2. The clock-period events trigger the update of free-running timer values; the period
affects the timer-synchronization accuracy and is therefore constrained to be small.

The send-period events trigger the interchange of timeSync frames between adjacent stations. While a
smaller period (1 ms or 100 µs) could improve accuracies, the larger value is intended to reduce costs by
allowing computations to be executed by inexpensive (but possibly slow) bridge-resident firmware.

The slow-period events trigger the computation of timer-rate differences. The timer-rate differences are
computed over two slow-period intervals, but recomputed every slow-period interval. The larger 100 ms (as

Figure 7.6—Timer snapshot locations

Table 7.2—Clock-synchronization intervals

Name Time Description

clock-period < 20 ns Time between timer-register value updates

send-period 10 ms Time between sending of periodic timeSync frames between adjacent stations

slow-period 100 ms Time between computation of clock-master/clock-slave rate differences

a) Simple timeSync snapshots

FIFO

transmitter

FIFO

receiver

txStrobe

PHY

rxStrobe

MAC

convert

globalTime
client

global local
offset

b) Precise timeSync snapshots

FIFO

transmitter

FIFO

receiver

txStrobe

PHY

rxStrobe

MAC

convert

globalTime
client

global local
offset

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.142
November 16, 2005

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 69

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

opposed to 10 ms) computation interval is intended to reduce errors associated with sampling of
clock-period-quantized slow-period-sized time intervals.

7.1.12 Offset synchronization

7.1.12.1 Offset synchronization adjustments

Offset synchronization involves a subset of the time-synchronization components, as illustrated by
white-colored boxes in Figure 7.9. Each clock consists of a progressing timeOfDay value, whose offset and
rate are periodically adjusted. The free-running flexTimer timer is never reset; synchronization of stationE
(with respect to stationD) is accomplished by adjustments to the flexOffset and flexRate values within
stationE.

The offset-synchronization protocols interchange parameters periodically, possibly every 10 ms. The
lastFlexTime, deltaTime, and offsetTime values are sent periodically from the clock-master to the
clock-slave. The lastFlexTime is sent periodically from the clock-slave to the clock-master, providing
information necessary for the clock-master to produce a deltaTime value for the clock-slave.

The offset-compensation protocols for stationE adjust its myOffsetTime value so that the instantaneous val-
ues of stationE.timeOfDay and stationD.timerOfDay are the same. Computations are performed on
clockStrobe reception and clockStrobe transmission.

As an option, an additional linkOffset value is available to manually compensate for mismatched
transmit-link/receive-link duplex-cable delays on the clock-master side. The linkOffset value is expected be
manually set when the cable mismatch is known through other mechanisms, such as specialized cable-char-
acterization equipment.

The station’s offsetTime value is constructed by adding the received clockStrobe.offsetTime, local
myOffsetTime, and local linkOffset values. This revised clockStrobe.offsetTime value is used within each sta-
tion and is passed to the downstream neighbor (when such a neighbor is present).

Figure 7.7—Offset synchronization adjustments

flexTimer

flexAdd

offsetAdd

timeOfDay

stationD

lastFlexTime
deltaTime
offsetTime

lastFlexTime

flexRate

myOffsetTime

addition2coffsetTime

rateAdd

diffAdd
baseRate

Legend:
clock-period offset-synchronization entity send-period active-synchronization entity
clock-period rate-synchronization entity send-period passive-synchronization entity
clock-period communication path send-period communication path

myDiffRate

diffRate

multiply

clock-master clock-slave stationE

flexTimer

flexAdd

offsetAdd

timeOfDay

flexRate

addition2coffsetTime

rateAdd

diffAdd
baseRate

myDiffRate

diffRate

linkOffset myOffsetTime linkOffset

flexOffsetflexOffset

multiply

baseTimer

baseAdd

baseTimer

baseAdd
clock clock

JggDvj2005Apr16/D0.142 WHITE PAPER CONTRIBUTION TO
November 16, 2005

Contribution from: dvj@alum.mit.edu.
70 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

7.1.12.2 Cascaded offsets

The concept of cascaded offset values can be better understood by considering a simple 3-bridge example, as
illustrated in Figure 7.8. The slave-agent in bridgeB is synchronized to its neighbor grand-master via time-
Sync frames sent on the connecting bidirectional span. Within bridgeB, the clock-slave agent passes the time
directly to the clock-master agent. The slave-agent in bridgeC is synchronized to its neighbor clock-master
via timeSync frames sent on the connecting bidirectional span. Other ports are similarly synchronized, thus
synchronizing the right-most clock-slave station to the left-most grand-master station.

To simplify this illustration, consider only the seconds portion of the flexTimer value within each station or
bridge. These values may differ dramatically, based (perhaps) on the power-cycling or topology formation
sequence. Thus, the grand-master could have a flexTimer value of 100 while its bridgeB neighbor has a
flexTimer value of 500.

The myOffsetTime value within bridgeB will converges to the value of −400, representing the differences
between grand-master and bridgeB flexTimer values. The flexOffset value received from the grand-master is
added to this myOffsetTime value, so that bridgeB’s flexOffset becomes −390. The flexTimer and flexOffset
values are added, to yield a resultant bridgeB timeOfDay value of 110, properly synchronized to the identical
grand-master’s value.

Similarly, bridgeC is synchronized to bridgeB, bridgeD to bridgeC, and the clock-slave to bridgeD.

Parameter

name grand-master bridgeB bridgeC bridgeD clock-slave

number 1 2 3 4 5

flexTimer 100 500 -300 200 400

myOffsetTime 10 -400 800 -500 -200

flexOffset 10 -390 410 -90 -290

timeOfDay 110

Representing:
myOffsetTime[k+1] = flexTimer[k]−flexTimer[k+1];
flexOffset[k+1] = flexOffset[k]+myOffsetTime[k+1];
timeOfDay[k] = flexTimer[k] + flexOffset[k];

Figure 7.8—Cascaded offsets (a possible scenario)

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.142
November 16, 2005

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 71

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

7.1.13 Rate synchronization

7.1.13.1 Rate synchronization adjustments

Rate synchronization involves a subset of the time-synchronization components, as illustrated by
white-colored boxes in Figure 7.9. The free-running baseTimer timer facilitate the determination of rate
differences between the clock-master and clock-slave stations.

The rate-synchronization protocols interchange parameters periodically, but less frequently than the
offset-synchronization protocols, possibly every 100 ms. The lastBaseTime value is sent periodically from
the clock-master to the clock-slave. Nothing is returned from the clock-slave station.

The rate-compensation protocols for stationE adjust its myDiffRate value to accommodate for differences
between the stationD.baseTimer and stationE.baseTimer rates. Computations are performed on clockStrobe
reception and clockStrobe transmission.

The station’s diffRate value is constructed by adding the received clockStrobe.diffRate and local myDiffRate
values. This revised clockStrobe.diffRate value is used within each station and is passed to the clock-slave
side neighboring station (if present).

Figure 7.9—Rate synchronization adjustments

Legend:
clock-period offset-synchronization entity send-period active-synchronization entity
clock-period rate-synchronization entity send-period passive-synchronization entity
clock-period communication path send-period communication path

flexTimer

flexAdd

offsetAdd

timeOfDay

flexOffset

baseTimer

baseAdd

stationD

lastBaseTime

flexRate

addition2coffsetTime

rateAdd

diffAdd
baseRate

myDiffRate

diffRate

clock-master clock-slave stationE

flexTimer

flexAdd

offsetAdd

timeOfDay

flexRate

addition2coffsetTime

rateAdd

addition2c

myDiffRate

diffRate

myOffsetTime linkOffset linkOffset

baseRate

flexOffset

multiplymultiply

baseTimer

baseAdd
clockclock

myOffsetTime

JggDvj2005Apr16/D0.142 WHITE PAPER CONTRIBUTION TO
November 16, 2005

Contribution from: dvj@alum.mit.edu.
72 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

7.1.13.2 Cascaded rate differences

The concept of cascaded rate values can be better understood by considering a simple 3-bridge example, as
illustrated in Figure 7.10. Within this figure, the myDiffRateN and diffRateN represent parts-per-million
(PPM) normalized values of myDiffRate and diffRate respectively.

The slave-agent in bridgeB is synchronized to its neighbor grand-master via timeSync frames sent on the
connecting bidirectional span. Within bridgeB, the clock-slave agent passes the time directly to the
clock-master agent. The slave-agent in bridgeC is synchronized to its neighbor clock-master via timeSync
frames sent on the connecting bidirectional span. Other ports are similarly synchronized, thus synchronizing
the right-most clock-slave station to the left-most grand-master station.

To simplify this illustration, consider only the parts-per-million (PPM) normalized rate values within each
station or bridge. These values may differ significant, based (perhaps) on the nominal value or ambient tem-
perature. Thus, the grand-master could have a crystal deviation of +10 while its bridgeB neighbor has a
crystal deviation of +100.

The myDiffRate value within bridgeB will converges to the value of −90 PPM, representing the differences
between grand-master and bridgeB crystal accuracies. The diffRate value received from the grand-master is
added to the myDiffRate value, so that bridgeB’s diffRate becomes −90 PPM. The diffRate and crystal devia-
tion values are additive, yielding a resultant bridgeB flexTimer deviation of 10 PPM, properly synchronized
to the identical grand-master’s value.

Similarly, the rate of bridgeC is synchronized to bridgeB, bridgeD to bridgeC, and the clock-slave to
bridgeD.

Parameter

name grand-master bridgeB bridgeC bridgeD clock-slave

number 1 2 3 4 5

crystal deviation +10 PPM +100 PPM −100 PPM −75 PPM +75 PPM

myDiffRateN 0 PPM −90 PPM 200 PPM −25 PPM −150 PPM

diffRateN 0 PPM −90 PPM 110 PPM +85 PPM −65 PPM

flexTimer
deviation

10 PPM

Representing:
myDiffRateN[k+1] = flexRate[k]−flexRate[k+1];
diffRate[k+1] = diffRate[k]+myDiffRate[k+1];
flexTimerDeviation[k] = crystalDeviation[k] + diffRate[k];

Figure 7.10—Cascaded rate differences (a possible scenario)

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.142
November 16, 2005

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 73

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

7.1.14 Rate-difference effects

If the absence of rate adjustments, significant timeOfDay errors can accumulate between send-period
updates, as illustrated on the left side of Figure 7.11. The 2 ms deviation is due to the cumulative effect of
clock drift, over the 10 ms send-period interval, assuming clock-master and clock-slave crystal deviations of
−100 PPM and +100 PPM respectively.

While this regular sawtooth is illustrated as a highly regular (and thus perhaps easily filtered) function,
irregularities could be introduced by changes in the relative ordering of clock-master and clock-slave trans-
missions, or transmission delays invoked by asynchronous frame transmissions. Tracking peaks/valleys or
filtering such irregular functions are thought unlikely to yield similar timeOfDay deviation reductions.

The differences in rates could easily be reduced to less than 1 PPM, assuming a 200 ms measurement inter-
val (based on a 100 ms slow-period interval) and a 100 ns arrival/departure sampling error. A clock-rate
adjustment at time 100 ms could thus reduce the clock-drift related errors to less than 5 ns. At this point, the
timer-offset measurement errors (not clock-drift induced errors) dominate the clock-synchronization error
contributions.

7.1.15 baseTimer functionality

The external formats within timeSync frames assumes the presence of baseTimer-related values. A
direct-mapped hardware implementation involves a clocked baseTimer register and a precision adder, as
illustrated in Figure 7.12a. Within this figure, the shaded bytes represent values that can safely be hardwired
to zero with insignificant loss of accuracy.

A simpler hardware implementations is to periodically increment a tick timer at an implementation-depen-
dent rate, as illustrated in Figure 7.12a. Although this timer is improperly scaled and insufficiently large,
firmware can perform the multiplications and additions necessary to provide the normalized external values.

Figure 7.11—Rate-adjustment effects

Figure 7.12—baseTimer implementation examples

timeOfDay
deviation

time

2 µs

5 ns

470 ms 480 ms 490 ms 500 ms 510 ms 520 ms 530 ms460 ms

a) The functional baseTimer value

64-bit addition
baseAdd

baseTimer

fraction subFraction

fraction subFraction

baseRate
32-bit increment

tickTimer

tickTimer

b) Basic baseTimer hardware

comparison

tickLimit

0

0 1

JggDvj2005Apr16/D0.142 WHITE PAPER CONTRIBUTION TO
November 16, 2005

Contribution from: dvj@alum.mit.edu.
74 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

7.1.16 flexTimer functionality

The selection of the best time-of-day format is oftentimes complicated by the desire to equate the clock for-
mat granularity with the granularity of the implementation’s ‘natural’ clock frequency. Unfortunately, the
‘natural’ frequency within a multimodal {1394, 802-100Mb/s, 802.3 1Gb/s} implementation is uncertain,
and may vary based on vendors and/or implementation technologies.

The difficulties of selecting a ‘natural’ clock-frequency can be avoided by realizing that any clock with suf-
ficiently fine resolution is acceptable. Flexibility involves using the most-convenient clock-tick value, but
adjusting the timer advance rate associated with each clock-tick occurrence.

The same mechanism easily supports both near-arbitrary clocking rates and fine-grained rate-adjustments,
needed to support timer-synchronization protocols, as illustrated in Figure 7.13. Within this figure, the
shaded bytes represent values that can safely be hardwired to zero with insignificant loss of accuracy.

This illustration is not intended to constrain implementations, but to illustrate how the system’s clock and
timer formats can be optimized independently. This allows the timeOfDay timer format to be based on
arithmetic convenience, timing precision, and years-before-overflow characteristics (see Annex E).

Although a direct hardware implementation is possible, a simpler solution is to utilize a single tickTimer reg-
ister (see 7.1.15). Since the external communication rates are low, firmware conversions between tickTimer
and flexTimer values are expected to be feasible.

Figure 7.13—flexTimer implementation example

128-bit addition

superSeconds seconds

64-bit addition

flexAdd

flexTimer

offsetAdd

myOffsetTimeseconds fraction

timeOfDay

fraction subFraction

fraction subFraction flexRate
0000 0000 0000 0000 16

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.142
November 16, 2005

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 75

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

7.2 Terminology and variables

7.2.1 Common state machine definitions

The following state machine inputs are used multiple times within this clause.

NULL
Indicates the absence of a value and (by design) cannot be confused with a valid value.

queue values
Enumerated values used to specify shared queue structures.

Q_RX_FRAME—Identifies the queue that supplies received frames.
Q_RX_SYNC—Identifies the queue where received timeSync frames are saved.
Q_RX_ELSE—Identifies the queue where received non-timeSync frames are saved.
Q_TX_FRAME—The identifier associated with the transmitted timeSync frames.

SCALE
A multiplicative scalar for converting between the internal core.diffRate fraction and the external
frame.diffRate integer values.

Value: 244

7.2.2 Common state machine variables

One instance of each variable specified in this clause exists in each port, unless otherwise noted.

currentTime
A value representing the current time.

core
The state associated with the common portion of a bridge:

clockDeviation—Nominal frequency deviation of crystal-stabilized clock, in PPM.
Maximim: +100
Minimum: –100

clockFrequency—The nominal frequency of the synchronized timer.
clockFrequency > 50 MHz

diffRate—The cumulative rate difference from the grand-master station.
flexOffset—The cumulative value difference from the grand-master station.
linkOffset—The specified delay differences between transmit and receive links.
myDiffRate—The measured rate difference between the local and remote ports.
myOffsetTime—The measured time-offset difference between the local and remote ports.
counter—A running count that is incremented approximately once every 10 ms.
offsetTicks—A tickTimer snapshot taken at the start of each 10 ms interval.
precedence—The currently observed grand-master precedence value.
rateCount—A running count that is incremented approximately once every 100 ms.
slaveCount—A snapshot of offsetCount, received from a grand-master slave port.
slavePort—The slave port identifier associated with an upstream grand-master station.
systemTag—The most-significant portion of this station’s grand-master precedence.
tickExtra—The software-maintained seconds-overflow value associated with core.tickTimer.
tickLimit—The maximum value of core.tickTimer before a seconds overflow occurs.
tickOffset—A scalar parameter for the conversion between tickTimer and flexTimer values.
tickRate—A scalar parameter for the conversion between tickTimer and flexTimer values.
tickTime—A snapshot of the currentTime value at the beginning of each clockPeriod interval.
tickTimer—A running count that is incremented at the end of each clockPeriod interval.
uniqueID—The more-significant portion of this station’s grand-master precedence

JggDvj2005Apr16/D0.142 WHITE PAPER CONTRIBUTION TO
November 16, 2005

Contribution from: dvj@alum.mit.edu.
76 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

frame
The contents of a timeSync frame, including the following components (see 6.2.1):

da, sa, protocolType, subType, hopsCount, syncCount, cycleCount, systemTag,
uniqueID, lastFlexTime, deltaTime, offsetTime, diffRate, lastBaseTime, fcs.

See 6.2.1.
rxtickTimer—The value of core.tickTimer, sampled when this frame was received.

port
The state associated with each of the ports on a bridge:

counter—An accounting value whose comparison to core.counter triggers processing.
portPri—A priority differentiator for the port.
portID—A unique identifier for the port.
propTime—An average cable propagation delay measurement for the attached link.
rateCount—An accounting value whose comparison to core.rateCount triggers processing.
rxFlexTime0—The current value of flexTime when the frame is received.
rxFlexTime—The current of rxFlexTime0 when the frame is received.
rxTickTime0—The current value of tickTime when the frame is received.
rxTickTime —The current value of rxTickTime0 when the frame is received.
syncCount—The last observed frame.syncCount value, saved for consistency checks.
timeSyncAllowed—Indicates when a timeSync frame is enabled for transmission.
txtickTimer—The saved core.tickTimer value, when timeSync was last transmitted.

tickTimer
See 7.2.2.

7.2.3 Common state machine routines

Best(test, base)
Indicates whether the test is smaller than the base precedence, as defined by Equation 7.1.

(test.hi < base.hi || (test.hi == base.hi && test.lo <= base.lo)) (7.1)

Dequeue(queue)
Returns the next available frame from the specified queue.

frame—The next available frame.
NULL—No frame available.

Enqueue(queue, frame)
Places the frame at the tail of the specified queue.

FlexTimer(tickTime, tickRate, tickOffset)
Computes the effective flexTimer value based on the provided inputs, as defined by Equation xx.

(tickTime * tickRate * (1.0 + tickDiff) + tickOffset) (7.2)

Min(value1, value2)
Returns the numerically smaller of two values.

Precedence(sys, uid, hops, tag)
Forms a 128-bit precedence value from its component fields, as defined by Equation 7.1.

Precedence(sys, uid, hops, pri, pid) (7.3)
{

doubleInt value;

value.hi = (sys << 24) | (uid >> 40);
value.lo = (uid << 24) | (hops << 16) | (pri << 12) | pid;
return(value);

}

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.142
November 16, 2005

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 77

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

QueueEmpty(queue)
Indicates when the queue has emptied.

TRUE—The queue has emptied.
FALSE—(Otherwise.)

7.3 Clock synchronization state machines

7.3.1 TickTimer state machine

7.3.1.1 TickTimer state machine definitions

The following definitions are used within this subclause:

NULL
A constant that indicates the absence of a slave-port identifier.

TICKS_PER_SEC
The nominal number of tick periods in every cycle.

7.3.1.2 TickTimer state machine variables

Only one instance of each state-machine variable exists in each bridge.

core
currentTime

See 7.2.2.
precedence

A computed grand-master precedence value, based on this station’s parameters.

7.3.1.3 TickTimer state machine routines

The following routines are used within this subclause:

Best(test, base)
Precedence(sys, uid, hops, tag)

See 7.2.3.

JggDvj2005Apr16/D0.142 WHITE PAPER CONTRIBUTION TO
November 16, 2005

Contribution from: dvj@alum.mit.edu.
78 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

7.3.1.4 TickTimer state table

Each bridge supplies only one TickTimer state machine.

The TickTimer state machine provides the timer values for other state machines, as specified in Table 7.3.
Only the START-1, BUMP-1, and BUMP-2 rows (shaded gray) are expected to require hardware support;
the remaining rows are expected to be easily mapped to firmware. The notation used in the state table is
described in 3.4.

Row START-1: The tickTimer register is incremented once every clockPeriod interval.
(The tickTimer register is the timer used to snapshot all arrival and departure times.)
Row START-2: The counter register is incremented approximately once every 10 ms interval.
(Changes in the counter register triggers transmissions of periodic timerSync frames.)
Row START-3: Otherwise, no updates are performed.

Row BUMP-1: The tickTimer register overflows after the core.tickLimit value is reached.
Row BUMP-2: Otherwise, the tickTimer register is incremented.

Row PLUS-1: The tickTimer register seconds-carry eventually propagates into the core.tickExtra field.
Row PLUS-2: Otherwise, no seconds-carry is required.

Table 7.3—TickTimer state table

Current

R
ow

Next

state condition action state

START delta = core.clockDeviation / 1000000,
(currentTime − core.tickTime) >=
1.0 / (core.clockFrequency * (1.0 + delta))

1 core.tickTime = currentTime; BUMP

(core.tickTimer − core.offsetTicks) >=
0.010 * TICKS_PER_SEC

2 core.offsetTicks = core.tickTimer;
core.counter += 1;
preference =
Precedence(core.systemTag,
core.uniqueID, 0, 0, 0);

PLUS

— 3 — START

BUMP core.tickTimer >= core.tickLimit 1 core.tickTimer = 0; START

— 2 core.tickTimer += 1;

PLUS core.tickTimer < core.lastTimer 1 core.tickExtra += core.tickLimit + 1;
core.lastTimer = core.tickTimer;

NEXT

— 2 —

NEXT (core.counter – core.slaveCount) >= 5 1 core.slavePort = NULL; NEAR

— 2 —

NEAR Best(preference, core.precedence)
|| core.slavePort == NULL

1 core.slavePort = NULL;
core.precedence = precedence;
core.slaveCount = core.counter;

FINAL

— 2 —

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.142
November 16, 2005

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 79

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Row NEXT-1: If the slave port receives no heartbeats, the slave-port identifier is released.
Row NEXT-2: Otherwise, no updates are performed.

Row NEAR-1: If this station has the best preference, or no slave port exists, this station has precedence.
Row NEAR-2: Otherwise, the cumulative preference value remains unchanged.

7.3.2 TimerRxLatch state machine

7.3.2.1 TimerRxLatch state machine definitions

The following definitions are used within this subclause:

Q_RX_ELSE
Q_RX_FRAME
Q_RX_SYNC

See 7.2.1.

7.3.2.2 TimerRxLatch state machine variables

The following variables are used within this subclause:

core
frame

See 7.2.2.

7.3.2.3 TimerRxLatch state machine routines

The following routines are used within this subclause:

Dequeue(queue)
Enqueue(queue, frame)

See 7.2.3.

JggDvj2005Apr16/D0.142 WHITE PAPER CONTRIBUTION TO
November 16, 2005

Contribution from: dvj@alum.mit.edu.
80 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

7.3.2.4 TimerRxLatch state table

The TimerRxLatch state machine associates a time stamp within incoming frames, as specified in Table 7.4.
The notation used in the state table is described in 3.4.

Row START-1: A new frame has arrived and is available for processing.
Row START-2: Wait for a new frame to arrive.

Row FINAL-1: The timeSync frames are immediately time-stamped and enqueued for special processing.
Row FINAL-2: Other frames are processed in their normal fashion.

7.3.3 TimerTxLatch state machine

7.3.4 TimerRxLatch state machine

7.3.4.1 TimerRxLatch state machine definitions

The following definitions are used within this subclause:

Q_TX_FRAME
Q_TX_SYNC

See 7.2.1.

7.3.4.2 TimerRxLatch state machine variables

The following variables are used within this subclause:

core
frame
port

See 7.2.2.

Table 7.4—TimerRxLatch state table

Current

R
ow

Next

state condition action state

START (frame = Dequeue(Q_RX_FRAME))
!= NULL

1 — FINAL

— 2 — START

FINAL frame.protocolType == TIME_SYNC 1 frame.rxTickTimer = core.tickTimer;
Enqueue(Q_RX_SYNC, frame);

START

— 2 Enqueue(Q_RX_ELSE, frame);

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.142
November 16, 2005

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 81

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

7.3.4.3 TimerTxLatch state machine routines

The following routines are used within this subclause:

Dequeue(queue)
Enqueue(queue, frame)
QueueEmpty(queue)

See 7.2.3.

7.3.4.4 TimerTxLatch state table

The TimerTxLatch state machine associates a time stamp within incoming frames, as specified in Table 7.5.
The notation used in the state table is described in 3.4.

Row START-1: A new frame has arrived and is available for processing.
Row START-2: Wait for a new frame to arrive.

Row FINAL-1: The timeSync frames are immediately time-stamped and saved for special processing.
Row FINAL-2: Other frames are processed in their normal fashion.

7.3.5 TimerRxCompute state machine

7.3.5.1 TimerRxCompute state machine definitions

The following definitions are used within this subclause:

Q_TX_SYNC
See 7.2.1.

Table 7.5—TimerTxLatch state table

Current

R
ow

Next

state condition action state

START (QueueEmpty(Q_TX_FRAME)) &&
port.timeSyncAllowed

1 — FINAL

— 2 — START

FINAL (frame = Dequeue(Q_TX_SYNC))
!= NULL

1 port.txTickTimer = core.tickTimer;
Enqueue(Q_TX_FRAME, frame);

START

— 2 —

JggDvj2005Apr16/D0.142 WHITE PAPER CONTRIBUTION TO
November 16, 2005

Contribution from: dvj@alum.mit.edu.
82 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

7.3.5.2 TimerRxCompute state machine variables

The following variables are used within this subclause:

core
See 7.2.2.

count
A saved copy of the last received frame’s syncCount field.

diffRate
The copy of the core.diffRate value.

diffRate0
The value of core.diffRate, before the decay computation is performed.

diffRate1
The value of core.diffRate, after the decay computation is performed.

formed
A computed grand-master precedence value, based on the frame-supplied parameters.

frame
See 7.2.2.

myTickDelta
The difference between tickTime arrival times within sampled frames.

pastCount
A saved copy of the previous count value.

port
See 7.2.2.

rxBaseDelta
The difference between lastBaseTime values within sampled frames.

rxBaseTime1
The lastBaseTime value observed in a previously sampled frame.

rxPrecedence
A copy of the grand-master precedence from the last received frame.

rxTickDelta
A temporary value representing time-snapshot differences on the receiving link.

rxTickTime1
A tickTime value observed in a previously sampled frame.

tickTimer
A copy of the frame-supplied rxtickTimer field.

txDeltaTime
A temporary value representing time-snapshot differences on the transmitting link.

7.3.5.3 TimerRxCompute state machine routines

The following routines are used within this subclause:

Dequeue(queue)
FlexTime(tickTime, tickRate, tickDiff, tickOffset)

See 7.2.3.

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.142
November 16, 2005

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 83

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

7.3.5.4 TimerRxCompute state table

The TimerRxCompute state machine processes received timeSync frames while participating in the
grand-master selection protocol, as specified in Table 7.6. The notation used in the state table is described
in 3.4.

Table 7.6—TimerRxCompute state table

Current

R
ow

Next

state condition action state

START (frame = Dequeue(Q_RX_SYNC))
!= NULL &&
port.timeSyncAllowed

1 pastCount = port.syncCount;
port.syncCount = count = frame.syncCount;
tickTime =

frame.rxTickTimer + core.tickExtra;

TIME

— 2 — START

TIME frame.rxTickTimer < core.lastTimer 1 tickTime += core.tickLimit; PREP

— 2 —

PREP — 1 port.rxFlexTime = port.rxFlexTime0;
port.rxFlexTime0 = FlexTime(tickTimer,

core.tickRate, core.diffRate, core.tickOffset);

rxTickTime = port.rxTickTime0;
port.rxTickTime0 = tickTimer;

FIRST

FIRST count != (pastCount + 1) % 256; 1 — FINAL

— 2 port.rxDeltaTime =
port.rxFlexTime1 – frame.lastFlexTime;

txDeltaTime = frame.deltaTime;

port.propTime =
(txDeltaTime + port.rxDeltaTime)/2;

rxPrecedence = Precedence(frame.systemTag,
frame.uniqueID, frame.hopsCount,
port.portPri, port.portID);

FAST

FAST !Best(rxPrecedence, core.precedence)
&& core.slavePort != port.portID

1 — START

— 2 core.slavePort = port.portID;
core.precedence = core.compare;

core.myOffsetTime =
(txDeltaTime – rxDeltaTime)/2;

core.flexOffset = core.linkOffset +
frame.offsetTime + core.myOffsetTime;

NEAR

JggDvj2005Apr16/D0.142 WHITE PAPER CONTRIBUTION TO
November 16, 2005

Contribution from: dvj@alum.mit.edu.
84 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Row START-1: A new frame has arrived for processing.
Save the frame’s syncCount field, to facilitate detection of missing timeSync frames.

Row START-2: Wait for a new timeSync frame to arrive.

Row TIME-1: If the sampled time has overflowed, an additional overflow amount is added.
Row TIME-2: Otherwise, only the cumulative overflow amount is added.

Row PREP-1: If the sampled time has overflowed, an additional overflow amount is added.
Save the current flexTime value, to facilitate computation of:

myOffsetTime—The time difference between neighbor and local flexTimer values.
linkOffset—The time difference attributed to link propagation delay.

Save the current tickTime value, to facilitate computation of myDiffRate values

Row FIRST-1: Discard non-consecutive timeSync frames, since previously saved values are incorrect.
Row FIRST-2: Process consecutive timeSync frames to maintain time synchronization:

Compute rxDeltaTime and txDeltaTime values.
Compute the cable propagation delays, based on rxDeltaTime and txDeltaTime values.
Compute the grand-master precedence of the frame, based on frame-supplied values.

Row FAST-1: Skip further processing if this is the primary clock-slave receive port, based on:
The frame-supplied precedence is less than this station’s observed precedence.

SLOW port.counter >= core.counter + 50 1 — FINAL

port.counter >= core.counter + 10 2 rxBaseDelta =
(frame.lastBaseTime – port.rxBaseTime1);

rxTickDelta =
(rxTickTime = port.rxTickTime1);

myTickDelta =
FlexRate(rxTickTime, core.baseRate, 0);

diffRate0 = core.myDiffRate;
diffRate =

(rxTickDelta – myTickDelta) / myTickDelta;
core.myDiffRate = diffRate =

Clip(diffRate, 1.0 / 4096);

diffRate1 =
diffRate + (frame.diffRate / SCALE);

core.diffRate = diffRate1 =
Clip(diffRate1, 1.0 / 4096);

core.tickOffset –= FlexTime(core.tickTimer,
core.tickRate, diffRate1 – diffRate0, 0);

— 3 — START

FINAL — 1 port.counter = core.counter;

port.rxBaseTime1 = frame.lastBaseTime;
port.rxTickTime1 = rxTickTime;

START

Table 7.6—TimerRxCompute state table

Current

R
ow

Next

state condition action state

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.142
November 16, 2005

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 85

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

This port has not been identified as the clock-slave port.
Row FAST-2: The clock-slave port updates appropriate clock-synchronization values.

This port is identified as the clock-slave port and the frame’s precedence is saved.
The residual rate differential (if any) decays towards zero with an approximate 1-second time constant.
The core’s flexTimer offset values are computed and updated.

Row SLOW-1: An excessive lower-rate interval is processed as an error.
Row SLOW-2: Further computations are performed at the lower-rate interval.

The current lower-rate interval index is saved, so that processing only occurs once per interval.
The neighbor’s baseTime difference is computed.
The station’s baseTime difference is computed and normalized to the interchange format.
Compute the local (from the neighbor) and cumulative (from the grand-master) rate differences.
This station’s timer is adjusted to operate at the observed rate of the grand master.

Row SLOW-3: Otherwise, no rate differences are calculated.

Row FINAL-1: The lower-rate interval is concluded.
Update the counter to facilitate measurement of the next lower-rate interval duration.
Save the observed time snapshot values.

7.3.6 TimerTxCompute state machine

7.3.6.1 TimerTxCompute state machine definitions

The following definitions are used within this subclause:

NULL
A constant that indicates the absence of a slave-port identifier.

Q_TX_FRAME
See 7.2.1.

7.3.6.2 TimerTxCompute state machine variables

The following variables are used within this subclause:

core
diffRate0

The value of core.diffRate, before the decay computation is performed.
diffRate1

The value of core.diffRate, after the decay computation is performed.
frame
port

See 7.2.2.
tickTime

A extended version of core.timerTicks that accounts for per-second overflows.

7.3.6.3 TimerTxCompute state machine routines

The following routines are used within this subclause:

Enqueue(queue, frame)
FlexTime(tickTime, tickRate, tickDiff, tickOffset)
QueueEmpty(queue)

See 7.2.3.

JggDvj2005Apr16/D0.142 WHITE PAPER CONTRIBUTION TO
November 16, 2005

Contribution from: dvj@alum.mit.edu.
86 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

7.3.6.4 TimerTxCompute state table

The TimerTxCompute state machine provides the arguments for the timeSync frame, as specified in
Table 7.7. The notation used in the state table is described in 3.4.

Row START-1: When space is available and the time has arrived, transmit the next timeSync frame.
Row START-2: Wait until the next timeSync transmission time.

Row TIME-1: If the sampled time has overflowed, an additional overflow amount is added.
Row TIME-2: Otherwise, only the cumulative overflow amount is added.

Row PREP-1: The grand-master station processing is distinct.
The inherited rate differences decays towards zero.
Adjust the tickOffset value to compensate for rate-change induced offsets.
Transmit an offsetTime value that corresponds to the core’s present value.

Row PREP-2: Transmit an offsetTime value that corresponds to the cumulative value.

Table 7.7—TimerTxCompute state table

Current

R
ow

Next

state condition action state

START (QueueEmpty(Q_TX_FRAME)) &&
port.counter != core.counter

1 port.counter = core.counter;
tickTime =
port.txTickTime +core.tickExtra;

TIME

— 2 — START

TIME port.tickTimer < core.lastTimer 1 tickTime += core.tickLimit; PREP

— 2 —

PREP core.slavePort == NULL 1 diffRate0 = core.diffRate;
diffRate1 = diffRate0 – (diffRate0 / 256);
core.diffRate = diffRate1;

core.tickOffset –=
FlexTime(tickTime, core.tickRate,
newDiffRate – oldDiffRate, 0);

frame.offsetTime = core.myOffsetTime;

FINAL

— 2 frame.offsetTime = core.flexOffset;

FINAL — 1 frame.lastFlexTime =
FlexTime(tickTime, core.tickRate,
core.diffRate, core.tickOffset);

frame.deltaTime = port.rxDeltaTime;

frame.diffRate = core.diffRate * SCALE;

frame.lastBaseTime =
FlexTime(tickTime, core.tickRate, 0, 0);

Enqueue(Q_TX_FRAME, frame)

SEND

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.142
November 16, 2005

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 87

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Row FINAL-1: When space is available and the time has arrived, transmit the next timeSync frame.
The frame’s lastFlexFrame field is based on the previously sampled tickTime value.
The frame’s deltaTime field is based on the port’s receiver-computed time-difference value.
The frame’s diffRate field is based on the receiver-computed rate-difference value.
The frame’s lastBaseTime field is based on the previously sampled tickTime value.

JggDvj2005Apr16/D0.142 WHITE PAPER CONTRIBUTION TO
November 16, 2005

Contribution from: dvj@alum.mit.edu.
88 This is an unapproved working paper, subject to change.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

7.4 Protocol comparison

A comparison of the Residential Ethernet Study Group (RE-SG) and IEEE 1588 proposals is summarized in
Table 7.8.

Row 1: The size of a timeSync frame should be no larger than an Ethernet MTU, to minimize overhead.
RE-SG: The size of a timeSync frame is an Ethernet MTU.
1588: The size of a timeSync frame is (to be provided).

Row 2: Cascaded phase-lock loops (PLLs) can yield undesirable whiplash responses to transients.
RE-SG: There are no cascaded phase-lock loops.
1588: There are multiple initialization phases (to be provided).

Row 3: There number of frame types should be small, to reduce decoding and processing complexities.
RE-SG: Only one form of timeSync frame is used.
1588: Multiple forms of timeSync frames are used (to be provided).

Row 4: Multiple initialization phases adds complexity, since miss-synchronized phases must be managed.
RE-SG: There are no distinct initialization phases.
1588: There are multiple initialization phases (to be provided).

Table 7.8—Protocol comparison

Properties

R
ow

Descriptinos

state RE-SG 1588

timeSync MTU <= Ethernet MTU 1 yes

No cascaded PLL whiplash 2 yes

Number of frame types 3 1 > 1

Phaseless initialization sequencing 4 yes no

Topology 5 duplex links general

Grand-master precedence parameters 6 spanning-tree like special

Rogue-frame settling time, per hop 7 10 ms 1 s

Arithmetic complexity numbers 8 64-bit binary 2 x 32-bit binary

negatives 9 2’s complement signed

Master transfer discontinuities rate 10 gradual change

offset limitations 11 duplex-cable match
sampling error

Firmware friendly no delay constraints 12 yes

n-1 cycle sampling 13 yes

Time-of-day value precision offset resolution 14 233 ps

overflow interval 15 136 years

RESIDENTIAL ETHERNET (RE) JggDvj2005Apr16/D0.142
November 16, 2005

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 89

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Row 5: Arbitrary interconnect topologies should be supported.
RE-SG: Topologies are constrained to point-to-point full-duplex cabling.
1588: Supported topologies include broadcast interconnects.

Row 6: Grand-master selection precedence should be software configurable, like spanning-tree parameters.
RE-SG: Grand-master selection parameters are based on spanning-tree parameter formats.
1588: Grand-master selection parameters are (to be provided).

Row 7: The lifetime of rogue frames should be minimized, to avoid long initialization sequences.
RE-SG: Rogue frame lifetimes are limited by the 10 ms per-hop update latencies.
1588: Rogue frame lifetimes are limited by (to be provided).

Row 8: The time-of-day formats should be convenient for hardware/firmware processing.
RE-SG: The time-of-day format is a 64-bit binary number.
1588: The time-of-day format is a (to be provided).

Row 9: The time-of-day negative-number formats should be convenient for hardware/firmware processing.
RE-SG: The time-of-day format is a 2’s complement binary number.
1588: The time-of-day format is a (to be provided).

Row 10: The rate discontinuities caused by grand-master selection changes should be minimal.
RE-SG: Smooth rate-change transitions with a 2.5 second time constant is provided.
1588: (To be provided).

Row 11: The time-of-day discontinuities caused by grand-master selection changes should be minimal.
RE-SG: Maximum time-of-day errors are limited by cable-length asymmetry and time-snapshot errors.
1588: (To be provided).

Row 12: Firmware friendly designs should not rely on fast response-time processing.
RE-SG: Response processing time have no significant effect on time-synchronization accuracies.
1588: (To be provided).

Row 13: Firmware friendly designs should not rely on immediate or precomputed snapshot times.
RE-SG: Snapshot times are never used within the current cycle, but saved for next-cycle transmission.
1588: (To be provided).

Row 14: The fine-grained time-of-day resolution should be small, to faciliate accurate synchronization.
RE-SG: The 64-bit time-of-day timer resolution is 233 ps, less than expected snapshot accuracies.
1588: (To be provided).

Row 15: The time-of-day extent should be suffiently large to avoid overflows within one’s lifetime.
RE-SG: The 64-bit time-of-day timer overflows once every 136 years.
1588: (To be provided).

